
IFAC PapersOnLine 55-21 (2022) 49–54

ScienceDirectScienceDirect

Available online at www.sciencedirect.com

2405-8963 Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2022.09.242

10.1016/j.ifacol.2022.09.242 2405-8963

Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Controlling a Grinding Mill Circuit using
Constrained Model Predictive Static

Programming ⋆

Zander M. Noome ∗ Johan D. le Roux ∗,1

∗ Department of Electrical, Electronic, and Computer Engineering,
University of Pretoria, Pretoria, South Africa.

Abstract: A constrained Model Predictive Static Programming (MPSP) method is imple-
mented in simulation to a single-stage grinding mill circuit model. The results are compared
to a constrained Nonlinear Model Predictive Control (NMPC) method. Both the constrained
MPSP and NMPC controllers were able to track the desired output set-points without exceeding
any constraints. The comparison shows that the constrained MPSP has a faster computational
time than that of the NMPC controller with similar performance. Therefore, constrained MPSP
shows promise as a model-based controller for large processes where computational time limits
the use of NMPC.

Keywords: Computational time, Model Predictive Static Programming (MPSP), Nonlinear
Model Predictive Control (NMPC), grinding mill, industrial processes.

1. INTRODUCTION

The use of process control on industrial plants is an ef-
ficient way to maintain consistent product quality, im-
prove throughput, optimise power usage, and ensure safe
process operation. Most industrial processes are complex
and have multi-variable inputs and outputs, which make
them very difficult to control. Nonlinear Model Predictive
Control (NMPC) can be used to control multi-variable
problems in the process industry (Bemporad et al., 2002).
These NMPCs are ideal for slow processes because they
use online computation and can take several minutes to
calculate (Bemporad et al., 2002). For example, a robust
NMPC was implemented in simulation on a grinding mill
circuit in Coetzee et al. (2010), but the computation time
was too long for practical implementation. To produce
a practically viable controller, it is necessary to reduce
the computational time of the model predictive controller
(MPC) without compromising the performance.

Different techniques are available to improve the computa-
tional time of NMPC. These include Fast NMPC by Wang
and Boyd (2010), and Explicit NMPC by Pistikopoulos
(2009). The challenge with Explicit NMPC is that the
offline calculations become very difficult to solve for high
dimensional complex processes (more than five state di-
mensions)(Wang and Boyd, 2010). The Fast MPC method
is done by exploiting the quadratic program that is used to
obtain a new control input. Some of these methods include
move-blocking and warm-starting (Wang and Boyd, 2010).

Padhi and Kothari (2009) developed a different approach
to NMPC known as Model Predictive Static Program-

⋆ This work is based on the research supported in part by the
National Research Foundation of South Africa (Grant Numbers:
137769).
1 Corresponding author: derik.leroux@up.ac.za

ming (MPSP). MPSP combines two different philosophies:
NMPC and Approximate Dynamic Programming (ADP)
(Kumar and Padhi, 2014). An unconstrained MPSP con-
troller was applied in simulation to a grinding mill circuit.
Results showed that the unconstrained MPSP controller
had a similar overall performance as an unconstrained
NMPC controller when there were disturbances and mea-
surement noise added to the plant. The MPSP method had
a significantly shorter computational time than NMPC
(le Roux et al., 2014).

Recently, Kumar et al. (2019) adapted the MPSP method
to include state and input constraints. The contribution
of this article is the application of the constrained MPSP
of Kumar et al. (2019) in simulation to a grinding mill
circuit and comparing it to various constrained NMPC
controllers.

2. MODEL PREDICTIVE STATIC PROGRAMMING

A nonlinear system is written in discrete form as,

Xi
k+1 = Fk

(
Xi

k, U
i
k

)

Y i
k = hk

(
Xi

k

)
,

(1)

where Xk ϵ ℜn, Uk ϵ ℜm and Yk ϵ ℜp represents the states,
inputs and output of the system respectively (Kumar and
Padhi, 2014). The subscript k represents the time step
and the superscript i represents the iteration index. The
aim of the MPSP method is to calculate a control history
U i+1
k , k = 1, 2, ..., N , so that the output Y i+1

k will converge
to the desired output Y ∗

k for k = 1, 2, ..., N . The MPSP
technique requires multiple iterations to converge and the
user can define the convergence of the technique according
to specific requirements. The MPSP might not converge
from the first iteration if the initial guess history for the
inputs Uk are poor.

Controlling a Grinding Mill Circuit using
Constrained Model Predictive Static

Programming ⋆

Zander M. Noome ∗ Johan D. le Roux ∗,1

∗ Department of Electrical, Electronic, and Computer Engineering,
University of Pretoria, Pretoria, South Africa.

Abstract: A constrained Model Predictive Static Programming (MPSP) method is imple-
mented in simulation to a single-stage grinding mill circuit model. The results are compared
to a constrained Nonlinear Model Predictive Control (NMPC) method. Both the constrained
MPSP and NMPC controllers were able to track the desired output set-points without exceeding
any constraints. The comparison shows that the constrained MPSP has a faster computational
time than that of the NMPC controller with similar performance. Therefore, constrained MPSP
shows promise as a model-based controller for large processes where computational time limits
the use of NMPC.

Keywords: Computational time, Model Predictive Static Programming (MPSP), Nonlinear
Model Predictive Control (NMPC), grinding mill, industrial processes.

1. INTRODUCTION

The use of process control on industrial plants is an ef-
ficient way to maintain consistent product quality, im-
prove throughput, optimise power usage, and ensure safe
process operation. Most industrial processes are complex
and have multi-variable inputs and outputs, which make
them very difficult to control. Nonlinear Model Predictive
Control (NMPC) can be used to control multi-variable
problems in the process industry (Bemporad et al., 2002).
These NMPCs are ideal for slow processes because they
use online computation and can take several minutes to
calculate (Bemporad et al., 2002). For example, a robust
NMPC was implemented in simulation on a grinding mill
circuit in Coetzee et al. (2010), but the computation time
was too long for practical implementation. To produce
a practically viable controller, it is necessary to reduce
the computational time of the model predictive controller
(MPC) without compromising the performance.

Different techniques are available to improve the computa-
tional time of NMPC. These include Fast NMPC by Wang
and Boyd (2010), and Explicit NMPC by Pistikopoulos
(2009). The challenge with Explicit NMPC is that the
offline calculations become very difficult to solve for high
dimensional complex processes (more than five state di-
mensions)(Wang and Boyd, 2010). The Fast MPC method
is done by exploiting the quadratic program that is used to
obtain a new control input. Some of these methods include
move-blocking and warm-starting (Wang and Boyd, 2010).

Padhi and Kothari (2009) developed a different approach
to NMPC known as Model Predictive Static Program-

⋆ This work is based on the research supported in part by the
National Research Foundation of South Africa (Grant Numbers:
137769).
1 Corresponding author: derik.leroux@up.ac.za

ming (MPSP). MPSP combines two different philosophies:
NMPC and Approximate Dynamic Programming (ADP)
(Kumar and Padhi, 2014). An unconstrained MPSP con-
troller was applied in simulation to a grinding mill circuit.
Results showed that the unconstrained MPSP controller
had a similar overall performance as an unconstrained
NMPC controller when there were disturbances and mea-
surement noise added to the plant. The MPSP method had
a significantly shorter computational time than NMPC
(le Roux et al., 2014).

Recently, Kumar et al. (2019) adapted the MPSP method
to include state and input constraints. The contribution
of this article is the application of the constrained MPSP
of Kumar et al. (2019) in simulation to a grinding mill
circuit and comparing it to various constrained NMPC
controllers.

2. MODEL PREDICTIVE STATIC PROGRAMMING

A nonlinear system is written in discrete form as,

Xi
k+1 = Fk

(
Xi

k, U
i
k

)

Y i
k = hk

(
Xi

k

)
,

(1)

where Xk ϵ ℜn, Uk ϵ ℜm and Yk ϵ ℜp represents the states,
inputs and output of the system respectively (Kumar and
Padhi, 2014). The subscript k represents the time step
and the superscript i represents the iteration index. The
aim of the MPSP method is to calculate a control history
U i+1
k , k = 1, 2, ..., N , so that the output Y i+1

k will converge
to the desired output Y ∗

k for k = 1, 2, ..., N . The MPSP
technique requires multiple iterations to converge and the
user can define the convergence of the technique according
to specific requirements. The MPSP might not converge
from the first iteration if the initial guess history for the
inputs Uk are poor.

Controlling a Grinding Mill Circuit using
Constrained Model Predictive Static

Programming ⋆

Zander M. Noome ∗ Johan D. le Roux ∗,1

∗ Department of Electrical, Electronic, and Computer Engineering,
University of Pretoria, Pretoria, South Africa.

Abstract: A constrained Model Predictive Static Programming (MPSP) method is imple-
mented in simulation to a single-stage grinding mill circuit model. The results are compared
to a constrained Nonlinear Model Predictive Control (NMPC) method. Both the constrained
MPSP and NMPC controllers were able to track the desired output set-points without exceeding
any constraints. The comparison shows that the constrained MPSP has a faster computational
time than that of the NMPC controller with similar performance. Therefore, constrained MPSP
shows promise as a model-based controller for large processes where computational time limits
the use of NMPC.

