

Comparative performance of KiwiCross[™], Holstein and Jersey dairy cattle on pasture herds in KwaZulu-Natal

by Simon Giles Alderson-Smith

Dissertation submitted to the Department of Animal Science, Faculty of Natural and Agricultural Sciences, University of Pretoria In accordance with the requirements for the degree MScAgric Livestock Production

> Pretoria 2022

Supervisory Committee

Promoter	Professor E. van Marle-Köster
	Department of Animal Science
	University of Pretoria

Co-Promoter

Professor C.B. Banga Animal Production Institute Agricultural Research Council Irene

Declaration

I declare that this thesis, which I hereby submit for the degree MSc (Agric) Animal Production at the University of Pretoria, is my own work and has not previously been submitted by me for degree purposes at this or any other tertiary institution.

572

Signature.....

26 April 2022 Date.....

Abstract

Crossbreeding is found in almost all sectors of agriculture, including maize cultivars, poultry, pigs, small and large livestock breeds. Dairy has traditionally been one of the last strong holds of pure breeding strategies for Holstein, Jersey and Ayrshire. New Zealand was one of the first countries to adopt crossbreeding on a commercial scale by supplying semen from crossbred bulls for artificial insemination. Interest in crossbreeding is often due to concern with the depreciation of secondary, or management traits and is a relatively simple method to reduce inbreeding depression, introduce favourable traits from complementary breeds and take advantage of heterotic effect in several traits. Many South African dairy farmers have adopted the pasture-based and seasonal farming system, practicing criss-cross breeding between Holstein-Friesian and Jersey sires. Crossbred KiwiCross™ semen from New Zealand became available to these farmers, however, a Biological Impact Assessment study was requested by Government as a prerequisite to importing KiwiCross[™] semen into South Africa. Individual cow performance data were recorded from six dairy farms in KwaZulu-Natal that were using KiwiCross[™] sires alongside Holstein-Friesian and Jersey sires from LIC New Zealand. There were official milk (INTERGIS) records on 148 Holstein-Friesian, 80 Jersey, 476 KiwiCross[™] and 287 non-descript sired heifers, and all were born in 2014. Records comprised of milk production, somatic cell count, inseminations, calving and visual inspection data. Mean lactation milk yield was not significantly different (P>0.05) between KiwiCross[™], Holstein and non-descript breeds. The three sire breed groups, however, produced significantly higher (P<0.05) milk yield than the Jersey. There were no significant differences (P>0.05) in somatic cell score among the four sire breed groups. Lactation yields of milk, fat and lactose were significantly lower (P<0.05) for the Jersey compared to Holstein, KiwiCross[™] and non-descript breeds. For protein yield, a significant difference (P<0.05) was only observed between the KiwiCross™ and non-descript, with the KiwiCross[™] having the highest and non-descript the lowest lactation yield. Age at First Calving was significantly higher (P<0.05) for the KiwiCross[™] compared to Jersey, Holstein and non-descript breeds. Services per conception were significantly higher (P<0.05) for the non-descript than the KiwiCross™, Holstein and Jersey. Analysis of the production and fertility data, along with linear visual inspection yielded results similar to what is seen in other international studies, i.e. crossbred animals raised in pastural systems produce production figures comparable with Holstein-Friesian and significantly higher (P<0.05) than Jersey pure breeds while showing slightly higher values in reproduction, health and welfare traits.

Acknowledgements

The origin of this study started in 2013 with a request from the South African dairy industry wanting access to KiwiCross[™] germplasm as produced by LIC New Zealand. My first thank you is going to this very industry and the truly incredible KiwiCross[™] trial farmers that volunteered their farms, animals, and time to the introduction of the KiwiCross[™] sire line into South Africa.

This request and subsequent research could only be made possible by the support and approval of Mr Joel Mamabolo, Department of Agriculture, Directorate: Animal Production. Thank you for your belief in Genimex that we could get this done to your high standards and to the benefit of the South African dairy industry.

David Sellars and the David Sellars International Herd Improvement Scholarship. Thank you for the support and advice you have given to this endeavour. I am proud to have been part of this Scholarship program. Thank you to Livestock Improvement Corporation Limited, New Zealand (LIC), with a special mention to Trina Dunning, Dr Joyce Voogt and Ken Bartlett (Farmwise consultant). Thank you LIC for leading the way in dairy crossbreeding. The advice I have received over the years has been incredibly valuable and I look forward to future collaborations.

My Professors, Prof Esté van Marle-Köster and Prof Cuthbert Banga. Thank you for always believing in me and guiding me through this process. I look forward to future collaborations in the professional world of Animal Science.

Chris Cloete and Genimex. I am privileged to be mentored by Chris since the beginning of my career. I believe the best way to thank you for all the opportunities you have given me is to pass on the knowledge you have shared with me over all these years. My plan is to help maintain the high standard and animal improvement that Genimex contributes to the dairy industry for years to come.

Friends and family, they have all been there from the very beginning and never stopped pushing me. Few accomplishments in life can be achieved without love and support from home, so thank you all so very much.

Table of Contents

Declaratio	on	iii
Abstract		iv
Acknowle	dgements	v
Table of C	Contents	vi
List of Tab	bles	vii
List of Fig	ures	іх
List of Abl	breviations	х
Chapter	1: Introduction	
1.1.	Introduction	1
1.2.	Problem Statement	4
1.3.	Aim	4
Chapter	2: Literature Review	
2.1.	Introduction	5
2.2.	Overview of the SA Dairy industry	5
2.3.	Traits of economic importance in dairy cattle	10
2.4.	Crossbreeding in livestock species	11
2.5.	Crossbreeding on dairy cattle	13
2.6.	The KiwiCross™ Breed	16
2.7.	Conclusion	18
Chapter	3: Material and Methods	
3.1.	Introduction	19
3.2.	Materials	19
3.3.	Methods	25
Chapter	4: Results	29
Chapter	5: Discussion	35
Chapter	6: Conclusion	39
Reference	es	41
Addendur	ns	48

List of Ta	bles	Page
Table 1.1	Breed composition of offspring when cows/ heifers are mated to	
	different sire lines	03
Table 2.1	300 day production figures for South African Holstein and Jerseys	
	participating in the Dairy Cattle Improvement Scheme in 2007	
	(Theron & Mostert, 2009)	08
Table 2.2	305 day production figures for South African Holstein and Jerseys	09
	participating in the ARC's (2021) and SA Stud book's (2018) Dairy	
	Cattle Improvement Scheme (ICAR 2021)	
Table 2.3	Heritability estimates for milk yield, fertility, health and welfare traits	10
Table 2.4	A summary of composite livestock breeds in SA	12
Table 2.5	Types of crossbreeding found in dairy operations as defined by	
	Bourdon (2000) and Herring (2014)	13
Table 2.6	Examples of national crossbreeding systems producing and	
	distributing dairy bull semen (2021)	14
Table 2.7	Expected heterosis for yield, fertility, health and welfare traits.	15
Table 2.8	Dairy cattle population statistics for New Zealand 2008 and 2018	
	Results from ICAR's Biennial Statistics of cow milk recording	17
Table 2.9	Milk production figures for New Zealand dairy cattle in 2008 and	
	2018. Results from ICAR's Biennial Statistics of cow milk	
	recording	17
Table 3.1	Number of heifers per farm sired by Holstein, Jersey, KiwiCross™	
	and non-descript sires	22
Table 3.2	Traits included in the analysis to compare the performance of	
	KiwiCross™, Jersey and Holstein sired cows	26
Table 4.1	Comparison of Least Square Means ± Standard Errors for	
	reproduction traits for Holstein, Jersey, KiwiCross™ and non-	
	descript sired heifers	29
Table 4.2	Comparison of Least Square Means ± Standard Errors for milk,	
	protein, fat and combined protein and fat for Holstein, Jersey,	
	KiwiCross™ and non-descript sired heifers	30

Table 4.3	Comparison of Least Square Means ± Standard Errors for lactose	
	yield, and SCS for Holstein, Jersey, KiwiCross™ and non-descript	
	sired heifers	30
Table 4.4	Mean linear classification scores for Holstein, Jersey, KiwiCross™	
	and non-descript sires	34

List of Figu	ures	Page
Figure 2.1	Cow density per district (cows/km ²), based on MPO estimates	
	from October 2016 statutory survey	06
Figure 2.2	Percentage of milk produced in the different provinces of South	
	Africa for 2020 (Lacto Data 2021)	07
Figure 2.3	South African monthly unprocessed milk purchases 2018-2021	
	(Milk SA)	09
Figure 3.1	Google Earth image showing position of trial farms within	
	KwaZulu-Natal	20
Figure 4.1	Milk yield lactation curves of Holstein, Jersey, KiwiCross™ and	
	non-descript sired heifers. Data points from Least Square Means	
	calculations using the GLM Procedure on the SAS System	31
Figure 4.2	Protein yield lactation curves of Holstein, Jersey, KiwiCross™	
	and non-descript sired heifers. Data points from Least Square	
	Means calculations using GLM Procedure on the SAS System	32
Figure 4.3	Fat yield lactation curves of Holstein, Jersey, KiwiCross™ and	
	non-descript sired heifers. Data points from Least Square Means	
	calculations using the GLM Procedure on the SAS System	33

List of Abbreviations

AFC	 Age at First Calving
ANOVA	– Analysis of Variance
ARC	 Agricultural Research Council
BIS	– Biological Impact Study
BMR	 Bull Marketing Report
CAI	– Calf to Al
CR42	 Calving rate within 42 days of the planned start of calving
DAFF	 Registrar of Animal Improvement, Department: Agriculture, Forestry and
	Fisheries
DALRRD	 Department of Agriculture, Land Reform and Rural Development
DFM	 Days to First Mating
DIM	– Days in Milk
ICAR	 International Committee for Animal Recording
INTERGIS	 Integrated Registration and Genetic Information System
LIC	 Livestock Improvement Corporation
MPO	 Milk Producers Organisation
PM21	 Percentage mated in 21 days from the planned start of mating
SAS	 Statistical Analysis System
SCC	– Somatic Cell Count
SCS	– Somatic Cell Score
TMR	- Total Mixed Ration

Chapter 1: Introduction

1.1 Introduction

The South African dairy industry is of major importance with regard to its contribution to the national economy and nutritional demands of the growing population. The industry produced 3 427 000 t of milk in 2020, with a turnover of approximately R17 billion, which makes up about 0,4% of global milk production (Lacto Data, 2021). Most of the milk (62%) is used as fresh milk or in liquid form, and the remaining (38%) is processed into cheese and other dairy products (Lacto Data, 2021).

At the end of 2020, the South African dairy population was made up of 1 053 dairy producers with an average of 510 cows per herd, totalling roughly 537 030 cows (Lacto Data, 2021). Holstein and Jersey are the major dairy cattle breeds in South Africa, with smaller numbers of the Ayrshire and Guernsey breeds. Pasture and zero grazing (Total Mixed Ration, TMR) are the primary production systems, with the pasture-based system becoming increasingly predominant (ICAR, 2018; Lacto Data, 2021). According to Lacto Data (2021), approximately 27% of dairy cattle are found in KwaZulu-Natal, 31% in the Southern and Western Cape and 26,2% in the Eastern Cape. The remaining 15,8% are found in the Free State (5,9%), Gauteng (4,1%), Mpumalanga (3,2%) North West (2,1%) and Limpopo provinces (0,4%). The Total Mixed Ration production system is found mainly in the South and Western Cape areas, while KwaZulu-Natal and the Eastern Cape have more pasture than TMR herds.

In line with global trends, South African dairy producers were solely focussed on improving milk yield for many decades (Oltenacu & Broom, 2010; Banga *et al.*, 2014; Miglior *et al.*, 2017). However, over the past two decades functional traits such as fertility, welfare and health have been added to the breeding objectives of dairy producers world-wide (Zavadilová et al., 2021). The importance of fertility and the associated traits (claw traits, mastitis) has dominated international research in dairy cattle in recent years, with emphasis on recording suitable phenotypes to improve these traits (Egger-Danner et al., 2015; Miglior et al., 2017; Heringstad et al., 2018).