Keywords: Computational time, Model Predictive Static Programming (MPSP), Nonlinear
Model Predictive Control (NMPC), grinding mill, industrial processes.

1. INTRODUCTION

The use of process control on industrial plants is an ef-
ficient way to maintain consistent product quality, im-
prove throughput, optimise power usage, and ensure safe
process operation. Most industrial processes are complex
and have multi-variable inputs and outputs, which make
them very difficult to control. Nonlinear Model Predictive
Control (NMPC) can be used to control multi-variable
problems in the process industry (Bemporad et al., 2002).
These NMPCs are ideal for slow processes because they
use online computation and can take several minutes to
calculate (Bemporad et al., 2002). For example, a robust
NMPC was implemented in simulation on a grinding mill
circuit in Coetzee et al. (2010), but the computation time
was too long for practical implementation. To produce
a practically viable controller, it is necessary to reduce
the computational time of the model predictive controller
(MPC) without compromising the performance.

Different techniques are available to improve the computa-
tional time of NMPC. These include Fast NMPC by Wang
and Boyd (2010), and Explicit NMPC by Pistikopoulos
(2009). The challenge with Explicit NMPC is that the
offline calculations become very difficult to solve for high
dimensional complex processes (more than five state di-
mensions)(Wang and Boyd, 2010). The Fast MPC method
is done by exploiting the quadratic program that is used to
obtain a new control input. Some of these methods include
move-blocking and warm-starting (Wang and Boyd, 2010).

Padhi and Kothari (2009) developed a different approach
to NMPC known as Model Predictive Static Program-

⋆ This work is based on the research supported in part by the
National Research Foundation of South Africa (Grant Numbers:
137769).
1 Corresponding author: derik.leroux@up.ac.za

ming (MPSP). MPSP combines two different philosophies:
NMPC and Approximate Dynamic Programming (ADP)
(Kumar and Padhi, 2014). An unconstrained MPSP con-
troller was applied in simulation to a grinding mill circuit.
Results showed that the unconstrained MPSP controller
had a similar overall performance as an unconstrained
NMPC controller when there were disturbances and mea-
surement noise added to the plant. The MPSP method had
a significantly shorter computational time than NMPC
(le Roux et al., 2014).

Recently, Kumar et al. (2019) adapted the MPSP method
to include state and input constraints. The contribution
of this article is the application of the constrained MPSP
of Kumar et al. (2019) in simulation to a grinding mill
circuit and comparing it to various constrained NMPC
controllers.

2. MODEL PREDICTIVE STATIC PROGRAMMING

A nonlinear system is written in discrete form as,

Xi
k+1 = Fk

(
Xi

k, U
i
k

)

Y i
k = hk

(
Xi

k

)
,

(1)

where Xk ϵ ℜn, Uk ϵ ℜm and Yk ϵ ℜp represents the states,
inputs and output of the system respectively (Kumar and
Padhi, 2014). The subscript k represents the time step
and the superscript i represents the iteration index. The
aim of the MPSP method is to calculate a control history
U i+1
k , k = 1, 2, ..., N , so that the output Y i+1

k will converge
to the desired output Y ∗

k for k = 1, 2, ..., N . The MPSP
technique requires multiple iterations to converge and the
user can define the convergence of the technique according
to specific requirements. The MPSP might not converge
from the first iteration if the initial guess history for the
inputs Uk are poor.

Controlling a Grinding Mill Circuit using
Constrained Model Predictive Static

Programming ⋆

Zander M. Noome ∗ Johan D. le Roux ∗,1

∗ Department of Electrical, Electronic, and Computer Engineering,
University of Pretoria, Pretoria, South Africa.

Abstract: A constrained Model Predictive Static Programming (MPSP) method is imple-
mented in simulation to a single-stage grinding mill circuit model. The results are compared
to a constrained Nonlinear Model Predictive Control (NMPC) method. Both the constrained
MPSP and NMPC controllers were able to track the desired output set-points without exceeding
any constraints. The comparison shows that the constrained MPSP has a faster computational
time than that of the NMPC controller with similar performance. Therefore, constrained MPSP
shows promise as a model-based controller for large processes where computational time limits
the use of NMPC.

Keywords: Computational time, Model Predictive Static Programming (MPSP), Nonlinear
Model Predictive Control (NMPC), grinding mill, industrial processes.

1. INTRODUCTION

The use of process control on industrial plants is an ef-
ficient way to maintain consistent product quality, im-
prove throughput, optimise power usage, and ensure safe
process operation. Most industrial processes are complex
and have multi-variable inputs and outputs, which make
them very difficult to control. Nonlinear Model Predictive
Control (NMPC) can be used to control multi-variable
problems in the process industry (Bemporad et al., 2002).
These NMPCs are ideal for slow processes because they
use online computation and can take several minutes to
calculate (Bemporad et al., 2002). For example, a robust
NMPC was implemented in simulation on a grinding mill
circuit in Coetzee et al. (2010), but the computation time
was too long for practical implementation. To produce
a practically viable controller, it is necessary to reduce
the computational time of the model predictive controller
(MPC) without compromising the performance.

Different techniques are available to improve the computa-
tional time of NMPC. These include Fast NMPC by Wang
and Boyd (2010), and Explicit NMPC by Pistikopoulos
(2009). The challenge with Explicit NMPC is that the
offline calculations become very difficult to solve for high
dimensional complex processes (more than five state di-
mensions)(Wang and Boyd, 2010). The Fast MPC method
is done by exploiting the quadratic program that is used to
obtain a new control input. Some of these methods include
move-blocking and warm-starting (Wang and Boyd, 2010).

Padhi and Kothari (2009) developed a different approach
to NMPC known as Model Predictive Static Program-

⋆ This work is based on the research supported in part by the
National Research Foundation of South Africa (Grant Numbers:
137769).
1 Corresponding author: derik.leroux@up.ac.za

ming (MPSP). MPSP combines two different philosophies:
NMPC and Approximate Dynamic Programming (ADP)
(Kumar and Padhi, 2014). An unconstrained MPSP con-
troller was applied in simulation to a grinding mill circuit.
Results showed that the unconstrained MPSP controller
had a similar overall performance as an unconstrained
NMPC controller when there were disturbances and mea-
surement noise added to the plant. The MPSP method had
a significantly shorter computational time than NMPC
(le Roux et al., 2014).

Recently, Kumar et al. (2019) adapted the MPSP method
to include state and input constraints. The contribution
of this article is the application of the constrained MPSP
of Kumar et al. (2019) in simulation to a grinding mill
circuit and comparing it to various constrained NMPC
controllers.

2. MODEL PREDICTIVE STATIC PROGRAMMING

A nonlinear system is written in discrete form as,

Xi
k+1 = Fk

(
Xi

k, U
i
k

)

Y i
k = hk

(
Xi

k

)
,

(1)

where Xk ϵ ℜn, Uk ϵ ℜm and Yk ϵ ℜp represents the states,
inputs and output of the system respectively (Kumar and
Padhi, 2014). The subscript k represents the time step
and the superscript i represents the iteration index. The
aim of the MPSP method is to calculate a control history
U i+1
k , k = 1, 2, ..., N , so that the output Y i+1

k will converge
to the desired output Y ∗

k for k = 1, 2, ..., N . The MPSP
technique requires multiple iterations to converge and the
user can define the convergence of the technique according
to specific requirements. The MPSP might not converge
from the first iteration if the initial guess history for the
inputs Uk are poor.

Controlling a Grinding Mill Circuit using
Constrained Model Predictive Static

Programming ⋆

Zander M. Noome ∗ Johan D. le Roux ∗,1

∗ Department of Electrical, Electronic, and Computer Engineering,
University of Pretoria, Pretoria, South Africa.

Abstract: A constrained Model Predictive Static Programming (MPSP) method is imple-
mented in simulation to a single-stage grinding mill circuit model. The results are compared
to a constrained Nonlinear Model Predictive Control (NMPC) method. Both the constrained
MPSP and NMPC controllers were able to track the desired output set-points without exceeding
any constraints. The comparison shows that the constrained MPSP has a faster computational
time than that of the NMPC controller with similar performance. Therefore, constrained MPSP
shows promise as a model-based controller for large processes where computational time limits
the use of NMPC.

Keywords: Computational time, Model Predictive Static Programming (MPSP), Nonlinear
Model Predictive Control (NMPC), grinding mill, industrial processes.

1. INTRODUCTION

The use of process control on industrial plants is an ef-
ficient way to maintain consistent product quality, im-
prove throughput, optimise power usage, and ensure safe
process operation. Most industrial processes are complex
and have multi-variable inputs and outputs, which make
them very difficult to control. Nonlinear Model Predictive
Control (NMPC) can be used to control multi-variable
problems in the process industry (Bemporad et al., 2002).
These NMPCs are ideal for slow processes because they
use online computation and can take several minutes to
calculate (Bemporad et al., 2002). For example, a robust
NMPC was implemented in simulation on a grinding mill
circuit in Coetzee et al. (2010), but the computation time
was too long for practical implementation. To produce
a practically viable controller, it is necessary to reduce
the computational time of the model predictive controller
(MPC) without compromising the performance.

Different techniques are available to improve the computa-
tional time of NMPC. These include Fast NMPC by Wang
and Boyd (2010), and Explicit NMPC by Pistikopoulos
(2009). The challenge with Explicit NMPC is that the
offline calculations become very difficult to solve for high
dimensional complex processes (more than five state di-
mensions)(Wang and Boyd, 2010). The Fast MPC method
is done by exploiting the quadratic program that is used to
obtain a new control input. Some of these methods include
move-blocking and warm-starting (Wang and Boyd, 2010).

Padhi and Kothari (2009) developed a different approach
to NMPC known as Model Predictive Static Program-

⋆ This work is based on the research supported in part by the
National Research Foundation of South Africa (Grant Numbers:
137769).
1 Corresponding author: derik.leroux@up.ac.za

ming (MPSP). MPSP combines two different philosophies:
NMPC and Approximate Dynamic Programming (ADP)
(Kumar and Padhi, 2014). An unconstrained MPSP con-
troller was applied in simulation to a grinding mill circuit.
Results showed that the unconstrained MPSP controller
had a similar overall performance as an unconstrained
NMPC controller when there were disturbances and mea-
surement noise added to the plant. The MPSP method had
a significantly shorter computational time than NMPC
(le Roux et al., 2014).

Recently, Kumar et al. (2019) adapted the MPSP method
to include state and input constraints. The contribution
of this article is the application of the constrained MPSP
of Kumar et al. (2019) in simulation to a grinding mill
circuit and comparing it to various constrained NMPC
controllers.

2. MODEL PREDICTIVE STATIC PROGRAMMING

A nonlinear system is written in discrete form as,

Xi
k+1 = Fk

(
Xi

k, U
i
k

)

Y i
k = hk

(
Xi

k

)
,

(1)

where Xk ϵ ℜn, Uk ϵ ℜm and Yk ϵ ℜp represents the states,
inputs and output of the system respectively (Kumar and
Padhi, 2014). The subscript k represents the time step
and the superscript i represents the iteration index. The
aim of the MPSP method is to calculate a control history
U i+1
k , k = 1, 2, ..., N , so that the output Y i+1

k will converge
to the desired output Y ∗

k for k = 1, 2, ..., N . The MPSP
technique requires multiple iterations to converge and the
user can define the convergence of the technique according
to specific requirements. The MPSP might not converge
from the first iteration if the initial guess history for the
inputs Uk are poor.

Controlling a Grinding Mill Circuit using
Constrained Model Predictive Static

Programming ⋆

Zander M. Noome ∗ Johan D. le Roux ∗,1

∗ Department of Electrical, Electronic, and Computer Engineering,
University of Pretoria, Pretoria, South Africa.

Abstract: A constrained Model Predictive Static Programming (MPSP) method is imple-
mented in simulation to a single-stage grinding mill circuit model. The results are compared
to a constrained Nonlinear Model Predictive Control (NMPC) method. Both the constrained
MPSP and NMPC controllers were able to track the desired output set-points without exceeding
any constraints. The comparison shows that the constrained MPSP has a faster computational
time than that of the NMPC controller with similar performance. Therefore, constrained MPSP
shows promise as a model-based controller for large processes where computational time limits
the use of NMPC.

Keywords: Computational time, Model Predictive Static Programming (MPSP), Nonlinear
Model Predictive Control (NMPC), grinding mill, industrial processes.

1. INTRODUCTION

The use of process control on industrial plants is an ef-
ficient way to maintain consistent product quality, im-
prove throughput, optimise power usage, and ensure safe
process operation. Most industrial processes are complex
and have multi-variable inputs and outputs, which make
them very difficult to control. Nonlinear Model Predictive
Control (NMPC) can be used to control multi-variable
problems in the process industry (Bemporad et al., 2002).
These NMPCs are ideal for slow processes because they
use online computation and can take several minutes to
calculate (Bemporad et al., 2002). For example, a robust
NMPC was implemented in simulation on a grinding mill
circuit in Coetzee et al. (2010), but the computation time
was too long for practical implementation. To produce
a practically viable controller, it is necessary to reduce
the computational time of the model predictive controller
(MPC) without compromising the performance.

Different techniques are available to improve the computa-
tional time of NMPC. These include Fast NMPC by Wang
and Boyd (2010), and Explicit NMPC by Pistikopoulos
(2009). The challenge with Explicit NMPC is that the
offline calculations become very difficult to solve for high
dimensional complex processes (more than five state di-
mensions)(Wang and Boyd, 2010). The Fast MPC method
is done by exploiting the quadratic program that is used to
obtain a new control input. Some of these methods include
move-blocking and warm-starting (Wang and Boyd, 2010).

Padhi and Kothari (2009) developed a different approach
to NMPC known as Model Predictive Static Program-

⋆ This work is based on the research supported in part by the
National Research Foundation of South Africa (Grant Numbers:
137769).
1 Corresponding author: derik.leroux@up.ac.za

ming (MPSP). MPSP combines two different philosophies:
NMPC and Approximate Dynamic Programming (ADP)
(Kumar and Padhi, 2014). An unconstrained MPSP con-
troller was applied in simulation to a grinding mill circuit.
Results showed that the unconstrained MPSP controller
had a similar overall performance as an unconstrained
NMPC controller when there were disturbances and mea-
surement noise added to the plant. The MPSP method had
a significantly shorter computational time than NMPC
(le Roux et al., 2014).

Recently, Kumar et al. (2019) adapted the MPSP method
to include state and input constraints. The contribution
of this article is the application of the constrained MPSP
of Kumar et al. (2019) in simulation to a grinding mill
circuit and comparing it to various constrained NMPC
controllers.

2. MODEL PREDICTIVE STATIC PROGRAMMING

A nonlinear system is written in discrete form as,

Xi
k+1 = Fk

(
Xi

k, U
i
k

)

Y i
k = hk

(
Xi

k

)
,

(1)

where Xk ϵ ℜn, Uk ϵ ℜm and Yk ϵ ℜp represents the states,
inputs and output of the system respectively (Kumar and
Padhi, 2014). The subscript k represents the time step
and the superscript i represents the iteration index. The
aim of the MPSP method is to calculate a control history
U i+1
k , k = 1, 2, ..., N , so that the output Y i+1

k will converge
to the desired output Y ∗

k for k = 1, 2, ..., N . The MPSP
technique requires multiple iterations to converge and the
user can define the convergence of the technique according
to specific requirements. The MPSP might not converge
from the first iteration if the initial guess history for the
inputs Uk are poor.

Controlling a Grinding Mill Circuit using
Constrained Model Predictive Static

Programming ⋆

Zander M. Noome ∗ Johan D. le Roux ∗,1

∗ Department of Electrical, Electronic, and Computer Engineering,
University of Pretoria, Pretoria, South Africa.

Abstract: A constrained Model Predictive Static Programming (MPSP) method is imple-
mented in simulation to a single-stage grinding mill circuit model. The results are compared
to a constrained Nonlinear Model Predictive Control (NMPC) method. Both the constrained
MPSP and NMPC controllers were able to track the desired output set-points without exceeding
any constraints. The comparison shows that the constrained MPSP has a faster computational
time than that of the NMPC controller with similar performance. Therefore, constrained MPSP
shows promise as a model-based controller for large processes where computational time limits
the use of NMPC.

Keywords: Computational time, Model Predictive Static Programming (MPSP), Nonlinear
Model Predictive Control (NMPC), grinding mill, industrial processes.

1. INTRODUCTION

The use of process control on industrial plants is an ef-
ficient way to maintain consistent product quality, im-
prove throughput, optimise power usage, and ensure safe
process operation. Most industrial processes are complex
and have multi-variable inputs and outputs, which make
them very difficult to control. Nonlinear Model Predictive
Control (NMPC) can be used to control multi-variable
problems in the process industry (Bemporad et al., 2002).
These NMPCs are ideal for slow processes because they
use online computation and can take several minutes to
calculate (Bemporad et al., 2002). For example, a robust
NMPC was implemented in simulation on a grinding mill
circuit in Coetzee et al. (2010), but the computation time
was too long for practical implementation. To produce
a practically viable controller, it is necessary to reduce
the computational time of the model predictive controller
(MPC) without compromising the performance.

Different techniques are available to improve the computa-
tional time of NMPC. These include Fast NMPC by Wang
and Boyd (2010), and Explicit NMPC by Pistikopoulos
(2009). The challenge with Explicit NMPC is that the
offline calculations become very difficult to solve for high
dimensional complex processes (more than five state di-
mensions)(Wang and Boyd, 2010). The Fast MPC method
is done by exploiting the quadratic program that is used to
obtain a new control input. Some of these methods include
move-blocking and warm-starting (Wang and Boyd, 2010).