South African breeders are under pressure to increase production efficiency with regard to land and water use. The SA dairy industry has experienced a trend towards fewer producers

and larger farms over the past decade. Since January 2015, the number of dairy farmers decreased from 1 824 to 1053 in January 2021, with many large farms currently milking well over a thousand cows and the average herd size being 510 cows per herd (Lacto Data 2021). The dairy industry is faced with various challenges that include the need to improve cow health and welfare and pressures to reduce the carbon footprint (Oltenacu & Broom, 2010, Zavadilová et al., 2021). The Scandinavian countries took the lead in the 1980's by registering several health traits, such as clinical mastitis, and commenced with selection of cattle for improved health and functionality (Zavadilová et al., 2021, Nordic Cattle Genetic Evaluation, 2021, https://nordicebv.info).

There is limited information available on SA dairy breeds with regards to selection for health and welfare. Banga et al. (2014) reported that Holstein cattle were bred in accordance to the breeding value index (BVI) which had been developed through general consensus. This BVI lacked scientific and economic basis with a focus on type traits and production.

The increasing trend towards pasture-based farming in South Africa, coupled with unregulated milk pricing structures, demands animals that not only produce large volumes of milk but are also highly resilient. Such animals contribute towards the mitigation of rearing costs, due to better longevity which results in lower replacement costs (Lopez-Villalobos et al., 2000).

Historically, crossbreeding has been widely used in a number of farm species (Clasen et al., 2017), however, it is generally not accepted in dairy populations due the high milk producing ability of the Holstein breed and influence of purebred breeders (VanRaden & Sanders, 2003, Maltecca et al., 2006, Weigel, 2007, Shonka-Martin et al., 2019). In recent years, the recognition of the importance of functional traits such as fertility, longevity and health traits, coupled with growing value of milk solids (Weigel & Barlass, 2003) has seen a rise in interest in crossbreeding of dairy cattle (Clasen et al., 2017, Shonka-Martin et al., 2019). Furthermore, animal welfare and other economically important traits have been seen to benefit due to heterosis through crossbreeding (Oltenacu & Broom, 2010; Clasen et al., 2017).

In a survey of 50 US farms conducted by Weigel and Barlass (2003), commercial farmers indicated that their reasons for crossbreeding was to increase fertility, longevity, calving ease, health and survivability compared to pure Holsteins, and also to reduce inbreeding depression. Other considerations include breeding smaller animals, increased adaptability and raising milk solids when using non-Holstein breeds.

The uptake of crossbred animals has been seen not only in New Zealand but also the American population. Herds registered with Dairy Herd improvement Association (DHIA) has seen an increase from 2 971 crossbred animals registered in 1990, to 207 368 crossbred animals registered in 2018, showing growth that surpasses all other breeds (Guinan et al., 2019).

The KiwiCross[™] has been registered in South Africa as a sire line breed since 2019. It is a cross between the Holstein and Jersey breeds, and was developed in New Zealand where the breed composition is based out of 16, or breed 16ths (please see Addendum A, three generation pedigrees). Therefore, a purebred Jersey would be J16 and a purebred Holstein-Friesian F16. KiwiCross[™] sires are crossbred sires and are considered as no more than 13/16th's of one breed e.g. F3J13 would be a KiwiCross[™] sire with 3/16th's Holstein-Friesian and 13/16th's Jersey. Access to all three breeds allows the breeder to breed the animal best suited for his/her production system. A scenario to consider: Mating Jersey sire to a Holstein-Friesian cow will give you a crossbred F8J8 heifer. If this is what a farmer feels fits his system, he could then select a KiwiCross[™] sire with F8J8 make up. The offspring of the F8J8 sire would therefore stay F8J8. However, if access is only with pure sires, the offspring from an F8J8 cow would then give a F12J4 progeny with a Holstein-Friesian sire and F4J12 progeny with a Jersey sire. Table 1.1 shows a more extensive break down of possible sire effects on pure and crossbred cows / heifers.

Table 1.1 Breed composition of offspring when cows / heifers are mated to different sire lines

				DAM		
		F16J0	F12J4	F8J8	F4J12	F0J16
	F0J16	F8J8	F6J10	F4J12	F2J14	F0J16
ш	F4J12	F10J6	F8J8	F6J10	F4J12	F2J14
SIRE	F8J8	F12J4	F10J6	F8J8	F6J10	F4J12
S	F12J4	F14J2	F12J4	F10J6	F8J8	F6J10
	F16J0	F16J0	F14J2	F12J4	F10J6	F8J8

The crossbred animal has gained popularity among pasture based dairy farmers. This has created the need to evaluate its performance under South African conditions.

1.2 Problem statement

Productive performance of dairy cattle breeds in South Africa is well documented for the pure breeds. Due to limited use of crossbreeding and unavailability of data, the performance of crossbred dairy animals has, however, not been characterised.

A Biological Impact Study (BIS) trial was conducted under permission from the Registrar of Animal Improvement, Department: Agriculture, Forestry and Fisheries (DAFF) in 2013 which resulted in the KiwiCross[™] to be registered in South Africa as a KiwiCross[™] sire line breed. In this study, the data from the BIS trial was made available for a statistical analysis to compare the performance of KiwiCross[™] sired commercial cows against the most commonly used purebred Holstein and Jersey sires on commercial cows under the South African pasture based production system.

1.3 Aim

The aim of this study was to compare the performance of the crossbred KiwiCross[™] dairy cattle breed against purebred Holstein and Jersey breeds, in a pasture-based production system in KwaZulu-Natal.

Objectives:

- Compare reproductive performance, measured by conception rate and Age at First Calving, of KiwiCross[™], Holstein and Jersey sired commercial cows.
- 2. Compare 305-day lactation production of milk and milk solids (protein, butterfat and lactose) of KiwiCross[™], Holstein and Jersey sired commercial cows.
- Compare somatic cell score, as an indicator of udder health, between KiwiCross™, Holstein and Jersey sired commercial cows.
- 4. Evaluate and compare visual and linear appraisal scores of KiwiCross[™], Holstein and Jersey sired commercial cows.

Chapter 2: Literature review

2.1 Introduction

In the past, selection of dairy cattle globally was mainly focused on milk production traits (Oltenacu & Broom, 2010). It was, however, noted that genetic improvement in milk production resulted in an undesirable correlated deterioration in functional traits such as health and reproduction (Miglior et al., 2017). This necessitated dairy producers to reconsider their breeding objectives, resulting in a shift in selection emphasis towards traits related to fitness, in the past two decades. Functional traits such as longevity, fertility, calving performance, udder and claw health and locomotion form part of most dairy cattle selection objectives worldwide (Buckley et al., 2014; Shonka-Martin, 2019).

Several researchers (Weigel & Barlass, 2003; VanRaden & Sanders, 2003; Brotherstone & Goddard, 2005; Maltecca et al., 2006; Heins et al., 2008; and Guinan et al., 2019) have highlighted the benefits of heterosis and complementarity derived from crossbreeding in dairy cattle. Hence, crossbreeding has been introduced in dairy cattle to improve fitness traits in countries such as Denmark and New Zealand (Buckley et al., 2014).

This review presents a brief overview of the SA dairy industry, with a focus on the pasturebased production system, followed by a discussion on traits of economic importance in dairy cattle. Special reference is made to the use of crossbreeding to improve production efficiency.

2.2 Overview of the SA dairy industry

The South African dairy industry is currently made up of approximately 1 053 milk producers, owning herds with an average size of 510 cows. These farmers produce about 3,4 million tons of milk per year, which represents 0,4% of the total world production. While small on a global scale, milk production is vital to food security in South Africa. The two main production systems are Total Mixed Ration (TMR) and pasture, with a growing trend towards the pasture-based system. Six dairy cattle breeds are found in South Africa, namely Holstein, Jersey, Ayrshire, Guernsey, Brown Swiss and Dairy Shorthorn. Holstein, Jersey and Ayrshire are the most commonly used of these breeds.

The South African dairy industry is considered as a major sector in South African agriculture by contributing R17,8 billion rand to Gross Domestic Product (GDP) and providing over 100 000 jobs both directly and indirectly (DALRRD, 2019).

Precision farm management systems, such as Afikim and Delpro from DeLaval enable South African dairy farmers to manage the ever increasing about of data to ensure effective management of their respective herds. These systems are good sources of information for advising Veterinarians and Animal Scientists (Norton & Berckmans, 2017, Crowe et al., 2018).

Most of the milk production in South Africa is in areas that predominantly use the pasture based system, especially the Eastern Cape and KwaZulu-Natal regions (Lacto Data, 2021). In Figure 2.1 the cow density per district (cows/km²) is shown according to the October 2016 statutory survey.

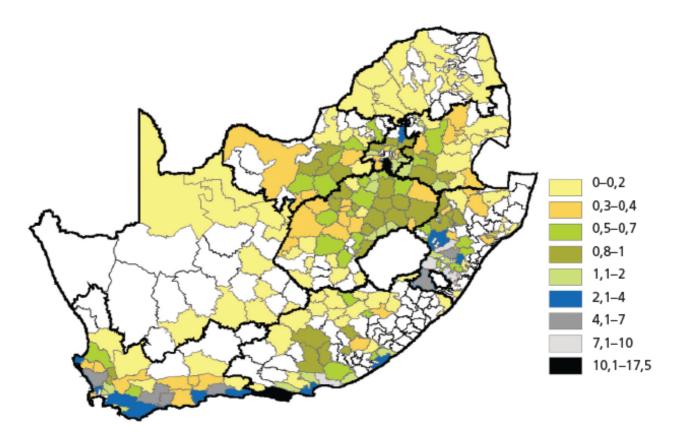


Figure 2.1 Cow density per district (cows/km²), based on MPO estimates from October 2016 statutory survey.

In May 2021, there were 67 Producer-Distributers (farmers who package and sell their own milk) and 132 milk buyers in South Africa (Lacto Data, 2021). Figure 2.2 shows the percentage of milk production per province, with the Western Cape having the highest production (31%) and Limpopo province the lowest (0,4%). Northern Cape shows 0,0%, however, there are four producers according to Lacto Data (2021).

Figure 2.2. Percentage of milk produced in the different provinces of South Africa in 2020 (Lacto Data, 2021).

The main dairy production areas (Western Cape, Eastern Cape and KwaZulu-Natal) account for 84,2 % of total production. Herds in the Western Cape are mainly on TMR, while

8

those in the Eastern Cape and KwaZulu-Natal are mostly on the pasture-based production system.

A TMR system can be defined as a high input and high output system, and a pasture-based system as low input and low output (Abin et al., 2018, Delaby et al., 2020). Cows in a TMR system are fed high energy concentrate diets and are, at times, housed in barns or other roofed systems. The high energy leads to the production of large milk volumes, as seen in Table 2.1. In contrast, cows kept on pasture systems rely mainly on grazing pastures, with supplements being offered when pasture quality is low (Wilkinson et al., 2019). Grazing cows normally walk long distances between the pastures and the milking parlours, expending energy in the process. As seen in Table 2.1, cows on the pasture-based production system produce lower yields of milk than those on TMR.

Table 2.1 300 day production figures for South African Holstein and Jerseys participating in the Dairy Cattle Improvement Scheme in 2007 (Theron & Mostert, 2009)

Breed	System	Milk Production (kg)	Fat %	Protein %
Holstein	Total Mixed Ration	9 967	3.81	3.20
Holstein	Pasture	7 143	3.78	3.21
Jersey	Total Mixed Ration	6 385	4.77	3.74
Jersey	Pasture	4 754	4.67	3.71

The high input system is susceptible to changes in input costs such as the maize price, which affects margins. The low input system, where pasture is the main feed source, tends to be more resilient to fluctuations in input costs (Hernandez-Mendo et al., 2007). Farmers on the pasture-based production system usually practice seasonal calving, in order to get the benefit of seasonal pasture availability (McClearn et al., 2020). This can be seen in Figure 2.3, below, showing milk purchase volumes peaking in Spring and decreasing in Autumn.