Padhi and Kothari (2009) developed a different approach
to NMPC known as Model Predictive Static Program-

⋆ This work is based on the research supported in part by the
National Research Foundation of South Africa (Grant Numbers:
137769).
1 Corresponding author: derik.leroux@up.ac.za

ming (MPSP). MPSP combines two different philosophies:
NMPC and Approximate Dynamic Programming (ADP)
(Kumar and Padhi, 2014). An unconstrained MPSP con-
troller was applied in simulation to a grinding mill circuit.
Results showed that the unconstrained MPSP controller
had a similar overall performance as an unconstrained
NMPC controller when there were disturbances and mea-
surement noise added to the plant. The MPSP method had
a significantly shorter computational time than NMPC
(le Roux et al., 2014).

Recently, Kumar et al. (2019) adapted the MPSP method
to include state and input constraints. The contribution
of this article is the application of the constrained MPSP
of Kumar et al. (2019) in simulation to a grinding mill
circuit and comparing it to various constrained NMPC
controllers.

2. MODEL PREDICTIVE STATIC PROGRAMMING

A nonlinear system is written in discrete form as,

Xi
k+1 = Fk

(
Xi

k, U
i
k

)

Y i
k = hk

(
Xi

k

)
,

(1)

where Xk ϵ ℜn, Uk ϵ ℜm and Yk ϵ ℜp represents the states,
inputs and output of the system respectively (Kumar and
Padhi, 2014). The subscript k represents the time step
and the superscript i represents the iteration index. The
aim of the MPSP method is to calculate a control history
U i+1
k , k = 1, 2, ..., N , so that the output Y i+1

k will converge
to the desired output Y ∗

k for k = 1, 2, ..., N . The MPSP
technique requires multiple iterations to converge and the
user can define the convergence of the technique according
to specific requirements. The MPSP might not converge
from the first iteration if the initial guess history for the
inputs Uk are poor.

Controlling a Grinding Mill Circuit using
Constrained Model Predictive Static

Programming ⋆

Zander M. Noome ∗ Johan D. le Roux ∗,1

∗ Department of Electrical, Electronic, and Computer Engineering,
University of Pretoria, Pretoria, South Africa.

Abstract: A constrained Model Predictive Static Programming (MPSP) method is imple-
mented in simulation to a single-stage grinding mill circuit model. The results are compared
to a constrained Nonlinear Model Predictive Control (NMPC) method. Both the constrained
MPSP and NMPC controllers were able to track the desired output set-points without exceeding
any constraints. The comparison shows that the constrained MPSP has a faster computational
time than that of the NMPC controller with similar performance. Therefore, constrained MPSP
shows promise as a model-based controller for large processes where computational time limits
the use of NMPC.

Keywords: Computational time, Model Predictive Static Programming (MPSP), Nonlinear
Model Predictive Control (NMPC), grinding mill, industrial processes.

1. INTRODUCTION

The use of process control on industrial plants is an ef-
ficient way to maintain consistent product quality, im-
prove throughput, optimise power usage, and ensure safe
process operation. Most industrial processes are complex
and have multi-variable inputs and outputs, which make
them very difficult to control. Nonlinear Model Predictive
Control (NMPC) can be used to control multi-variable
problems in the process industry (Bemporad et al., 2002).
These NMPCs are ideal for slow processes because they
use online computation and can take several minutes to
calculate (Bemporad et al., 2002). For example, a robust
NMPC was implemented in simulation on a grinding mill
circuit in Coetzee et al. (2010), but the computation time
was too long for practical implementation. To produce
a practically viable controller, it is necessary to reduce
the computational time of the model predictive controller
(MPC) without compromising the performance.

Different techniques are available to improve the computa-
tional time of NMPC. These include Fast NMPC by Wang
and Boyd (2010), and Explicit NMPC by Pistikopoulos
(2009). The challenge with Explicit NMPC is that the
offline calculations become very difficult to solve for high
dimensional complex processes (more than five state di-
mensions)(Wang and Boyd, 2010). The Fast MPC method
is done by exploiting the quadratic program that is used to
obtain a new control input. Some of these methods include
move-blocking and warm-starting (Wang and Boyd, 2010).

Padhi and Kothari (2009) developed a different approach
to NMPC known as Model Predictive Static Program-

⋆ This work is based on the research supported in part by the
National Research Foundation of South Africa (Grant Numbers:
137769).
1 Corresponding author: derik.leroux@up.ac.za

ming (MPSP). MPSP combines two different philosophies:
NMPC and Approximate Dynamic Programming (ADP)
(Kumar and Padhi, 2014). An unconstrained MPSP con-
troller was applied in simulation to a grinding mill circuit.
Results showed that the unconstrained MPSP controller
had a similar overall performance as an unconstrained
NMPC controller when there were disturbances and mea-
surement noise added to the plant. The MPSP method had
a significantly shorter computational time than NMPC
(le Roux et al., 2014).

Recently, Kumar et al. (2019) adapted the MPSP method
to include state and input constraints. The contribution
of this article is the application of the constrained MPSP
of Kumar et al. (2019) in simulation to a grinding mill
circuit and comparing it to various constrained NMPC
controllers.

2. MODEL PREDICTIVE STATIC PROGRAMMING

A nonlinear system is written in discrete form as,

Xi
k+1 = Fk

(
Xi

k, U
i
k

)

Y i
k = hk

(
Xi

k

)
,

(1)

where Xk ϵ ℜn, Uk ϵ ℜm and Yk ϵ ℜp represents the states,
inputs and output of the system respectively (Kumar and
Padhi, 2014). The subscript k represents the time step
and the superscript i represents the iteration index. The
aim of the MPSP method is to calculate a control history
U i+1
k , k = 1, 2, ..., N , so that the output Y i+1

k will converge
to the desired output Y ∗

k for k = 1, 2, ..., N . The MPSP
technique requires multiple iterations to converge and the
user can define the convergence of the technique according
to specific requirements. The MPSP might not converge
from the first iteration if the initial guess history for the
inputs Uk are poor.

Controlling a Grinding Mill Circuit using
Constrained Model Predictive Static

Programming ⋆

Zander M. Noome ∗ Johan D. le Roux ∗,1

∗ Department of Electrical, Electronic, and Computer Engineering,
University of Pretoria, Pretoria, South Africa.

Abstract: A constrained Model Predictive Static Programming (MPSP) method is imple-
mented in simulation to a single-stage grinding mill circuit model. The results are compared
to a constrained Nonlinear Model Predictive Control (NMPC) method. Both the constrained
MPSP and NMPC controllers were able to track the desired output set-points without exceeding
any constraints. The comparison shows that the constrained MPSP has a faster computational
time than that of the NMPC controller with similar performance. Therefore, constrained MPSP
shows promise as a model-based controller for large processes where computational time limits
the use of NMPC.

Keywords: Computational time, Model Predictive Static Programming (MPSP), Nonlinear
Model Predictive Control (NMPC), grinding mill, industrial processes.

1. INTRODUCTION

The use of process control on industrial plants is an ef-
ficient way to maintain consistent product quality, im-
prove throughput, optimise power usage, and ensure safe
process operation. Most industrial processes are complex
and have multi-variable inputs and outputs, which make
them very difficult to control. Nonlinear Model Predictive
Control (NMPC) can be used to control multi-variable
problems in the process industry (Bemporad et al., 2002).
These NMPCs are ideal for slow processes because they
use online computation and can take several minutes to
calculate (Bemporad et al., 2002). For example, a robust
NMPC was implemented in simulation on a grinding mill
circuit in Coetzee et al. (2010), but the computation time
was too long for practical implementation. To produce
a practically viable controller, it is necessary to reduce
the computational time of the model predictive controller
(MPC) without compromising the performance.

Different techniques are available to improve the computa-
tional time of NMPC. These include Fast NMPC by Wang
and Boyd (2010), and Explicit NMPC by Pistikopoulos
(2009). The challenge with Explicit NMPC is that the
offline calculations become very difficult to solve for high
dimensional complex processes (more than five state di-
mensions)(Wang and Boyd, 2010). The Fast MPC method
is done by exploiting the quadratic program that is used to
obtain a new control input. Some of these methods include
move-blocking and warm-starting (Wang and Boyd, 2010).

Padhi and Kothari (2009) developed a different approach
to NMPC known as Model Predictive Static Program-

⋆ This work is based on the research supported in part by the
National Research Foundation of South Africa (Grant Numbers:
137769).
1 Corresponding author: derik.leroux@up.ac.za

ming (MPSP). MPSP combines two different philosophies:
NMPC and Approximate Dynamic Programming (ADP)
(Kumar and Padhi, 2014). An unconstrained MPSP con-
troller was applied in simulation to a grinding mill circuit.
Results showed that the unconstrained MPSP controller
had a similar overall performance as an unconstrained
NMPC controller when there were disturbances and mea-
surement noise added to the plant. The MPSP method had
a significantly shorter computational time than NMPC
(le Roux et al., 2014).

Recently, Kumar et al. (2019) adapted the MPSP method
to include state and input constraints. The contribution
of this article is the application of the constrained MPSP
of Kumar et al. (2019) in simulation to a grinding mill
circuit and comparing it to various constrained NMPC
controllers.

2. MODEL PREDICTIVE STATIC PROGRAMMING

A nonlinear system is written in discrete form as,

Xi
k+1 = Fk

(
Xi

k, U
i
k

)

Y i
k = hk

(
Xi

k

)
,

(1)

where Xk ϵ ℜn, Uk ϵ ℜm and Yk ϵ ℜp represents the states,
inputs and output of the system respectively (Kumar and
Padhi, 2014). The subscript k represents the time step
and the superscript i represents the iteration index. The
aim of the MPSP method is to calculate a control history
U i+1
k , k = 1, 2, ..., N , so that the output Y i+1

k will converge
to the desired output Y ∗

k for k = 1, 2, ..., N . The MPSP
technique requires multiple iterations to converge and the
user can define the convergence of the technique according
to specific requirements. The MPSP might not converge
from the first iteration if the initial guess history for the
inputs Uk are poor.

50 Zander M. Noome et al. / IFAC PapersOnLine 55-21 (2022) 49–54

The relationship of the states, inputs and outputs between
two different iteration intervals at time step k is defined
as,

Xi+1
k ≜ Xi

k +∆Xi
k

U i+1
k ≜ U i

k +∆U i
k

Y i+1
k ≜ Y i

k +∆Y i
k .

(2)

The output Y i+1
k can be expanded using small error

approximation, where the higher order terms of the Taylor
series expansion is neglected,

Y i+1
k = h(Xi+1

k) = h(Xi
k +∆Xi

k)

≈ Y i
k +

[
∂Yk

∂Xk

]

Xi
k

∆Xi
k.

(3)

Substituting Y i+1
k from (2) into (3) and making ∆Y i

k the
subject, the following equation is obtained,

∆Y i
k = Y i+1

k − Y i
k ≈

[
∂Yk

∂Xk

]

Xi
k

∆Xi
k. (4)

Performing the small error approximation to Xi+1
k+1 while

using the states and inputs defined in (2), then,

Xi+1
k+1 = Fk

(
Xi+1

k , U i+1
k

)

= Fk

(
Xi

k +∆Xi
k, U

i
k +∆U i

k

)

≈ Xi
k+1 +

[
∂Fk

∂Xk

]

(Xi
k
,Ui

k
)

∆Xi
k

+

[
∂Fk

∂Uk

]

(Xi
k
,Ui

k
)

∆U i
k

∆Xi
k+1 ≈

[
∂Fk

∂Xk

]

(Xi
k
,Ui

k
)

∆Xi
k +

[
∂Fk

∂Uk

]

(Xi
k
,Ui

k
)

∆U i
k.

(5)

Assuming that the states, inputs and outputs all have
small deviations, (4) and (5) can be rewritten as,

dY i
k =

[
∂Yk

∂Xk

]

Xi
k

dXi
k

dXi
k+1 =

[
∂Fk

∂Xk

]

(Xi
k
,Ui

k
)

dXi
k +

[
∂Fk

∂Uk

]

(Xi
k
,Ui

k
)

dU i
k,

(6)

where dXi
k and dU i

k is the error in the state and inputs
at the k-th time step and the i-th iteration respectively.
Writing the output error dY i

k in terms of the state and
input errors at time steps (k − 1), (k − 2), ... , until the
first time step, gives

dY i
k =

[
Ak

]i
dXi

1 +
[
Bk

1

]i
dU i

1 + · · ·+
[
Bk

k1

]i
dU i

k−1
(7)

where
[
Ak

]i
is defined as,

[
Ak

]i
=

[
∂Yk

∂Xk

]

(Xi
k)

[
∂Fk−1

∂Xk−1

]

(Xi
k−1

,Ui
k−1)

· · · ×
[
∂F1

∂X1

]

(Xi
1,U

i
1)

(8)

and [Bk
j]

i is the sensitivity matrix at the ith iteration, for
j = 1, 2, 3, ..., k − 1 defined as,

[Bk
j]

i =

[
∂Yk

∂Xk

]

(Xi
k)

[
∂Fk−1

∂Xk−1

]

(Xi
k−1

,Ui
k−1)

· · · ×
[
∂Fj+1

∂Xj+1

]

(Xi
j+1

,Ui
j+1)

[
∂Fj

∂Xj

]

(Xi
j
,Ui

j)
.

(9)

The state error at the first time step dX1 in (7) is zero
because the states are known at that time. This means
that the output error can reduce to,

dY i
k =

k−1∑
j=1

[
Bk

j

]i
dU i

j . (10)

While deriving (10) it is clear that the output error is
independent of the previous state and input values. The
input is a decision variable and can change independently
at any point in time. It should be noted that (10) repre-
sents the sensitivity of the output dY i

k at the k-th iteration
with respect to the input changes dU i

j at all the previous

grid points (j = 1, 2, ..., k − 1). Calculating [Bk
j]

i for all
k = 2, 3, ..., N where N represents the control and
prediction horizon, can be computationally heavy. The
following recursive algorithm can be used to reduce the
computational cost,

[Ak
k]

i = In×n

[Ak
j]

i = [Ak
j+1]

i

[
dFj

dXj

]

(Xi
j
,Ui

j
)

[Bk
j]

i =

[
dYk

dXk

]

(Xi
k
)

[Ak
j+1]

i

[
dFj

dUj

]

(Xi
j
,Ui

j
)

(11)

where j = (k − 1), (k − 2), ..., 1.

2.1 Cost function

In (10) there are (N − 1)m unknowns and p equations.
In general p << (N − 1)m which indicates an under-
constrained system of equations. A cost function can be
included for tracking a desired output. The cost function
chosen for each i-th iteration is,

J i =
1

2

N∑
k=2

(
∆Y i

k −∆Y ∗
k

)T
Qmpsp

(
∆Y i

k −∆Y ∗
k

)

+
1

2

N−1∑
k=1

(
∆U i

k

)T
Rmpsp

(
∆U i

k

)
(12)

where ∆Y ∗
k = Y ∗

k − Y i
k is the output error with respect

to the desired output Y ∗
k , Qmpsp is the output weighting

matrix and Rmpsp is the input deviation weighting matrix.
Minimizing the cost function in (12) will result in the
measured output to draw closer to the desired output at
each grid point for the next iteration (Y i+1

k → Y ∗
k , ∀ k =

2, 3, ..., N). Assuming that the output error is small and
that the input have small deviations, (12) can be written
as,

J i =
1

2

N∑
k=2

(
dY i

k −∆Y ∗
k

)T
Qmpsp

(
dY i

k −∆Y ∗
k

)

+
1

2

N−1∑
k=1

(
dU i

k

)T
Rmpsp

(
dU i

k

)
.

(13)

2.2 Constrained MPSP

Constrained MPSP, where constraints are added to the
system, uses a compact form of the cost function in (12)
by substituting (10) and simplifying to get,

J i =
1

2
(δU i)T

�
Rmpsp + ([B]i)TQmpsp[B]i

δU i

− (δU i)T
�
[B]i

T
Qmpsp(∆Y ∗i)

+
1

2
(∆Y ∗i)TQmpsp∆Y ∗i

(14)

where Qmpsp, Rmpsp, ∆Y ∗i and [B]i are,

Qmpsp ≜ diag([Q1], [Q2], ..., [QN])

Rmpsp ≜ diag([R1], [R2], ..., [RN])

∆Y ∗i ≜

(∆Y ∗i

1)T (∆Y ∗i
2)T · · · (∆Y ∗i

N)T

[B]i ≜

[B1
1]

i [B1
2]

i . . . [B1
N]i

[B2
1]

i [B2
2]

i . . . [B2
N]i

...
...

. . .
...

[BN
1]i [BN

2]i . . . [BN
N]i

 .

The state and input constraints applied in (14) are,

[A]i

−[Ai]
I
−I

 δU i ≤

XUB −Xi

Xi −XLB

UUB − U i

U i − ULB

 , (15)

where XUB and XLB are the upper and lower bound
constraints of the states and UUB and ULB are the upper
and lower bound constraints of all the control inputs. The
matrix [A]i is the same as represented in (8) but in matrix
form,

[A]i ≜

[A1
1]

i [A1
2]

i . . . [A1
N]i

[A2
1]

i [A2
2]

i . . . [A2
N]i

...
...

. . .
...

[AN
1]i [AN

2]i . . . [AN
N]i

 .

Finally, δU i is the small control errors,

δU i ≜

(dU i

1)
T (dU i

2)
T · · · (dU i

N)T

.

Output constraints can be added by using the definition
in (10) to obtain,

[B]i

−[Bi]

δU i ≤

Y UB − Y i

Y i − Y LB

, (16)

where Y UB and Y LB are the upper and lower output
constraints. The cost function in (14) and the constraints
in (15) and (16) can be solved with any standard quadratic
programming solving method (Kumar et al., 2019).