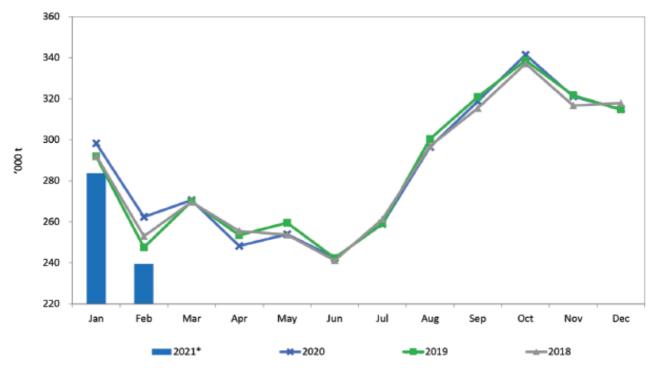


Figure 2.3 South African monthly unprocessed milk purchases 2018-2021 (Milk SA)

As already mentioned, the South African dairy industry is considered a major sector within SA agriculture by contributing to GDP, job security and food security. Farmers have access to modern technology in the form of rotary milking platforms and computerised recording devices as seen on the trial farms.

No recent scientific publications are available distinguishing between productions on pasture and TMR systems. In Table 2.2, a summary is provided on the two main dairy breeds from ARC's and SA Stud book's milk recording schemes (ICAR 2021).

Table 2.2 305	day production	figures for	South A	frican l	Holstein	and	Jerseys
participating in	the ARC's (2021)	and SA Stud	book's (20	018) Dai	iry Cattle	Impro	ovement
Scheme (ICAR 2	2021)						

Breed	Lactations	Milk Production (kg)	Fat %	Protein %
Holstein (ARC)	18 222	9 262	3,92	3,31
Holstein (SA Stud book)	11 802	9 664	3,81	3,18
Jersey (ARC)	26 789	5 898	4,89	3,79
Jersey (SA Stud book)	23 589	6 045	4,75	3,71

2.3 Traits of economic importance in dairy cattle

A general change of focus in selection objectives has been observed in dairy breeding programmes worldwide (Miglior et al., 2017). Recent research has highlighted the importance of having balanced breeding objectives, which has resulted in many non-production traits being incorporated into most national selection objectives (Fleming et al., 2018; Ismael et al., 2021). Functional traits such as longevity, health, fertility and workability are included in the majority of national dairy cattle breeding objectives worldwide, with a trend towards selection for an optimum in the yield traits (Oltenacu & Broom, 2010, Buckley et al., 2014, Clasen et al., 2017, Miglior et al., 2017, Johnson et al., 2018, Shonka-Martin et al., 2019).

Functional traits generally have low heritability, with environment playing a significant role in their expression (Cammack et al., 2009; Zavadilová et al., 2021) which results in low accuracy of selection. In dairy production, automated milking systems and recording has the potential for generating accurate data for application in genetic evaluations. Producers therefore have the option to select appropriate sires to meet their breeding objectives. Table 2.3 presents a summary of heritability estimates for yield, fertility, health and welfare traits. Yield traits are shown to have higher heritability's when compared to fertility, health and welfare traits.

Category	Trait	Heritability	Reference
Yield	Milk Yield	0.30	Pritchard et al., (2012)
	Milk Yield	0.40	Tsuruta et al., (2005)
	Fat Yield	0.26	Pritchard et al., (2012)
	Fat Yield	0.33	Tsuruta et al., (2005)
	Protein Yield	0.27	Pritchard et al., (2012)
	Protein Yield	0.35	Tsuruta et al., (2005)
Fertility	PM21*	0.0335	Bowley et al., (2015)
	CR42**	0.0087	Bowley et al., (2015)
	Age at First Calving (AFC)	0.24	Makgahlela et al., (2007)
	Calving Interval	0.04	Pritchard et al., (2012)
	Calving Interval	0.03	Makgahlela et al., (2007)
	Days to First Service	0.04	Pritchard et al., (2012)
	Number of Inseminations	0.02	Pritchard et al., (2012)
	Days open	0.07	Tsuruta et al., (2005)
	Interval to first luteal activity	0.16	Cassell, B., (2001)

Table 2.3 Heritability estimates for milk yield, fertility, health and welfare traits

Health &	Somatic Cell Score	0.14	Pritchard et al., (2012)
Welfare	Somatic Cell Score	0.14	Tsuruta et al., (2005)
	Mastitis	0.04	Pritchard et al., (2012)
	Lifespan score	0.05	Pritchard et al., (2012)
	Productive life	0.10	Tsuruta et al., (2005)

*Percentage mated in 21 days from the planned start of mating

**Calving rate within 42 days of the planned start of calving

South African dairy breeders have had access to National Milking Recording since 1917 (Bergh, 2010). According to ICAR's statistics of cow milk recording, as supplied by South Africa's Agricultural Research Council in 2020, only 36 214 lactations were recorded in official milk recording out of a population of 537 030 dairy cows. This is made up of Jersey (17 682), Holstein (16 792), Ayrshire (1 425) and Guernsey (315). This equates to just under 7% of the population being recorded. This low incidence of participation in the official milk recording scheme does complicate the recording and possible trials involving traits of economic importance within the South African dairy population.

2.4 Crossbreeding in livestock species

Crossbreeding is the breeding of two or more different breeds, and is mainly practised to exploit breed complementarity and heterosis (Lembeye, et al., 2015, Fleming, et al., 2018, Clasen et al., 2019). It has been applied in livestock worldwide, including the development of composite beef cattle breeds such as the Bonsmara in South Africa. Composite breeds are a step up from crossbreeding in that it has become a refined breed or population unto itself due to defined strategies, protocols and percentages allowed between breeds (Gosey, J. 1991). A summary of composite cattle, sheep and pig breeds developed through cross breeding and established in South Africa is provided in Table 2.4.

Breed	Base Breeds	Reference	Year
Beef			
PinZ2yl	Pinzgauer & Nguni	https://www.pinz2yl-sa.co.za	2009
Beefmaster	50% Brahman X 25% Hereford X 25% Shorthorn	http://www.beefmastersa.co.za	1987
Simbra	Simmental & Brahman	https://simbra.org/why-simbra-2/	1987
Bonsmara	5/8 Afrikaner, 3/16 Hereford and 3/16 Shorthorn	https://bonsmara.co.za/more-about-us/	1964
Sheep			
Afrino	25% Merino, 25% Ronderib Afrikaner and 50% SA Mutton Merino	http://www.afrino.org.za	1980
Dormer	Dorset Horn & German Merino (SA Mutton Merino)	http://www.dormersa.com/p11/dormer- breed/	1937
Dorper	Dorset Horn & Blackhead	http://dorpersa.co.za/breed-history/	1950
Meatmaster	Indigenous fat tailed & European muscled breeds	https://www.meatmastersa.co.za/Breed- Genesis.htm	2007
Van Rooy	Blinkhaar Afrikaner & Rambouillet	http://www.vanrooysa.co.za/p25/van- rooy-sheep-breed/	1906
Pig			
Landrace		http://www.pigsa.co.za/p11/pig- breeds/landrace-pig-breed.html	1950's
PIC	Commercial strain	https://www.picrsa.co.za/products/#Boar	
TOPIGS	Commercial strain	https://topigsnorsvin.co.za	

Table 2.4 A summary of composite livestock breeds in SA

2.5 Crossbreeding in dairy cattle

While crossbreeding in the dairy industry is considered quite new, it has been around for many years, with a major acceptance in New Zealand (Heins et al., 2008, Buckley et al., 2014 and Berry & Buckley, 2016). Its adoption has taken long due to the historical influence of breed societies of pure breeds (Clasen, et al., 2019). Table 2.5 shows some types of crossbreeding systems practiced by dairy producers. Table 2.6 shows that uptake of crossbreeding in dairy cattle is on the rise, with most artificial breeding companies having some kind of crossbreeding program. The change in the composition of the US and several other national dairy populations shows that there is a growing move towards crossbreeding (Guinan et al., 2019). Interest in crossbreeding has grown due to the benefits seen in crosses in traits such as solid production, health and fertility (Anderson et al., 2007, Washburn & Mullen, 2014 and Shonka-Martin et al., 2019). Semen of crossbreed dairy cattle sires, developed through various crossbreeding systems, is distributed globally as shown in Table 2.6.

Table 2.5 Types of crossbreeding found in dairy operations as defined by Bourdon (2000) and Herring (2014)

Type of breeding	Definition
Crossbreeding	The mating of animals from two, or more, established breeds
(generalised)	that maintains a level of heterosis or breed complementarity.
Terminal crossing	Type of crossbreeding. Crossing to maximise heterosis but no replacements are produced from the cross. Can be done using two or more pure breeds.
Rotational crossing	Type of crossbreeding. Two or more pure breeds are used where the next bull to be used is the one with the least amount of influence in the genes of the animal.
Crisscrossing	Type of rotational crossbreeding. Alternate breeding between two breeds.

Company	Home country/s	Terminology	Breeds	System	Reference
LIC	New Zealand	KiwiCross™	Holstein-Friesian	Rotational system &	www.licnz.com
			Jersey	Cross bred bull semen	
			Ayrshire		
CRV	New Zealand	Cross bred	Holstein-Friesian	Rotational system &	www.crv4all.co.nz
			Jersey	Cross bred bull semen	
			Ayrshire		
Genex	USA	Mixed Breed	Holstein	Rotational system &	www.genex.coop
			Jersey	Cross bred bull semen	
		Dairy on beef	Dairy	Beef semen on dairy cows	
			Beef		
WWS	USA	Dairy Cross Breeds	Holstein	Rotational system &	www.wwsires.com
			Jersey	Cross bred bull semen	
VikingGenetics	Scandinavia	ProCross	VikingHolstein	Rotational system	www.vikinggentics.com
			VikingRed		
			Coopex Montbéliarde		
		VikingGoldenCross	VikingHolstein	Rotational system	
			VikingRed		
			VikingJersey		
ABS	USA	HYVIG	Holstein	Rotational system	www.absglobal.com
		crossbreeding	Jersey		-
		-	Norwegian Red		
		Dairy on beef	Dairy and beef	Beef semen on dairy cows	
Semex	Canada	Dairy on beef	Dairy and beef	Beef semen on dairy cows	www.semex.com
STgenetics	USA	Dairy on beef	Dairy and beef	Beef semen on dairy	www.stgen.com
Alta Genetics	USA	Dairy on beef	Dairy	cows Beef semen on dairy	www.altagenetics.com
			Beef	COWS	

Table 2.6 Examples of national crossbreeding systems producing and distributing dairy bull semen (2021)

In Table 2.7 the expected heterosis for yield, health and welfare traits are shown. These effects show the added benefit when two complementary breeds are crossed over the expected parent average. All traits show a positive effect except for mastitis and a number of other diseases.

		Heterosis	
Category	Trait	effect	Reference
Yield	Milk Yield (Kg)	4.92%	Lembeye et al., (2015)
	Fat Yield (Kg)	7.39%	Lembeye et al., 2015)
	Protein Yield (Kg)	6.21%	Lembeye et al., (2015)
	Production traits	~3.00%*	Sørensen et al., (2008)
	Yields	5.0 - 6.6%	McAllister, A. J., (2002)
Fertility	Fertility	~10.00%*	Sørensen M.K. et al., (2008)
	DFM	3.80%	Harris & Montgomerie (2001)
	CAI	3.50%	Harris & Montgomerie (2001)
	Reproduction	0.8 – 5.0%	McAllister, A. J., (2002)
Health &	Somatic Cell Score	-0.72%	Lembeye et al., , (2015)
Welfare	Metabolic Diseases	-3.80*	Sørensen et al., (2008)
	Leg & Claw Diseases	-6.10*	Sørensen et al., (2008)
	Reproduction Diseases	-0.10*	Sørensen et al., (2008)
	Mastitis**	20.60*	Sørensen et al., (2008)
	Other Diseases**	0.70*	Sørensen et al., (2008)
	Longevity	10 - 15%*	Sørensen et al., (2008)
	Livability	3.7 – 4.6%	McAllister, A. J., (2002)
	Growth	3.2 – 5.7%	McAllister, A. J., (2002)

Table 2.7 Expected heterosis for yield, fertility, health and welfare traits

*per 100 lactations

**positive figure is unfavourable

Interest and use of crossbreeding in the United States dairy industry prompted a 10 year study on the ProCross type cattle by Hazel et al. (2017). The ProCross is a three way crossbred dairy cow resulting from a crossbreeding mating system using sires from the Montbeliarde Holstein VikingRed, and breeds (http://www.procross.info/questions-and-answers). Comparison of the F1 cows i.e. Holstein x Viking Red and Holstein x Montbeliarde versus pure Holstein showed that the crossbred cattle, while having similar production levels, outperformed the pure Holstein in fertility and health traits. These findings partly concur with those of Saha et al. (2018) which showed improved body condition for three generation crosses than their purebred counterparts. Clasen et al. (2019) studied data on 103 307 pure

15

Holsteins and 14 832 F1 crosses between Holstein dams and Nordic Red sires and observed that the F1 crosses outperformed the purebred Holsteins on fertility, udder health, still birth and survival traits. An earlier study in Denmark, by Kargo and Fogh (2016), similarly indicated that crosses had comparable milk production but better fertility and health than purebreds (Sørensen et al., 2008).