3. NONLINEAR MODEL PREDICTIVE CONTROL

The constrained NMPC can be formulated as,

min
Uk

J(Xk, Uk) =
1

2

Np
k=1

(Yk − Y ∗
k)

T
Qmpc (Yk − Y ∗

k)

+
1

2

Nc
k=1

(Uk+1 − Uk)
T
Rmpc (Uk+1 − Uk)

(17)

s.t.
Xk+1 = Fk (Xk, Uk)

Yk = hk (Xk)

ULB ≤ U ≤ UUB

XLB ≤ X ≤ XUB

Y LB ≤ Y ≤ Y UB

(18)

Mill Feed Balls
(uMFB)

Mill Feed Ore
(uMFO)

Mill Inlet
Water

(uMIW)

Mill Load
(yJT)

Sump Fill
(ySV OL)

Sump
Feed
Water

(uSFW)

Cyclone
Cluster

Particle Size Estimate (yPSE)

Cyclone
Feed Flow
(uCFF)

Fig. 1. A single-stage grinding mill circuit.

where Np is the prediction horizon, Nc is the control
horizon, Y ∗

k is the desired output and k represents the time
steps. The minimization problem in (17) can be solved
using an appropriate numerical optimization routine (No-
cedal and Wright, 2006).

4. GRINDING MILL CIRCUIT MODEL

The constrained MPSP controller in 2 and the constrained
NMPC controller in 3 are applied in simulation to the
single-stage grinding mill circuit shown in Fig. 1 (Le Roux
et al., 2013). Only a brief summary of the circuit is given
below.

The mill, sump and hydrocyclone are the three main
elements of the grinding mill circuit in Fig. 1. The variables
in Fig. 1 are described in Table 1. The mill has four inputs:
underflow from the hydrocyclone, mill inlet water (uMIW),
mill feed solids (uMFO) and mill feed balls (uMFB). These
four inputs get mixed in the mill to form a slurry. The mill
load of the grinding mill model is represented as a fraction
of the charge inside the mill yJT . The slurry is discharged
from the mill into a sump through an end-discharge screen.
The slurry inside the sump is diluted with water (uSFW)
after which the slurry is pumped to the hydrocyclone. The
volume of slurry in the sump and the feed flow-rate of the
slurry into the cyclone is represented by ySV OL and uCFF

respectively.The hydrocyclone separates small particles
from large particles. The hydrocyclone overflow contains
the small particles which are sent to a downstream process.
The fraction of particles in the overflow smaller than 75
µm is given by yPSE . The hydrocyclone underflow contains
the large particles which return to the mill for further
breakage.

The charge inside the mill is divided into five states: rocks,
solids, fines, balls and water. The solids are ore that can
discharge from the mill, whereas rocks are ore too large to
discharge via the end-discharge screen. The solids are the
sum of the fine and coarse ore, where fine ore is classified
as a product below specification size, and coarse ore is
classified as a product above specification size (Le Roux
et al., 2013).

 Zander M. Noome et al. / IFAC PapersOnLine 55-21 (2022) 49–54 51

J i =
1

2
(δU i)T

�
Rmpsp + ([B]i)TQmpsp[B]i

δU i

− (δU i)T
�
[B]i

T
Qmpsp(∆Y ∗i)

+
1

2
(∆Y ∗i)TQmpsp∆Y ∗i

(14)

where Qmpsp, Rmpsp, ∆Y ∗i and [B]i are,

Qmpsp ≜ diag([Q1], [Q2], ..., [QN])

Rmpsp ≜ diag([R1], [R2], ..., [RN])

∆Y ∗i ≜

(∆Y ∗i

1)T (∆Y ∗i
2)T · · · (∆Y ∗i

N)T

[B]i ≜

[B1
1]

i [B1
2]

i . . . [B1
N]i

[B2
1]

i [B2
2]

i . . . [B2
N]i

...
...

. . .
...

[BN
1]i [BN

2]i . . . [BN
N]i

 .

The state and input constraints applied in (14) are,

[A]i

−[Ai]
I
−I

 δU i ≤

XUB −Xi

Xi −XLB

UUB − U i

U i − ULB

 , (15)

where XUB and XLB are the upper and lower bound
constraints of the states and UUB and ULB are the upper
and lower bound constraints of all the control inputs. The
matrix [A]i is the same as represented in (8) but in matrix
form,

[A]i ≜

[A1
1]

i [A1
2]

i . . . [A1
N]i

[A2
1]

i [A2
2]

i . . . [A2
N]i

...
...

. . .
...

[AN
1]i [AN

2]i . . . [AN
N]i

 .

Finally, δU i is the small control errors,

δU i ≜

(dU i

1)
T (dU i

2)
T · · · (dU i

N)T

.

Output constraints can be added by using the definition
in (10) to obtain,

[B]i

−[Bi]

δU i ≤

Y UB − Y i

Y i − Y LB

, (16)

where Y UB and Y LB are the upper and lower output
constraints. The cost function in (14) and the constraints
in (15) and (16) can be solved with any standard quadratic
programming solving method (Kumar et al., 2019).

3. NONLINEAR MODEL PREDICTIVE CONTROL

The constrained NMPC can be formulated as,

min
Uk

J(Xk, Uk) =
1

2

Np
k=1

(Yk − Y ∗
k)

T
Qmpc (Yk − Y ∗

k)

+
1

2

Nc
k=1

(Uk+1 − Uk)
T
Rmpc (Uk+1 − Uk)

(17)

s.t.
Xk+1 = Fk (Xk, Uk)

Yk = hk (Xk)

ULB ≤ U ≤ UUB

XLB ≤ X ≤ XUB

Y LB ≤ Y ≤ Y UB

(18)

Mill Feed Balls
(uMFB)

Mill Feed Ore
(uMFO)

Mill Inlet
Water

(uMIW)

Mill Load
(yJT)

Sump Fill
(ySV OL)

Sump
Feed
Water

(uSFW)

Cyclone
Cluster

Particle Size Estimate (yPSE)

Cyclone
Feed Flow
(uCFF)

Fig. 1. A single-stage grinding mill circuit.

where Np is the prediction horizon, Nc is the control
horizon, Y ∗

k is the desired output and k represents the time
steps. The minimization problem in (17) can be solved
using an appropriate numerical optimization routine (No-
cedal and Wright, 2006).

4. GRINDING MILL CIRCUIT MODEL

The constrained MPSP controller in 2 and the constrained
NMPC controller in 3 are applied in simulation to the
single-stage grinding mill circuit shown in Fig. 1 (Le Roux
et al., 2013). Only a brief summary of the circuit is given
below.

The mill, sump and hydrocyclone are the three main
elements of the grinding mill circuit in Fig. 1. The variables
in Fig. 1 are described in Table 1. The mill has four inputs:
underflow from the hydrocyclone, mill inlet water (uMIW),
mill feed solids (uMFO) and mill feed balls (uMFB). These
four inputs get mixed in the mill to form a slurry. The mill
load of the grinding mill model is represented as a fraction
of the charge inside the mill yJT . The slurry is discharged
from the mill into a sump through an end-discharge screen.
The slurry inside the sump is diluted with water (uSFW)
after which the slurry is pumped to the hydrocyclone. The
volume of slurry in the sump and the feed flow-rate of the
slurry into the cyclone is represented by ySV OL and uCFF

respectively.The hydrocyclone separates small particles
from large particles. The hydrocyclone overflow contains
the small particles which are sent to a downstream process.
The fraction of particles in the overflow smaller than 75
µm is given by yPSE . The hydrocyclone underflow contains
the large particles which return to the mill for further
breakage.

The charge inside the mill is divided into five states: rocks,
solids, fines, balls and water. The solids are ore that can
discharge from the mill, whereas rocks are ore too large to
discharge via the end-discharge screen. The solids are the
sum of the fine and coarse ore, where fine ore is classified
as a product below specification size, and coarse ore is
classified as a product above specification size (Le Roux
et al., 2013).

52 Zander M. Noome et al. / IFAC PapersOnLine 55-21 (2022) 49–54

Table 1. Circuit variable descriptions.

Manipulated Variables

uMIW Flow-rate of water to the mill [m3/h]
uMFO Flow-rate of ore to the mill [t/h]
uMFB Flow-rate of steel balls to the mill [t/h]
uSFW Flow-rate of water to the sump [m3/h]
uCFF Flow-rate of slurry to the hydrocyclone [m3/h]

Controlled Variables

yJT Fraction of the mill filled [-]
ySV OL Volume of slurry in the sump [m3]
yPSE Fraction of particles within specification [-]

4.1 Model equations

The nonlinear state-space continuous model of the grind-
ing mill is (Le Roux et al., 2013),

ẋmw = uMIW − dqφxmwxmw

xms + xmw
+ qcwu

ẋms =
uMFO

ρo
(1− αr)−

dqφxmwxms

xms + xmw
+ qcsu+

φPmill

ρoKr

xmr

xmr + xms

ẋmf =
uMFO

ρo
αf − dqφxmwxmf

xms + xmw
+ qcfu +

Pmill

ρoKf

ẋmr =
uMFO

ρo
αr −

Pmillφ

ρoKr

xmr

xmr + xms

ẋmb =
uMFB

ρB
− Pmillφ

Kb

xmb

ρo (xmr + xms) + ρBxmb

ẋsw =
dqφxmwxmw

xms + xmw
− uCFFxsw

xsw + xss
+ uSFW

ẋss =
dqφxmwxms

xms + xmw
− uCFFxsw

xsw + xss

ẋsf =
dqφxmwxmf

xms + xmw
− uCFFxsf

xsw + xss
(19)

where xmw, xms, xmf , xmr and xmb are the volume of wa-
ter, solids, fines, rocks and balls inside the mill respectively,
xsw, xss and xsf are the water, solids and fines inside the
sump respectively, and qcwu, qcsu and qcfu are the cyclone
water, solids and fines underflow respectively. The model
parameters are described in Table 2. The outputs are,

yJT = xmw+xms+xmr+xmb

vmill

ySV OL = xss + xsw

yPSE =
qcfo

qcso
,

(20)

where qcfo and qcso are the volumetric flow-rates of the
fines and the solids at the overflow of the hydrocyclone
respectively.

The intermediate variables required in (19) for the mill are
defined as,

φ =

1−

�
ε−1
0 − 1

xs

xw
; xs

xw
≤

�
ε−1
0 − 1

−1

0; xs

xw
>

�
ε−1
0 − 1

−1

Pmill = Pmax

1− δPvZ

2
x− δPsZ

2
r

αc

Zx =
xmw + xmr + xms + xmb

vmillvPmax

− 1

Zr =
φ

φPmax

− 1,

(21)

Table 2. Circuit parameter descriptions.

Parameter Value Description

αf 0.055 Fraction fines in the ore
αr 0.465 Fraction rock in the ore
αc 0.72 Fraction of critical mill speed
αsu 1.50 Parameter related to fraction solids in

underflow
C1 0.6 Constant
C2 0.7 Constant
C3 4.0 Constant
δps 2.90 Power-change parameter for fraction

solids in the mill
δpv 2.90 Power-change parameter for the volume of

mill filled
ρB 7.85 Density of steel balls [t/m3]
ρS 3.2 Density of feed ore [t/m3]
εc 111.85 Maximum fraction solids by volume of

slurry at 0 slurry flow
εsv 0.6 Parameter related to coarse split [m3/h]
Kb 90.0 Steel abrasion factor [kWh/t]
Kf 31.31 Power needed per tonne of fines produced

[kWh/t]
Kr 8.06 Rock abrasion factor [kWh/t]
φPmax 0.57 Rheology factor for maximum mill power

draw
Pmax 1670 Maximum mill motor power draw [kW]
vmill 59.12 Mill volume [m3]
vPmax 0.34 Fraction of mill volume filled for

maximum power draw
dq 84.50 Volumetric flow per ”flowing volume”

driving force [h−1]
χP 0 Cross-term for maximum power draw

where φ is a rheology factor, Pmill is the power draw of
the grinding mill, Zx is the effect of the mill charge on
the power draw, and Zr is the effect of the rheology of the
mill charge on the power draw. The intermediate variables
required in (19) and (20) for the hydrocyclone are defined
as,

qccu =
uCFF (xss − xsf)

xsw + xss

1− C1 exp

−uCFF

εc

×

1−

xss

C2 (xsw + xss)

C3

1−

xsf

xss

C3

Fu =0.6−

0.6− xss

xsw + xss

exp

−qccu
αsuεc

qcwu =
xsw (qccu − Fuqccu)

Fuxsw + Fuxsf − xsf

qcfu =
xsf (qccu − Fuqccu)

Fuxsw + Fuxsf − xsf

qcsu =qccu +
xsf (qccu − Fuqccu)

Fuxsw + Fuxsf − xsf

qcso =
uCFFxss

xss + xsw
− qcsu

qcfo =
uCFFxsf

xss + xsw
− qcfu

(22)

5. SIMULATION

In this section, constrained MPSP and constrained NMPC
are applied to the grinding mill circuit and the results are
compared.

5.1 Simulation settings

The comparison made use of the following general settings:

– The simulation time is 5 h.
– The sampling time is Ts = 10 s.
– Full state feedback is assumed.
– The nonlinear state-space description of the circuit
in (18) is discretized using the Runge-Kutta fourth
order method.

– The ball feed-rate uMFB is kept as a constant ratio
with respect to the volume of the mill filled with
charge yJT , such that uMFB/yJT = 16.7.

– The mill water inlet uMIW is kept in a ratio of 7%
with the mill feed ore uMFO.

– The nominal and initial values of the plant are,

X0 = [xmw, xms, xmf , xmr, xmb, xsw, xss, xsf]
T
=

[3.78, 3.45, 1.08, 1.86, 9.23, 3.79, 2.11, 0.66]
T
,

(23)

U0 = [uMFO, uSFW , uCFF]
T

= [66.9, 67.1, 267]
T

(24)

and

Ysp = [yJT , ySV OL, yPSE]
T

= [0.31, 5.90, 0.60]
T
.

(25)

– The input ranges for the simulations were ,

[uMFO, uSFW , uCFF]LB
T = [0, 0, 100]T

[uMFO, uSFW , uCFF]UB
T = [100, 150, 500]T .

(26)
– The output constraints for the simulation were chosen
as,

[yJT , ySV OL, yPSE]LB
T = [0.25, 1.0, 0.5]T

[yJT , ySV OL, yPSE]UB
T = [0.45, 8.0, 0.8]T .

(27)

– State noise is added to the feedback as a normal
Gaussian distribution of N (0, (0.01X0)

2).
– The MPSP and NMPC objective functions in (14)
and (17) are solved using sequential least squares
quadratic programming.

The desired set-points are kept constant at the nominal
values of the plant. Disturbances are introduced to activate
the constraints of the controllers:

– A change in the mill feed size distribution is made by
increasing the fraction of rocks in the ore fed to the
mill, αr, with 50% of its nominal value from t = 0.5 h
to t = 2.1 h.

– A change in the ore hardness is made by increasing
the power needed per ton of fines produced, ϕf , with
100% of its nominal value from t =1.5 h to t =4h.

For the constrained MPSP simulation the following ap-
plies:

– As shown in (13), the prediction horizon and control
horizon are equal for MPSP. In this case, N = 36.

– The weighting matrices for the MPSP controller were
chosen to normalize the unputs and outputs and
prioritize sepoint following of yPSE le Roux et al.
(2014), such that,

Qmpsp = diag([1448.91, 1, 9669.44])

Rmpsp = 10−3 diag([3.48, 0.22, 0.22]).
(28)

Table 3. Iteration time results of the MPSP
simulation and the NMPC simulations.

Simulated Controller x̄ [s] σ [s] Maximum [s]

MPSP 3.187 1.681 6.860
NMPCNc36b3 5.252 0.463 5.557
NMPCNc12b1 5.200 0.301 5.517
NMPCNc12b3 1.983 0.130 2.487

– The MPSP algorithm terminates for each iterative
step if the algorithm has executed 10 times, or if the
conditions below are met,∥∥Y i

k − Y ∗
k

∥∥
2

∥Y ∗
k ∥

< [0.005, 0.005, 0.001]T

∥∥U i+1
k − U∗

k

∥∥
2

∥U∗
k∥

< [0.01, 0.01, 0.01]T .

(29)

Multiple NMPC controller configurations are simulated.
For the constrained NMPC simulations the following set-
tings apply:

– The prediction horizon is Np = 36 and the control
horizons are changed between Nc = 36 and Nc = 12
respectively.

– Move-blocking of NB = 3 was applied to two of the
controllers.

– All of the NMPC controllers used warm-starting.
(The previous control calculation is used as the initial
guess value for the optimisation routine (Wang and
Boyd, 2010))

– The weighting matrices for each of the NMPC con-
trollers in (17) were obtained by scaling the MPSP
weightings according to the control horizon and the
number of control moves blocked.

Qmpc = Qmpsp

Rmpc = Rmpsp ×
NpNc

NB
.

(30)

– The NMPC algorithm terminates at each iterative
step when the optimization routine has executed a
maximum of 10 times, or the algorithm converged to
within a tolerance of 0.001.

5.2 Results

The simulation was done in Python. The results of the
simulation are shown in Figs. 2 to 4. The time it took
to calculate a new control step for each k-th time step
was measured in the simulation and is shown in Table 3,
where x̄ and σ represent the mean and standard deviation
of the iteration times of the simulations respectively. The
NMPC simulation results show a subscript of ”NcCCbB”,
where CC represent the control horizon and B represents
the number of move-blocking. The input and output con-
straints are adhered to. The simulation was executed on
an Intel(R) Core(TM) i5-8400 (6 Core) 2.80 Ghz processor
with 20 GB RAM running on Microsoft Windows 10 Home
operating system.