In the US, the number one reason for culling dairy cattle is infertility. It is therefore a large component in the overall longevity of the herd. In a study by Hazel et al. (2017), conception rates in crosses were higher compared to pure lines, except the Jersey, while calving difficulty was also much lower in crosses and Jerseys. Calf mortality was also reported to be the lowest in Jersey X Holstein crosses (Weigel & Barlass, 2003). An ongoing study on a three-way cross between Montbelierde, Holstein and VikingReds has also shown the benefits of crossbreeding over the use of purebreds (Hazel et al., 2017). While production volumes were similar, the percentage in solids was better in the crosses (Hazel et al., 2017 and McClearn et al., 2020).

2.6 The KiwiCross™ Breed

In 1996, the New Zealand Animal Evaluation (AE) unit enabled bull evaluations across breed (https://www.lic.co.nz/about/animal-evaluation/ & https://www.lic.co.nz/about/our-history/) which led to the potential for evaluating crossbred sires. In 2000, KiwiCross™ (crossbred) semen was made available in New Zealand to enter LIC's Daughter Proving Scheme. In 2005 the first KiwiCross™ sires were made available on a commercial level, which led to a significant move to more crossbred cows being milked and tested (Table 2.8). Over a ten-year period (2008 – 2018) the National dairy cattle population in New Zealand has increased by 24,42% or almost a million dairy cows (ICAR website). Holstein-Friesian numbers decreased by 5,08%, while the Jersey herd decreased by 27,59%. The only increase was seen in the Holstein-Friesian / Jersey crosses which increased by 69,51%.

Table 2.8 Dairy cattle population statistics for New Zealand in 2008 and 2018 resultsfrom ICAR's Biennial Statistics of cow milk recording.

		2008	2018	Change
Population size		4 012 867	4 992 914	24,42%
Number of lactations				
Holstein-Friesian		954 031	905 550	-5,08%
Jersey		357 491	258 852	-27,59%
Holstein-Friesian / crossbred*	Jersey	871 930	1 478 001	69,51%

*A crossbred animal is defined as one that has no more than, 14/16's of one breed (Buckley et al., 2014).

Average lactation production for the pure and crossbred populations in the ten year period is illustrated in Table 2.9. Milk volume for crossbreds in 2018 was about 9% lower than for the Holstein-Friesians, however solid percentages were higher. Crossbred solids are 0,49% higher in fat and 0,18% higher in protein percentage compared to Holstein-Friesians. When compared to Jerseys, crossbreds show about 22% higher milk volume with lower percentages in solids, being 0,59% lower in fat and 0,23% lower in protein percentage.

Table 2.9 Milk production figures for New Zealand dairy cattle in 2008 and 2018. Results from ICAR's Biennial Statistics of cow milk recording.

	Milk (litres)	Milkfat (%)	Protein (%)
2008 herd test season			
Holstein-Friesian	4 302	4,18	3,46
Jersey	3 070	5,51	3,98
Holstein-Friesian / Jersey crossbred*	3 893	4,74	3,70
2018 herd test season			
Holstein-Frisian	4 470	4,48	3,73
Jersey	3 208	5,65	4,14
Holstein-Friesian / Jersey crossbred*	4 102	4,97	3,91

*A crossbred animal is defined as one that has no more than, 14/16's of one breed (Buckley et al., 2014).

The use of rotational crossbreeding in South Africa has been apparent for many years, while the addition of crossbred semen the KiwiCross[™] has only been an option since 2013. Crossbreeding in dairy cattle holds the potential to improve some of the difficult to measure low heritability traits while maintaining good yields. Buckley et al. (2014) indicated that crossbreeding has the potential to improve the economic situation of a dairy herd through the introduction of favourable genes, reduce inbreeding depression and taking advantage of heterosis. The long terms benefits are still to be defined (McClean, et al., 2020).

2.7 Conclusion

The correlated deterioration in functional traits, due to exclusive selection for milk production in the past, is well documented in the literature. Consequently, breeding objectives for dairy cattle have been broadened to a more balanced approach including functional traits such as fertility, welfare and health. Crossbreeding has the potential to contribute towards addressing this problem, in addition to exploiting breed complementarity for production traits. Thus, there is an increase in the adoption of crossbreeding in dairy cattle populations.

Chapter 3: Materials and Methods

3.1 Introduction

Data from the Biological Impact Assessment Trial for the recognition of the KiwiCross[™] Breed (refer to addendum A for genetic composition) in the Republic of South Africa, in accordance with the Livestock Improvement Act 1998 (Act no 62 of 1998), was made available for the current study. Ethical Clearance was granted by the ethics committee (NAS097/2020).

3.2 Materials

3.2.1 Study site and population

Performance data for this project was recorded on six farms in the KwaZulu-Natal Midlands area surrounding Nottingham Road, Rosetta, Balgowan and Greytown. (Figure 3.1).

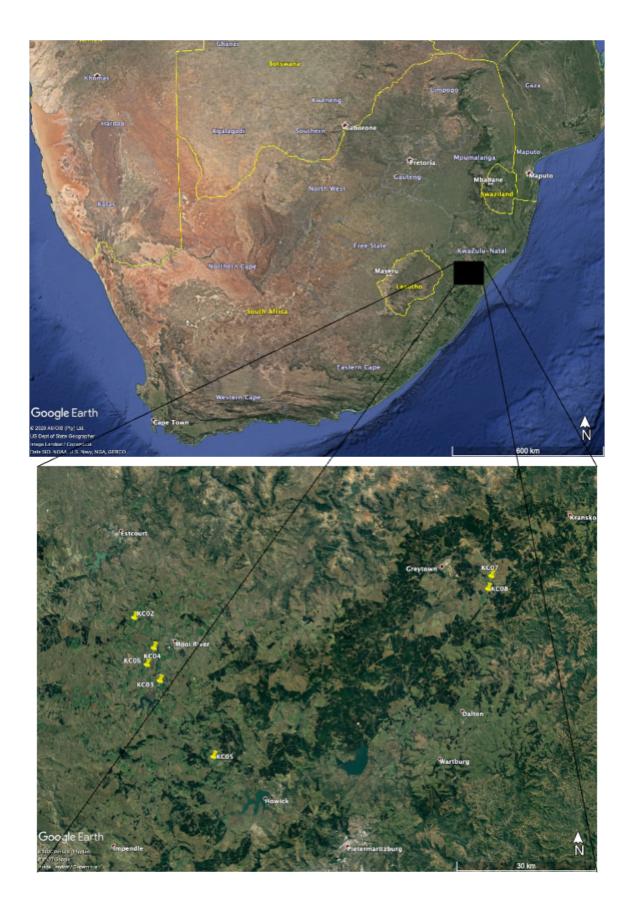


Figure 3.1: Google Earth image showing position of trial farms within KwaZulu-NataI

3.2.2 Study animals management

The six farms used for this study were commercial dairy farms with similar management practices. Farms were assigned identification numbers with the prefix KC (KiwiCross[™] trial farm) numbers on the national livestock database (INTERGIS). Although farms were owned and managed by several producers, all data was loaded onto the INTERGIS under one name. KC02, KC03, and KC04 have the same owner but are run by three separate managers. KC05, KC06 and KC08 are owned by three different individuals with assistance from managers. A note on KC08. This was originally two farms sharing a boundary fence and were designated KC07 and KC08 even though owned by one person. Animals were identified by ear-tags labelled with numbers or names. The total number of animals in the trial was 991 animals across the six farms.

Farms were selected based on their proximity to each other, the seasonal nature of their mating plans, i.e. Spring mating (September, October and November) and Autumn mating (April, May and June) and for their being predominantly on a pasture based production system. All farms had been using a crossbreeding mating plan between Holstein and Jersey sires i.e. crisscross mating. This mating plan has a history of using semen from New Zealand, with influence of the New Zealand pasture based farming systems. Cows were milked twice a day, with all heifers being milked in one parlour. Four of the herds (KC02, KC03, KC04 and KC08) had herringbone milking parlours, and the other two (KC05 and KC06) had rotary parlours.

Semen for the trial was for Holstein, Jersey and KiwiCross[™] sires and was supplied by Livestock Improvement Corporation (LIC). KiwiCross[™] is a trademarked term for crossbred bulls which have been marketed since 2005 by Livestock Improvement Corporation (LIC) New Zealand (www.licnc.com). The KiwiCross[™] sires were selected by LIC and the South African team responsible for running the BIS trial. In Addendum B, bull marketing reports can be found on the selected bulls showing performance data in country of origin. Sires are ranked between number three and number twelve at time of selection. As these are commercial farms, some matings were grouped as "non-descript". This semen was supplied by companies other than LIC, farm bred bulls or natural mating from farm bred bulls. Farmers were free to use the semen as they would normally, with the only condition being that the use of

KiwiCross[™] semen was in conjunction with Holstein or Jersey semen supplied by LIC. The condensed mating season ensured calving within in a two month period to allow for contemporary comparison. Table 3.1 shows the distribution and make up of animals across the six trial farms.

Table 3.1 Number of heifers per farm sired by Holstein, Jersey, KiwiCross[™] and Non-descript sires.

Farm	N of	N of	N of	N of	N of	N of	N of	N of
	Holstein	Sires	Jersey	Sires	KiwiCross™	Sires	Non-	Sires
	heifers		heifers		heifers		descript	
							heifers	
KC02	31	1	39	2	112	5	49	Unknown
KC03	16	1	6	2	104	5	102	Unknown
KC04	6	1	1	1	71	5	68	Unknown
KC05	23	1	34	1	97	5	10	Unknown
KC06	55	1	0	0	65	4	51	Unknown
KC08	17	2	0	0	27	5	7	Unknown
All	148	2	80	3	476	5	287	Unknown

All production data collected for this trial were recorded between September 2013 and July 2017. The timeline was as follows:

- September 2013 KiwiCross[™] semen arrives in SA and is distributed amongst trial farmers
- Spring mating 2013 September, October and November 2013
- Spring calving 2014 June, July and August 2014
- Spring mating 2015 September, October and November the 2014 trial heifers are mated
- Spring calving 2016 Trial heifers calve down and National Milk Recording commences on heifers in line with ICAR standards
- Spring mating 2016 September, October and November the 2014 trial heifers are mated for a second season
- June and July 2017 Once first lactations were finished the trial was completed.

Fertility data were collected from the Spring 2013 mating season after pregnancy diagnosis in early 2014. Data on the resultant calvings were recorded on farm in 2014, and included calving ease, heifer & bull calf split (not all collected sex splits) and heifer mortality. Data was not readily available for the study. All heifer offspring were registered on the South African National Dairy Recording scheme, the INTERGIS. This process was repeated for the Autumn and Spring 2014 seasons, Autumn and Spring 2015 seasons and Autumn 2016 season. The Spring 2016 season only had conception rate records with their 2017 births being after the trial completion date.

3.2.3.1 Data Recording and Management

Individual cow performance data from the trial was recorded and stored on the South African National Dairy Recording Scheme's database, the INTERGIS. The cow fertility data (inseminations per conception) was extracted from the Biological Impact Assessment (BIS) trial for the introduction of the KiwiCross[™] breed into South Africa. Due to KiwiCross[™] semen only being permitted into South Africa for this trial, production data was only available from first lactation heifers.

International Committee for Animal Recording (ICAR) standards were followed to ensure the accurate and credible lactation figures for comparative analysis. Five milk recording tests were administered during the lactation. During each test, milk yield (Kg) was recorded and a milk sample taken from each cow and sent to Milkolab, an accredited laboratory for testing. All test-day data were uploaded onto the INTERGIS following the procedures of the National Milk Recording Scheme, which is operated by the Agricultural Research Council.

The following traits were selected for analysis:

- Production (INTERGIS)
 - 305 day lactation Milk Yield (Kg)
 305 day lactation Protein Yield (Kg)
 305 day lactation Fat Yield (Kg)
 305 day lactation Solids (Protein + Fat) Yield (Kg)
 305 day lactation Lactose Yield (Kg)
- Udder Health (INTERGIS)

Somatic Cell Count (SCC) was converted to Somatic Cell Score (SCS) by logarithmic transformation, i.e. $SCS = Log_{10}(SCC)$ in order to ensure Normal Distribution of the data (Ali, A. K. A., and Shook, G. E., 1980)

• Reproduction

Age at first calving (INTERGIS) Number of inseminations per conception (BIS Trial data)

3.2.3.2 Linear Classification

Linear classification of the trial animals was conducted by a qualified Senior Interbreeding Judge and Secretary of the Interbreeding Judges Association. The goal was to assess the relevant conformation traits of crossbred KiwiCross™ dairy cattle under commercial production systems. A total of 936 animals, across the six farms, were visually assessed and given a score for each conformation trait while grazing on pasture.

Scoring was focused on udder suitability, feet & legs and overall body conformation for a pasture-based animal on a scale of 1 to 10. Standard dairy protocol has linear scores out of 9 but this visual appraisal was not based on a standardised system but rather a general and subjective scoring system. Only factors affecting functional efficiency of these crossbred cattle under commercial production systems were considered. All cattle were considered as crossbred. Sire names were not available except on one farm (the ear tag showed the name). No Dam information was available nor requested during classification. Colour is not considered an important criterion, but animals showed varied colour patterns, from obvious Holstein and Jersey backgrounds, to animals of various degrees of black. Cows were scored while they were grazing in their respective paddocks, eating from provided feed or lying and chewing their cud, and were easily made to stand up for scoring. Scoring was conducted before milking.

Scores in no way resemble classic dairy type classifications and no discrimination was made for management related issues such as blind quarters. The animals were all of

similar age and stage of lactation, so there was no need to adjust scores for age and stage of lactation effects. Below are the criteria on which all the animals were assessed:

Feet and Legs:

Feet and leg scores were based on ease of locomotion, taking into account the fact that these heifers were on a pasture based production system which required them to walk long distances. The specific aspects that were scored for were: set to leg (posty or sickle hocked), depth of heel and shape (hoof angle).

Body:

Functional aspects such as muzzle width, width through the chest, chest depth, body depth, spring of ribs, rump angle and width of pins were evaluated. The overall balance as a functional animal was a factor in the scoring process.

Udder:

Udders were assessed for fore udder attachment, udder depth, fore teat width (placement), teat shape and length, cover, levelness of udder floor, rear udder capacity, rear ligament and height and width of attachment.

3.3 Methods: Data Preparation and Analysis

3.3.1 Data preparation

All production data from the BIS trial was extracted from the INTERGIS and comprised of individual animal performance data for the traits contained in Table 3.2, except services per conception.

Distribution of data for each trait was analysed by the PROC UNIVARIATE procedure of the Statistical Analysis System (SAS, 2011) to ascertain if it was normally distributed as well as to identify possible outliers. No outliers were identified resulting in a total of records of 991 animals being available for analysis. Table 3.2 is a summary of the total records available for this study.

	Ν	N of	N Of Test-Day
Trait	of Farms	Animals	Observations
305 Day Milk Yield (kg)	6	991	4464
305 Day Protein Yield (kg)	6	991	4461
305 Day Fat Yield (kg)	6	991	4461
305 Day Fat & Protein Yield (kg)	6	991	4461
305 Day Lactose Yield (kg)	6	991	4461
Somatic Cell Score (24 Hour)	6	991	4460
Age at First Calving (Months)	6	991	4464
Services per conception (2015)*	2	279	
Services per conception (2016)	6	831	

Table 3.2 Traits included in the analysis to compare the performance of KiwiCross[™], Jersey and Holstein sired cows.

*Data for analysis only available from two farms

3.3.3 Statistical Analysis

An Analysis of Variance (ANOVA) was conducted to test for the effects of herd, age at calving and breed on the traits studied, using the GLM procedure of the Statistical Analysis System (SAS 9.3, 2011). The following statistical model (model 1) was used for the analysis:

 $y_{ijk} = \mu + Herd_i + Breed_j + b_1Age + e_{ijk}$

Where

y ijk	= an observation or performance record on an animal
μ	= an underlying constant (mean)
Herdi	= the fixed effect of the i th herd
Breedj	= the fixed effect of the j th breed
b ₁	= a linear regression coefficient on age at calving
Age	= the age at calving
eijk	= the random residual error

Residual errors were assumed to be independent and identically normally distributed with a mean of 0 and a variance of σ_{e}^2 . Therefore, $e^{iid} N(0, \sigma_{e}^2)$

3.3.4 Lactation curves

Lactation curves for milk, fat and protein yield were constructed for each breed by plotting least squares means for stage of lactation, obtained from a PROC GLM analysis of test day production using model 1 and including stage of lactation as a fixed effect. The 305-day lactation was divided into 30 stages of 10 day intervals and a final stage of 5 days.

3.3.5 Linear Classification

An Analysis of Variance (ANOVA) was performed on the linear assessment data to assess the effects of herd, breed and age at calving on each of the type traits. The analysis was carried out by the PROC GLM procedure of the Statistical Analysis System (SAS 9.3, 2011) and fitting the following linear mixed model (model 2).

(1)

 $y_{ijk} = \mu + Herd_i + Breed_j + b_1Age + e_{ijk}$

Where

y ijktl	= a linear score of trait t on the I th animal
μ	= an underlying constant (mean)
Herdi	= the fixed effect of the i th herd
Breed _j	= the fixed effect of the j th breed
b ₁	= a linear regression coefficient on age at calving
Age	= the age at calving
eijk	= the random residual error

Residual errors were assumed to be independent and identically normally distributed with a mean of 0 and a variance of σ_{e}^{2} . Therefore, $e^{iid} N(0, \sigma_{e}^{2})$

(2)

28

Chapter 4: Results

4.1 Reproduction traits

Least Square Means for reproduction traits (age at first calving and services per conception), for the four sire groups studied, are compared in Table 4.1. There was no significant difference (P>0.05) in age at first calving between the Holstein, Jersey and non-descript; however, the KiwiCross[™] had a significantly higher (P<0.05) age at first calving than these other sire groups. For services at conception, a significant difference (P<0.05) was only observed between the non-descript sires and the three main sire groups in the study i.e. KiwiCross[™], Holstein and Jersey in 2015. No significant difference (P<0.05) was seen in 2016.

Table 4.1 Comparison of Least Square Means ± Standard Errors for reproduction traits for Holstein, Jersey, KiwiCross[™] and non-descript sired heifers.

	Age at First Calving	Services per Conception	Services per Conception
Breed	(months)	(2015)	(2016)
KiwiCross™	$24,07 \pm 0,06^{a}$	$-0,002 \pm 0,003^{a}$	0,162 ± 0,010
Jersey	$24,00 \pm 0,16^{ab}$	$0,002 \pm 0,008^{a}$	0,187 ± 0,025
Holstein	23,74 ± 0,11 ^b	$0,004 \pm 0,005^{a}$	0,170 ± 0,016
Non-descript	$23,77 \pm 0,09^{b}$	$0,028 \pm 0,005^{b}$	0,176 ± 0,013

Means with different superscripts differ significantly (P < 0,05)

4.2 Production traits

Table 4.2 and 4.3 presents a comparison of Least Square Means for production traits among the four breed groups studied. Mean lactation milk yield was not significantly different (P>0.05) between KiwiCross[™], Holstein and non-descript breed groups. These three breed groups, however, produced significantly higher (P<0.05) milk yield than the Jersey. On the other hand, protein yield was significantly different (P<0.05) only between KiwiCross[™] and non-descript breed groups, with the KiwiCross[™] having the highest mean. The Jerseys had significantly higher (P<0.05) yields of fat and lactose compared to the Holstein, KiwiCross[™] and non-descript breed groups. There were, however, no significant differences (P>0.05) among the breed group means for solids (protein + fat) and somatic cell score.

Table 4.2 Comparison of Least Square Means ± Standard Errors for milk, protein, fat and combined protein and fat for Holstein, Jersey, KiwiCross[™] and non-descript sired heifers.

Breed	Milk Yield (kg)*	Protein (kg)*	Butterfat (kg)*	PR & BF (kg)*
KiwiCross™	4583,69 ± 14,60 ^a	167,38 ± 0,49 ^a	210,72 ± 0,56 ^a	378,10 ± 1,01
Jersey	4446,68 ± 36,48 ^b	165,68 ± 1,21 ^{ab}	213,97 ± 1,40 ^b	379,65 ± 2,52
Holstein	4631,80 ± 25,53ª	166,00 ± 0,85 ^{ab}	209,81 ± 0,98ª	375,80 ± 1,76
Non-descript	4604,59 ± 19,35 ^a	$165,79 \pm 0,64^{b}$	210,02 ± 0,74 ^a	375,81 ± 1,33

*305 Day

Means with different superscripts differ significantly (P < 0.05)

Table 4.3 Comparison of Least Square Means ± Standard Errors for lactose yield, and SCS for Holstein, Jersey, KiwiCross[™] and non-descript sired heifers.

Breed	Lactose (kg)*	Somatic Cell Score**
KiwiCross™	222,77 ± 0,74 ^a	2,11 ± 0,01
Jersey	217,23 ± 1,86 ^b	2,13 ± 0,02
Holstein	223,52 ± 1,30 ^a	2,14 ± 0,02
Non-descript	$222,62 \pm 0,98^{a}$	2,10 ± 0,01
*305 Day	**24 Hour	

Means with different superscripts differ significantly (P < 0.05)

Figure 4.1 depicts the lactation curves for milk yield for Holstein, Jersey, KiwiCross[™] and Non-descript heifers. All curves followed the typical shape for heifers, with a shallow peak in the first six to eight weeks and a gradual decline through to the end. There was a pronounced dip for all breeds except KiwiCross[™]at 70-80 days in lactation. The curve for Jersey heifers was consistently the lowest, and that for the KiwiCross[™] was mainly intermediate between the Holstein and non-descript.

Figure 4.1 Milk Yield Lactation Curves of Holstein, Jersey, KiwiCross[™] and Nondescript sired heifers. Data points from Least Square Means calculations using GLM Procedure on the SAS System.

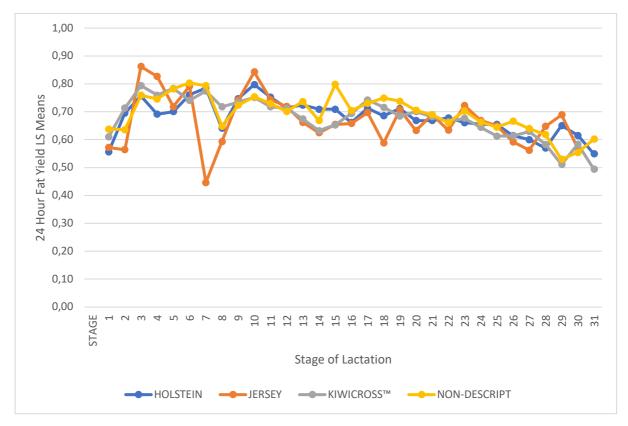

The lactation curves for protein yield for Holstein, Jersey, KiwiCross[™] and Nondescript heifers are shown in Figure 4.2. The curves appeared flatter compared to those for milk yield; however, the trend was similar. The relative levels for the curves were also similar to those for milk yield.

Figure 4.2 Protein Yield Lactation Curves of Holstein, Jersey, KiwiCross[™] and Nondescript sired heifers. Data points from Least Square Means calculations using GLM Procedure on the SAS System.