6. DISCUSSION

The simulation results show that the constrained MPSP
and NMPC controllers can reject disturbances with the
same efficiency. The NMPCNc12b3 controller is the least

 Zander M. Noome et al. / IFAC PapersOnLine 55-21 (2022) 49–54 53

5.1 Simulation settings

The comparison made use of the following general settings:

– The simulation time is 5 h.
– The sampling time is Ts = 10 s.
– Full state feedback is assumed.
– The nonlinear state-space description of the circuit
in (18) is discretized using the Runge-Kutta fourth
order method.

– The ball feed-rate uMFB is kept as a constant ratio
with respect to the volume of the mill filled with
charge yJT , such that uMFB/yJT = 16.7.

– The mill water inlet uMIW is kept in a ratio of 7%
with the mill feed ore uMFO.

– The nominal and initial values of the plant are,

X0 = [xmw, xms, xmf , xmr, xmb, xsw, xss, xsf]
T
=

[3.78, 3.45, 1.08, 1.86, 9.23, 3.79, 2.11, 0.66]
T
,

(23)

U0 = [uMFO, uSFW , uCFF]
T

= [66.9, 67.1, 267]
T

(24)

and

Ysp = [yJT , ySV OL, yPSE]
T

= [0.31, 5.90, 0.60]
T
.

(25)

– The input ranges for the simulations were ,

[uMFO, uSFW , uCFF]LB
T = [0, 0, 100]T

[uMFO, uSFW , uCFF]UB
T = [100, 150, 500]T .

(26)
– The output constraints for the simulation were chosen
as,

[yJT , ySV OL, yPSE]LB
T = [0.25, 1.0, 0.5]T

[yJT , ySV OL, yPSE]UB
T = [0.45, 8.0, 0.8]T .

(27)

– State noise is added to the feedback as a normal
Gaussian distribution of N (0, (0.01X0)

2).
– The MPSP and NMPC objective functions in (14)
and (17) are solved using sequential least squares
quadratic programming.

The desired set-points are kept constant at the nominal
values of the plant. Disturbances are introduced to activate
the constraints of the controllers:

– A change in the mill feed size distribution is made by
increasing the fraction of rocks in the ore fed to the
mill, αr, with 50% of its nominal value from t = 0.5 h
to t = 2.1 h.

– A change in the ore hardness is made by increasing
the power needed per ton of fines produced, ϕf , with
100% of its nominal value from t =1.5 h to t =4h.

For the constrained MPSP simulation the following ap-
plies:

– As shown in (13), the prediction horizon and control
horizon are equal for MPSP. In this case, N = 36.

– The weighting matrices for the MPSP controller were
chosen to normalize the unputs and outputs and
prioritize sepoint following of yPSE le Roux et al.
(2014), such that,

Qmpsp = diag([1448.91, 1, 9669.44])

Rmpsp = 10−3 diag([3.48, 0.22, 0.22]).
(28)

Table 3. Iteration time results of the MPSP
simulation and the NMPC simulations.

Simulated Controller x̄ [s] σ [s] Maximum [s]

MPSP 3.187 1.681 6.860
NMPCNc36b3 5.252 0.463 5.557
NMPCNc12b1 5.200 0.301 5.517
NMPCNc12b3 1.983 0.130 2.487

– The MPSP algorithm terminates for each iterative
step if the algorithm has executed 10 times, or if the
conditions below are met,∥∥Y i

k − Y ∗
k

∥∥
2

∥Y ∗
k ∥

< [0.005, 0.005, 0.001]T

∥∥U i+1
k − U∗

k

∥∥
2

∥U∗
k∥

< [0.01, 0.01, 0.01]T .

(29)

Multiple NMPC controller configurations are simulated.
For the constrained NMPC simulations the following set-
tings apply:

– The prediction horizon is Np = 36 and the control
horizons are changed between Nc = 36 and Nc = 12
respectively.

– Move-blocking of NB = 3 was applied to two of the
controllers.

– All of the NMPC controllers used warm-starting.
(The previous control calculation is used as the initial
guess value for the optimisation routine (Wang and
Boyd, 2010))

– The weighting matrices for each of the NMPC con-
trollers in (17) were obtained by scaling the MPSP
weightings according to the control horizon and the
number of control moves blocked.

Qmpc = Qmpsp

Rmpc = Rmpsp ×
NpNc

NB
.

(30)

– The NMPC algorithm terminates at each iterative
step when the optimization routine has executed a
maximum of 10 times, or the algorithm converged to
within a tolerance of 0.001.

5.2 Results

The simulation was done in Python. The results of the
simulation are shown in Figs. 2 to 4. The time it took
to calculate a new control step for each k-th time step
was measured in the simulation and is shown in Table 3,
where x̄ and σ represent the mean and standard deviation
of the iteration times of the simulations respectively. The
NMPC simulation results show a subscript of ”NcCCbB”,
where CC represent the control horizon and B represents
the number of move-blocking. The input and output con-
straints are adhered to. The simulation was executed on
an Intel(R) Core(TM) i5-8400 (6 Core) 2.80 Ghz processor
with 20 GB RAM running on Microsoft Windows 10 Home
operating system.

6. DISCUSSION

The simulation results show that the constrained MPSP
and NMPC controllers can reject disturbances with the
same efficiency. The NMPCNc12b3 controller is the least

54 Zander M. Noome et al. / IFAC PapersOnLine 55-21 (2022) 49–54

0.300

0.325

0.350

y J
T
[-
]

Outputs of Grinding Mill Circuit

2.5

5.0

y S
V
O
L
[m

3
]

YMPSP

YNc36b3

YNc12b1

YNc12b3

0 1 2 3 4 5

Time [hours]

0.50

0.55

0.60

y P
S
E

[-
]

Fig. 2. NMPC and MPSP simulation outputs of the
grinding mill circuit with state noise.

0

50

100

u
M

F
O

[t
3
/h

]

Inputs to Grinding Mill Circuit

0

100

u
S
F
W

[m
3
/h

]

UMPSP

UNc36b3

UNc12b1

UNc12b3

0 1 2 3 4 5

Time [hours]

200

400

u
C
F
F
[m

3
/h

]

Fig. 3. NMPC and MPSP simulation inputs to the grinding
mill circuit with state noise.

computationally heavy algorithm, but has the worst per-
formance. The NMPCNc12b1 has the best output results
of all the controllers, but is 2.622 times slower than the
NMPCNc12b3 controller. The MPSP controller shows bet-
ter performance than the NMPCNc12b3 controller, but is
1.607 times slower. The MPSP controller has more ag-
gressive control moves than any of the NMPC controllers.

0 2 4 6 8

Time [seconds]

0

1

2

3

P
ro
b
a
b
il
it
y

MPSP

Nc36b3

Nc12b1

Nc12b3

Fig. 4. Normal distribution of the time necessary to
calculate a new input for the respective controllers.

The results in Fig. 4 indicate that the time necessary to
calculate an MPSP control move is less consistent than for
NMPC.

7. CONCLUSION

The constrained MPSP method is a viable option for use in
the mineral processing industry where the computational
time of constrained NMPC is too long for practical im-
plementation without compromising performance. Future
work may investigate the robustness of constrained MPSP.

REFERENCES

Bemporad, A., Morari, M., Dua, V., and Pistikopoulos,
E.N. (2002). The explicit linear quadratic regulator for
constrained systems. Automatica, 38(1), 3–20.

Coetzee, L.C., Craig, I.K., and Kerrigan, E.C. (2010).
Robust nonlinear model predictive control of a run-of-
mine ore milling circuit. IEEE T. Contr. Syst. T., 18(1),
222–229.

Kumar, P., Anoohya, B.B., and Padhi, R. (2019). Model
predictive static programming for optimal command
tracking: A fast model predictive control paradigm. J
Dyn. Syst., 141(2).

Kumar, P. and Padhi, R. (2014). Extension of model
predictive static programming for reference command
tracking. IFAC Proceedings Volumes, 47, 855–861.

Le Roux, J., Craig, I., Hulbert, D., and Hinde, A. (2013).
Analysis and validation of a run-of-mine ore grinding
mill circuit model for process control. Minerals Engi-
neering, s 43–44, 121–134.

le Roux, J.D., Padhi, R., and Craig, I.K. (2014). Optimal
control of grinding mill circuit using model predictive
static programming: A new nonlinear mpc paradigm. J.
Process Contr., 24(12), 29–40.

Nocedal, J. and Wright, S.J. (2006). Numerical optimiza-
tion. Springer, 2 edition.

Padhi, R. and Kothari, M. (2009). Model predictive static
programming: A computationally efficient technique for
suboptimal control design. Int. J. Innov. Comput. I.,
5(2), 399–411.

Pistikopoulos, E.N. (2009). Perspectives in multiparamet-
ric programming and explicit model predictive control.
AICHE J., 55(8), 1918–1925.

Wang, Y. and Boyd, S. (2010). Fast model predictive
control using online optimization. IEEE T. Contr. Syst.
T., 18(2), 267–278.