Figure 4.3 shows the lactation curves for fat yield for each of the four breeds studied. The curves followed similar trends as those for milk yield and protein. The dip at 70-80 days was highly pronounced for the Jersey.

Figure 4.3 Fat Yield Lactation Curves of Holstein, Jersey, KiwiCross[™] and Nondescript sired heifers. Data points from Least Square Means calculations using GLM Procedure on the SAS System.

4.3 Linear type assessment

Table 4.4 shows the average linear type scores for each breed. Averages scores for body traits were identical for all the breeds and within 0,1 of each other for udder and feet and leg traits. There were no significant differences (P>0.05) among the breed group means for linear classification scores.

Table 4.4 Mean linear classification scores for Holstein, Jersey, KiwiCross[™] and nondescript sires.

						Animals		
Herd #	Name	Sire	F&L	Body	Udder	classified		Herds
All	All	KiwiCross™	6,6	7,2	6,8		409	6
All	All	Holstein	6,6	7,2	7,0		130	6
All	All	Jersey	6,6	7,2	7,0		64	4
All	All	Non-descript	6,7	7,2	6,9		240	6

Means with different superscripts significantly different (P < 0.05)

Chapter 5: Discussion

5.1 Introduction

This study was motivated by the need to assess the impact of importation of KiwiCross[™] germplasm from New Zealand into South Africa, on the South African dairy cattle gene pool, in accordance with the South African Livestock Improvement Act 1998 (Act no 62 of 1998). Such importations had been initiated in 2013 by a local semen importer, Genimex, following requests from South African pasture based dairy farmers (www.genimex.co.za, www.kiwicross.co.za).

The aim of the study was to compare the performance of the KiwiCross[™] sired commercial cows against those sired by the dominant dairy cattle breeds in South Africa, namely Holstein and Jersey. The first step was to test for environmental effects influencing the production, udder health and reproduction traits studied, using an analysis of variance. Means for the linear scores from the visual appraisal were summarised in a table for simple comparative analysis.

Lactation milk yield for the Jersey (4446kg) was the lowest, and significantly so, compared to the other breeds. This was 4% and 3% lower than for the Holstein and KiwiCross[™], respectively. These results concur with those from other studies by Heins et al., (2008) and Maltecca et al., (2006) who reported that the Jersey produced the least amount of milk, the Holsteins produced the highest, and crossbreds were in between the two pure breeds.

Mean lactation protein yield was highest for the KiwiCross[™] (167,38kg), however, there were no significant differences among all the breeds. On the other hand, fat yield was significantly higher for the Jersey, compared to the other breeds. Mean fat yield was 2% and 1.5% higher for the Jersey, relative to the Holstein and KiwiCross[™], respectively. These results differ from those from a North American study which analysed data from TMR herds and found both protein and fat production to be significantly higher in Holsteins (Heins et al., 2008). A study by Shonka-Martin et al., (2019) showed similar results to this study when crossbreds were compared to pure Holsteins, where there was no significant differences in fat and protein production.

However, that study also stated that although the pure Holsteins produced more volume, due to the crossbreds smaller size but better body condition score, they may prove to be more economical when feed conversion is considered.

Lactation curves for milk, fat and protein yield followed the same typical trend (Lopez et al, 2019) for all three breeds. The components, however, peaked at slightly different stages of lactation. The variation in peak yields between breeds was also seen in a European study of Holsteins versus a three breed rotational cross of Montbeliarde, VikingRed and Holstein (Shonka-Martin et al., 2019), i.e. total solid production was similar but peaked at different times of lactation.

Age at first calving and services per conception are important reproductive traits in seasonal-calving herds, due to the need to maximise fodder flow from planted pastures. Ideally, the calving block should not exceed twelve weeks (Harris & Montgomerie, 2001; Bowley et al., 2015). KiwiCross[™] heifers calved significantly older than those of the other breeds. On enquiry, it was established that the trial farms used the following mating strategy regarding semen usage and breed of sire. KiwiCross[™] semen was used first due to higher cost per dose. Mating of heifers started two weeks before the rest of the herd to give them a better chance to conceive, and therefore calve before the rest of the herd therefore giving them a slight advantage of extra feed and cycling potential before becoming part of the milking herd. Research by DairyNZ (https://www.dairynz.co.nz/animal/heifers/heifer-mating/) supports this notion and has become common practice on commercial herds. Heifers were also mated to Jersey semen to ensure small calves and therefore reduce the risk of dystocia. Holstein semen was only put into the insemination lists once mating of the main herd began. Services per conception showed minimal variation for both the heifers first mating in 2015 and their following mating in 2016.

The linear classification scores provide an indication of the functional efficiency of an individual cow. Scores for feet and legs generally showed sound locomotion capacity for all the breeds. Higher feet and leg scores, and lower incidence of lameness were found in pasture herds when compared to TMR systems in studies by Haskell et al., (2006) and Hernandez-Mendo et al., (2007) which found an increase in gait performance of 0,22/5 per week when cattle were moved to pasture from a zero-

grazing TMR system. Visual based scoring for the linear traits was based out of 10 for body, udder and feet and legs, with averages not differing by more than 0,1 points for body and feet and legs. Udder score showed a difference of 0,2 with KiwiCrossTM scoring 6,8 (409 scored), Holstein 7,0 (130 scored) and Jersey 7,0 (64 scored). Similar research in New Zealand found significant difference (p < 0,05) in udder overall between Jerseys and the pure Holstein-Friesian and Holstein x Jersey crossbreds. Scoring was based on New Zealand's Traits Other than Production (TOP) system (Rocha et al., 2017).

No animals with jaw defects were observed. Occasional animals lacking depth, spring of rib, narrow pins or functional shortcomings were marked down on score. The KiwiCross[™] animals were of a medium size, slightly larger in general than the Jersey crosses in the population, but smaller in stature compared to the predominantly Holstein animals in the group, which was similar to the findings by Holmes et al., (2007). The latest dairy statistics (2020) from Dairy New Zealand followed the same trend with average weights of 497kg for Holstein-Friesian (20 472 records), 409kg for Jersey (8 200kg records) and 458kg for the cross bred animals (40 495 records).

Average scores for udders showed that udders were generally well attached for all the breeds, with most animals showing good rear udder capacity. Similar research in New Zealand found a significant difference (p < 0,05) in udder overall between Jerseys and the pure Holstein-Friesian and Holstein x Jersey crossbreds. Teat length tended to vary from long to short, which was observed in the Jersey and Holstein crosses (based on colour identification).

Very few genetic defects were observed. A few cases of skew tails and Curly toe syndrome were observed and although it could be genetic (Selk, G., 2016), this could also be due to moist pasture conditions. There is a lack of literature on this point as was mentioned by Shearer et al., (2015).

5.2 Relevance of the study

The change in the composition of the US and several other national dairy populations indicates that there is a growing move towards cross breeding (Guinan et al., 2019). New Zealand, the home of KiwiCross[™], has a dairy population of almost five million

cows and the national herd is now made up of 42,6% crossbred cows (www.dairynz.co.nz/dairystatistics). The variation between these three breeds in regards to production, fertility and linear scores has shown limited differences.

A current, ongoing, study into the comparisons of a three-way cross between Montbelierde, Holstein and VikingReds has reported the benefits of crossbreeding over the use of purebreds (Hazel et al., 2017). While production volumes are similar, the percentage in solids is showing better performance in the crosses (VanRaden et al., 2003). Shonka-Martin et al., (2019) has shown that the interest in crossbreeding has grown due to the benefit seen in crosses such as, health and fertility traits. Calving difficulty was also much lower in crosses and Jerseys. Calf mortality was lowest in Jersey X Holstein (Weigel & Barlass, 2003). Kargo & Fogh (2016) have reported that Scandinavian results coming out of Denmark have shown that crosses have led to similar productions while giving better fertility and better health. Similar results have been published in New Zealand, (Buckley et al., 2014).

Chapter 6: Conclusion

This study originated from a request by South African dairy producers wanting access to the KiwiCross[™] germplasm for use on commercial pasture based dairy operations. The overall aim was to compare the KiwiCross[™] offspring's performance against the offspring from the two main registered breeds in South Africa, Holsteins and Jerseys. The study was done under farming conditions and therefore limits were experienced in regards to records and timeline. The results of the study confirmed that under commercial productions conditions, the performance of the KiwiCross[™] offspring were comparable to that of the Holstein and Jersey offspring. While crossbreeding is still new within the dairy industry, further study and long term trials will bring to light further long term benefits to the modern dairy producer.

Literature illustrates the benefits of crossbreeding more poignantly in long term trials and on traits of a low heritability, or difficulty in scoring. Maltecca et al., (2006) concluded that several considerations must be taken before embarking on a crossbreeding strategy. Heins et al., (2008) also iterated the point that top quality genetics is vital to any breeding strategy. This trial data came from first lactation heifers and therefore not enough time was given to show long term effects (Clasen et al., 2021).

South African dairy operations, like many other farming operations, are not unique in that they are being challenged, and in order to survive they will need to adapt (Zavadilová et al., 2021). This adaptation can take form in many places, i.e. nutritional, medical, production systems and breeding to name a few. Dairy operations take two forms. Option one, the system is adapted to the animal, option two, the animal is adapted to the system (Washburn & Mullen, 2014). In ideal circumstances, adapting a system to suit the animal is possible, a farmer could buy in feed or build housing which can be effective although costly. Lacto Data (2018) shows that between January 2009 and January 2018, South African dairy producers dropped from 3 551 to 1 364 producers which is a reduction of 62%. Production, however has increased by 26% over the same period. This shift in the industry can only be due to change in circumstance and change in reality. The animal, and by default, the breeder, needs

to breed an animal that is more suitable for sustainable dairy production. New Zealand's KiwiCross[™], ProCross and Beef on Dairy, along with other crossbreeding type systems, are realities in the industry which are being actively marketed and adopted around the world. The increasing nature of pasture-based farming in South Africa (Lacto Data 2021) coupled with unregulated milk buying pricing structures demands for a highly resilient animal, not just in various traits, but in suitability to make a profit.

Currently, some dairy farmers in South Africa are crossbreeding Holstein-Friesian and Jersey. Introduction of the KiwiCross[™] into South Africa gives breeders access to genetics that comes from a well-established system geared for pasture based farming (Buckley et al., 2014). Access to all three breeds allows the breeder to breed the right animals to match the production system. The availability of crossbred sires presents an opportunity for farmers to practice systematic crossbreeding. It offers the farmer a customisation of the dairy cow that complements the desirable characteristics of the Holstein-Friesian and Jersey (Holmes et al., 2007).

Limitations of current study

A limiting factor of this trial is that only first lactation heifers were analysed. In order to fully study the long term impact of KiwiCross[™] within these herds would be to continue the study for several generations. A longer time frame would enable better analysis of health, fertility and longevity traits and therefore truly express the potential benefits of crossbreeding and the use of crossbred sires. Extending the study over several generations would also enable the study to generate pedigree data and possibly look at variations within crossbreds i.e. knowing breed 16th's would indicate benefits of more Holstein or more Jersey type offspring in varying production systems. Environmental factors could also be expanded by increasing study farms to include those in other parts of South Africa where other, possibly more intensive, farming systems are used. This trial was limited to KwaZulu-Natal and should be expanded to other pasture based areas in South Africa.

References

- Abin, S., Visser, C., & Banga, C. B., 2018. Comparative performances of dairy cows in low-input smallholder and high-input production systems in South Africa. Tropical Animal Health and Production 50 (75).
- Afrino breed society, http://www.afrino.org.za
- Ali, A. K. A., & Shook, G. E., 1980. An optimum transformation for somatic cell concentration in milk. J. Dairy Sci. 63: 487 490.
- Anderson, T., Shaver, R., Bosma, P., & De Boer, V., 2007. Case Study: Performance of lactating Jersey and Jersey Holstein crossbred versus Holstein cows in a Wisconsin confinement dairy herd. The Professional Animal Scientist 23 (2007):541-545
- Banga, C.B., Neser, F.W.C. & Garrick, D.J., 2014. Breeding objectives for Holstein cattle in South Africa. S. Afr. J. Anim. Sci. vol. 44: 199 214

Beefmastersa Breed Society, http://www.beefmastersa.co.za

- Bergh, L., 2010. The national beef recording and improvement scheme. In M. M. Scholtz (Ed.). Beef breeding in South Africa. South Africa, Agricultural Research Council. 55 -70.
- Berry, D., & Buckley, F., 2016. Dairy Cow Breeding. Teagasc: Agricultural and Food Development Authority. Section 7, Chapter 9:245-248.
- Bonsmara Breed Society, https://bonsmara.co.za/eng/bonsmara-breed/more-aboutus/
- Bourdon, R.M., 2000. Understanding Animal Breeding 2nd edition. Prentice-Hall. ISBN 0130964492
- Bowley F.E., Green, R.E., Amer P.R. & Meier S., 2015. Novel approaches to genetic analysis of fertility traits in New Zealand. J. Dairy Sci. 98:2005–2021
- Brotherstone, S. & Goddard, M., 2005. Artificial selection and maintenance of genetic variance in the global dairy cow population. Phil. Trans. R. Soc. B (2005) 360, 1479-1488
- Buckley, F., Lopez-Villalobos, N., & Heins, B.J. 2014. Crossbreeding: Implications for dairy cow fertility and survival. Animal (2014). The Animal Consortium 2014.
 8:s1, 122-133

- Cammack, K.M., Thomas, M.G., & Enns, R.M., 2009. Reproductive Traits and Their Heritabilities in Beef Cattle. The Professional Animal Scientist, Volume 25, Issue 5: 517 – 528
- Cassell, B., 2001. Using heritability for genetic improvement. https://www.thecattlesite.com/articles/699/using-heritability-for-geneticimprovement/#:~:text=Using%20Heritability%20for%20Genetic%20Improvem ent
- Clasen, J,B., Kargo, M., Østergaard, S., Fikse, W. F., Rydhmer, L., & Strandberg, E.,
 2021. Genetic consequences of terminal crossbreeding, genomic test, sexed semen and beef semen in dairy herds. J. Dairy Sci. 104: 8062 8075.
- Clasen, J.B., Fogh, A., & Kargo, M., 2019. Differences between performance of F1 crossbred and Holsteins at different production levels. J. Dairy Sci. 102:436-441
- Clasen, J.B., Norberg, E., Madsen, P., Pederson, J., & Kargo, M., 2017. Estimation of genetic parameters and heterosis for longevity in crossbred Danish dairy cattle.J. Dairy Sci. 100:1-6
- Crowe, M.A., Hostens, M., & Opsomer, G., 2018. Reproductive management in dairy cows the future. Irish Veterinary Journal 71:1. DOI 10.1186/s13620-017-0112-y
- DairyNZ website: https://www.dairynz.co.nz/animal/heifers/heifer-mating/.
- Delaby, L., Finn, J. A., Grange, G., & Horan, B., 2020. Pasture-based dairy systems in temperate lowlands: Challenges and opportunities for the future. Front. Sustain. Food Syst. 4: Article 543587.
- Department of Agriculture, Land Reform and Rural Development (DALRRD), 2019. A profile of the South African dairy market value chain. https://www.dalrrd.gov.za/doaDev/sideMenu/Marketing/Annual%20Publication s/Dairy%20Market%20Value%20Chain%20Profile%202019.pdf
- Dormer Breed Society, http://www.dormersa.com/p11/dormer-breed/the-origin-anddevelopment-of-the-dormer.html
- Dorper Breed Society, http://www.dorpersa.co.za/dorper-breed-info/breed-history/
- Egger-Danner, C., Coles., J. B., Pryce, J. E., Gengler, N., Heringstad, B., Bradley, A.,
 & Stock, K. F., 2015. Invited review: overview of new traits and phenotyping strategies in dairy cattle with a focus on functional traits. Animal 9; 2 pp 191 207.

- Fleming, A., Abdalla, E. A., Maltecca, C., & Baes, C. F., 2018. Invited review: Reproductive and genomic technologies to optimize breeding strategies for genetic progress in dairy cattle. Arch. Anim. Breed., 61, 43 – 57.
- Gosey, J. 1991. Crossbreeding systems and the theory behind composite breeds. The Range Beef Cow Symposium XII. December 3,4 & 5, 1991, Fort Collins, Colorado.
- Guinan, F. L., Norman, H. D., & Dürr, J. W., 2019. Changes occurring in the breed composition of U.S. dairy herds. Interbull Bulletin No 55.
- Harris, B. L., & Montgomerie, W. A., 2001. Fertility breeding values for seasonal dairying.

https://www.researchgate.net/publication/251754130_Fertility_Breeding_Valu es_for_Seasonal_Dairying

- Haskell, M.J., Rennie, L.J., Bowell, V.A., Bell, M.J., & Lawrence, A.B., 2006. Housing system, milk production and zero-grazing effects on lameness and leg injury in dairy cows. J. Dairy Sci. 89: 4259 – 4266.
- Hazel, A., Heins, B. & Hansen, L. 2017. Comparison of Montbeliarde x Holstein and Viking red x Holstein crossbreds with pure Holstein cows during first lactation in 8 commercial dairies in Minnesota. J. Dairy Sci. 100: 4139–4249.
- Heins, B. J., Hansen, L. B., Seykora, A. J., Johnson, D. J., Linn, J. G., Romano, J. E., & Hazel A.R. 2008. Crossbreds of Jersey X Holstein Compared with Pure Holsteins for Production, Fertility, and Body and Udder Measurements During First Lactation. J. Dairy Sci. 91: 1270 – 1278.
- Heringstad, B., Egger-Danner, C., Charfeddine, N., Pryce, J. E., Stock, K. F., Kofler, J., Sogstad, A. M., Holzhauer, M., Fiedler, A., Müller, K., Nielsen, P., Thomas, G., Gengler, N., de Jong, G., Ødegård, C., Malchiodi, F., Miglior, F., Alsaaod, M., & Cole, B. J., 2018. Invited review: Genetics and claw health: Opportunities to enhance claw health by genetic selection. J. Dairy Sci. 101: 4801 4821.
- Hernandez-Mendo, O., von Keyserlingk, M.A.G., Veira, D.M., & Weary, D.M., 2007. Effects of Pasture on Lameness in Dairy Cows. J. Dairy Sci. 90: 1209 -- 1214.

Herring, A.D., 2014. Beef Cattle Production Systems. CABI. ISBN 9781845937959

Holmes, C.W., Brookes, I.M., Garrick, D.J., Mackenzie, D.D.S., Parkinson, T.J., &Wilson, G.F. 2007. Milk Production from Pasture: Principles and Practices.Massey University. ISBN 0 473 08308 6.

http://www.picrsa.co.za/products/#Crossbred-Breeding

- https://www.lic.co.nz/products-and-services/artificial-breeding/short-gestation-length-semen/
- ICAR, 2022. https://www.icar.org/index.php/publications-technical-materials/milkyearly-surveys-cow-sheep-goats/
- ICAR, 2018. https://www.icar.org/index.php/publications-technical-materials/milkyearly-surveys-cow-sheep-goats/
- Ismael, H., Jankovic, D., Stanojevic, D., Bogdanovic, V., Trivunovic, S., & Djedovic., R., 2021. Estimation of heritability and genetic correlations between milk yield and linear type traits in primiparous Holstein-Frisian cows. Revista Brasileira de Zootecnia 50: e20200121.
- Johnson, T., Eketone, K., McNaughton, L., Tiplady, K., Voogt, J., Sherlock, R., Anderson, G., Keehan, M., Davis, S. R., Spelman, R.j., Chin, D., & Couldrey, C., 2018. Mating strategies to maximise genetic merit in dairy cattle herds. J. Dairy Sci. 101: 4650 – 4659.
- Kargo, M., & Fogh, A., 2016. Cross breeding an update. NAV seminar. https://www.nordicebv.info/wp-content/uploads/2016/01/Workshop_2016-Crossbreeding-MK.pdf
- Lacto Data, Vol 24 No 1 2021. https://www.mpo.co.za/wp-content/uploads/2021/05/LACTO-DATA-MAY-21.pdf
- Lacto Data, Vol 21 No 1 2018.

https://milksa.co.za/sites/default/files/LAC005%20May%202018.pdf

- Lembeye, F., Lopez-Villalobos, N., Burke, J. L., & Davis, S. R., 2015. Estimation of breed and heterosis effects for milk triats and somatic cell scores in cows milked once and twice daily in New Zealand. Proceedings of the New Zealand Society of Animal Production 2015. Vol 75: 60 – 63.
- Livestock Improvement Corporation Limited & DairyNZ Limited. 2020. New Zealand Dairy Statistics 2019-20. www.dairynz.co.nz/dairystatistics
- Livestock Improvement Corporation Limited & DairyNZ Limited. 2008. New Zealand Dairy Statistics 2007-08. www.dairynz.co.nz/dairystatistics
- López, I.M., Rodríguez, I.M.O., & Torreblanca, C.R., 2019. A study of lactation curves in dairy cattle using the optimal design of experiments methodology. Italian Journal of Animal Science, 18:1, 594 – 600.

- Lopez-Villalobos, N., Garrick, D. J., Holmes, C. W., Blair, H. T. & Spelman, R. J. Profitabilities of some mating systems for dairy herds in New Zealand. J. Dairy Sci. 83: No 1, 2000.
- Makgahlela, M. L., Banga, C. B., Norris, D., Dzama, K., & Ng'ambi, J. W., 2007. Genetic correlations between female fertility and production traits in South African Holstein Cattle. South African Journal of Animal Science, 37 (3) 180 – 188.
- Maltecca C., Khatid H., Schutzkus V.R., Hoffman P.C. & Weigel K.A., 2006. Changes in conception rate, calving performance and calf health and survival from the use of crossbred Jersey X Holstein sires as mates for Holstein dams. J. Dairy Sci. 89: 2747 – 2754.
- McAllister, A. J., 2002. Is crossbreeding the answer to questions of dairy breed utilisation? J. Dairy Sci 85: 2352 2357.
- McClearn B., Delaby, L., Gilliland, T. J., Guy, C., Dineen, M., Coughlan, F., Buckley, F., & McCarthy, B., 2020. An assessment of the production, reproduction, and functional traits of Holstein-Friesian, Jersey x Holstein, and Norwegian red x (Jersey x Holstein-Friesian) cows in pasture-based systems. J. Dairy Sci. 103: 5200 5214.

Meatmaster Breed Society, http://www.meatmastersa.co.za/Breed-Genesis.htm

- Miglior, F., Fleming, A., Malchiodi, F., Brito, L. F., Martin, P., & Baes, C. F., 2017. A
 100 Year Review: Identification and genetic selection of economically important traits in dairy cattle. J. Dairy Sci. 100: 10251 10271.
- Norton, T., & Berckmans, D., 2017. Developing precision livestock farming tools for precision dairy farming. Animal Frontiers 7:1, 18 23. DOI 10.2527/af.2017.0104
- Oltenacu, P.A., & Broom, D.M., 2010. The impact of genetic selection for increased milk yield on the welfare of dairy cows. 2010 Universities Federation for Animal Welfare. Animal Welfare 2010, 19(S): 39-49, ISSN 0962-7286.
- PIC commercial pig breed, https://www.picrsa.co.za/products/#Boar

Pig Breed Society, http://www.pigsa.co.za/p11/pig-breeds/landrace-pig-breed.html).

- PinZ²yl Breeders Society, http://www.sacattle.co.za/aboutpinz2.html
- Pritchard, T., Coffey, M., Mrode, R., & Wall, E., 2012. Genetic parameters for production, health, fertility and longevity traits in dairy cows. Animal (2013), 7:1, pp 34 – 46. The Animal Consortium 2012.

45

ProCross website. http://www.procross.info/questions-and-answers

Rocha, J.P., López-Villalobos, N., Burke, J.L., & Donaghy, D.J., 2017. Traits other than production over lactations and production seasons in dairy cows milked once a day in New Zealand. New Zealand Journal of Agricultural Research, 60:4, 386 – 403.

Simbra Breed Society, http://www.simbra.org/Breed-History.htm

- Saha, S., Carraro, L., Bittante, G., & Gallo, L. 2018. Body and milk quality traits of purebred Holstein and three generation crossbred cows from VikingRed, Montbeliarde and Holstein sires. Journal of Central European Agriculture, 2018, 19(4), p. 760-765
- SAS Institute Inc., 2011. SAS/STAT® 9.3 User's guide. SAS Campus Drive, Cary, North Carolina 27513
- Selk, G., 2016. Watch for a Lameness Issue in Cattle, called Corkscrew Claw. https://nwdistrict.ifas.ufl.edu/phag/2016/05/27/watch-for-a-lameness-issue-incattle-called-corkscrew-claw/.
- Shearer, J. K., Plummer, P. J., & Schleining, J. A., 2015. Perspectives on the treatment of claw lesions in cattle. Veterinary Medicine: Research and reports 2015: 6 273 – 292.
- Shonka-Martin, B.N., Hazel, A.R., Heins, B.J., & Hansen, L.B., 2019. Three-breed rotational crossbreds of Montbéliarde, Viking Red, and Holstein compared with Holstein cows for dry matter intake, body traits, and production. J. Dairy Sci. 102:871-882.
- Sørensen, M. K., Norberg, E., Pedersen, J., & Christensen, G., 2008. Invited Review: Crossbreeding in dairy cattle: A Danish perspective. J. Dairy Sci. 91; 4116 – 4128.
- Theron, H.E., & Mostert, B.E., 2009. Production and breeding performance of South African dairy herds. South African Journal of Animal Science, 39 (Supplement 1), 206 – 210.
- TOPIGS commercial pig breed, https://topigsnorsvin.co.za
- Tsuruta, S., Misztal, I., & Lawlor, T J., 2005. Changing definition of productive life in US Holsteins: Effect on genetic correlations. J. Dairy Sci. 88: 1156 1165.
- Van Rooy breed society, http://www.vanrooysa.co.za/p25/van-rooy-sheepbreed/history-and-development-of-the-van-rooy-sheep.html

- VanRaden, P.M., & Sanders, A.H. 2003. Economic Merit of Crossbred and Purebred US Dairy Cattle. J. Dairy Sci. 86: 1036 1044
- Washburn, S.P. & Mullen, A.E. 2014. Invited review: Genetic considerations for various pasture-based dairy systems. J. Dairy Sci. 97: 1 16.
- Weigel, K.A. 2007. Crossbreeding: A dirty word or an opportunity. Western Dairy Management Conference. www.wdmc.org/proceed.htm#2011.
- Weigel, K.A., & Barlass, K.A., 2003. Results of a producer survey regarding crossbreeding on US dairy Farms. J. Dairy Sci. 86:4148 4154.
- Wilkinson, J.M., Lee, M. R., F., Jordana Rivero, M, & Thomas Chamberlain, A., 2019. Some challenges and opportunities for grazing dairy cows on temperate pastures. Grass Forage Sci. 2020; 75: 1 – 17.
- Zavadilová. L., Kašná. E., Krupová. Z., & Klímová. A., 2021. Health traits in current dairy cattle breeding: A review. Czech J. Anim. Sci., 66: 235 250.

Addendum A – Three generation pedigrees of KiwiCross[™] sires

<u> </u>		Three Generatio	n Pedigree			
					MINDA	
Livestoo New Zea	k Improvement Corporation	Herd Averages as at existin Ancestry : BW :	PW:	PTPT / HERDCOI LOCATIO DA		
MATAKURI ATLANTIS Birth Ident: KFYY-08-101 Sex : Breed : Date of Birth : Genomic Indicator:	<mark>≶</mark> G3,G1 S√ I	BW (\$): 200/99 Protein BV (kg): 13/99 Fat BV (kg): 22/99 Milk BV (ttr): 0/99 Liveweight BV (kg): -25/99 Fertility BV (%): 0.3/99 Total Longevity BV (days): 218/99 Somatic Cell BV: -0.09/99 Fat %: 5.3	SRB COLLINS ROYAL Birth Ident: BHDF-95-25 Breed: SF F16 Genomic Indicator: BW (\$): 125/5 BW (\$): 125/5 Fat BV (kg): 22/5 Milk BV (ttr): 52/3/5 DAM: Birth Ident: FMGX-95-5 Breed: JA J12A2 Genomic Indicator (g): BW (\$): 165/62 Milk Milk Pirt (%) 8 yr 11 m 2818 4.21 7 yr 11 m 3901 4.77 6 yr 11 m 2992 4.72	(96329) G3,G1 99 Lwt BV (kg): 40/99 99 Fertility BV (%): 0.8/99 99 TotL BV (days): 165/99 99 SCC BV: 0.13/99 G1 S ✓ PW (\$): 270/83 otein Milkfat (kg) (%) (kg) Days LW 119 5.14 145 200 T 131 186 6.19 241 250 161	BARTONS BICKFORD Birth Ident: VGR-89-67 (90266) Breed: F F15.11 Genomic Indicator: BW (\$): 17/99 COLLINS STORM HEATHER Birth Ident: Birth Ident: BHDF-92-12 Breed: F F16 Genomic Indicator: BW (\$): BW (\$): 74/56 PW (\$): 122 3 Lacts. Protein Milkfat Milkfat Milk (%) (kg) JUDDS ADMIRAL Birth Ident: Birth Ident: FTH-88-39 (89429) Breed: P J16 Genomic Indicator: BW (\$): 109/99 DAM: Birth Ident: Birth Ident: FMGX-92-17 Birth Ident: FMGX-92-17	
BW (\$): Protein BV (kg): Fat BV (kg):	222/81 21/85 24/85	Protein %: 4 ALCAMENO MHTTN DEMI	5 yr 11 m 1086 4.65 5 yr 0 m 4418 4.73	50 5.48 59 65 242 209 6.03 266 261 331 4 unprinted lactations	Genomic Indicator: BW (\$): 127/53 PW (\$): 191. 10 Lacts. Protein Milkfat Milk (%) (kg) (%) (kg) Days	
Milk BV (ltr): Liveweight BV (kg): Fertility BV (%): Total Longevity BV (days): Somatic Cell BV:	256/87 -25/90 -3.3/67 145/68 -0.24/78	Birth Ident: KFYY-06-11 Breed: JF J10F6 SG3 Genomic Indicator: PW (\$): PW (\$): Lwt BV (kg): BW (\$): 218/61 Lwt BV (kg): Fertility BV (%): Protein BV (kg): 24/64 Fertility BV (%): TotL BV (days): Milk BV (ltr): 344/67 SCC BV: SCC BV:	S✓ OKURA MANHATTEN I 465/87 Birth Ident: CFWR-99-47 -21/57 Breed: SJ J16 -3.8/51 Genomic Indicator: 106/52 BW (\$): 174/5 0.28/60 Protein BV (kg): 12/5	' (300534)	FYN LEMVIG Oseas HB No: 00000300003/DNK (66410 Breed: PJ J16 Genomic Indicator: BW (\$): 65/98 KAIPARA MOONSHINE SJ2 Birth Ident: FXQG-94-26 Breed: SJ J16 VHC	
Overall Opinion BV: Udder Overall BV: Dairy Conformation BV: Fat %: Protein %:	0.21/86 0.18/84 -0.08/88 5	Milk Protein Milkfat Age (ltr) (%) (kg) (kg) Days 6 yr 1 m 3839 4.33 166 5.59 215 183 5 yr 0 m 3619 4.29 155 5.31 192 191 4 yr 0 m 4841 4.35 211 5.26 243 3 yr 1 m 4550 3.97 181 5.00 228 229 2 yr 0 m 4786 3.94 189 5.04 241 283	Genomic Indicator:	99 SCC BV: 0.08/99 JMPA SOF S√	Genomic Indicator: 198/81 PW (\$): 209 BW (\$): Potein Milkfat Milkfat Milk (%) (kg) (%) (kg) Days 3675 4.24 165 5.64 207 257 TOP DECK KO PIERRE Birth Ident: JKJD-98-5 (572213) 3675	
pyright 2013 - Livestock Im	*	Avg 4327 4.17 180 5.22 226 226 Traits other than production results : (2 AM ST MS 00 S W C RA RW L US FU RU FT RT 8 8 9 6 5 7 6 8 7 6 6 5 5 N = Induced T = At least 1 Abnormal Test in this Lactation Test in this lactation Test in this lactation Test in this lactation	Milk Property Age (Itr) (%) 8 yr 1 m 4580 4.03 6 yr 11 m 5029 4.27 6 yr 1 m 5139 4.27 5 yr 1 m 5730 3.92 4 yr 0 m 6816 3.87 00 DC Plus	184 4.30 197 200 517 214 4.86 244 230 535 219 4.36 224 229 468 225 4.43 254 228 505 264 3.80 259 274 488 2 unprinted lactations 192 4.29 205 210 7 Lacts.	Breed: PF F16 Genomic Indicator: BW (\$): 119/99 LIC-FJORD Birth Ident: Birth Ident: GHJG-99-3 Breed: JF J9F7 Genomic Indicator: BW (\$): 152/54 PW (\$): BW (\$): 152/54 BW (\$): 152/54 BW (\$): 152/54	

		Three Ge	eneration	ו Pe	digree			
2 LIC							MINDA	
	Livestock Improvement Corporation New Zealand		rages as at : BW :		PW :	PTPT / HERDCOI LOCATIO DA		
							J S QUICKSILVER ROYAL	
					SILVER FALLS QUICK FA Birth Ident: FHK-91-12 (924	72)	Oseas HB No: 000000634142/USA (65129 Breed: PJ J16	
		MITCHELLS LIKABULL SJ	3		Breed: PJ J16 Genomic Indicator:	G 3	Genomic Indicator: BW (\$): -59/98	
	<mark>≶</mark> G3,G1 S√ D√		416) S G3,G1 158/99	S√ D√	BW (\$): 120/99 Protein B∨ (kg): -13/99 Fat B∨ (kg): -2/99 Milk B∨ (ltr): -705/99	Lwt B∨ (kg): -61/99 Fertility B∨ (%): 6.2/99 TotL B∨ (days): 253/99 SCC B∨: -0.74/99	SILVER FALLS ELTON FAIRY Birth Ident: FHK-58-24 Breed: PJ J16 EX4 Genomic Indicator: BW (\$): 37/65 PW (\$): 41/5	
LYNSKEYS LANCASTE	R	Protein BV (kg):	0/99		MITCHELLS ADS COLLEI	EN SJ2	11 Lacts. Protein Milkfat Milk (%) (kg) (%) (kg) Days	
Birth Ident: BNTT-06-60 (507036)	Fat BV (kg):	3/99		Birth Ident: DTWX-94-64	нс	3759 4.29 161 6.06 228 267	
0			522/99		Breed: SJ J16 Genomic Indicator (g):	G1 S√	JUDDS ADMIRAL	
Sex :	MALE	0 (0)	-52/99 1.5/99		BW (\$): 180/67	PW (\$): 362/87	Birth Ident: FTH-88-39 (89429) Breed : PJ J16	
Breed :	JF J9F7		173/99		Milk Protei		Genomic Indicator: BW (\$): 109/99	
Date of Birth :	11/08/2006		.05/99			kg) (%) (kg) Days LW 36 6.04 59 67 т 348	MITCHELLS VANS SUE SJ1	
Genomic Indicator:		Fat %:	5.5		12 yr 11 m 2958 4.44 13 11 yr 11 m 3468 4.22 14	31 4.92 145 183 310 46 5.48 190 209 281	Birth Ident: DTWX-88-5 Breed : SJ J16	
BW (\$):	218/86	Protein %:	4.2		9 yr 11 m 3945 3.84 1	51 5.03 198 255 т 161	Genomic Indicator: BW (\$) : 165/61 PW (\$): 203	
Protein BV (kg):	17/88					30 5.11 171 169 246 nprinted lactations	11 Lacts. Protein Milkfat	
Fat BV (kg):	24/89	DAM:				52 5.24 194 228 10 Lacts.	Milk (%) (kg) (%) (kg) Days 3460 4.34 150 5.19 179 238	
Milk BV (ltr):	70/90	Birth Ident: BNTT-02-26						
Liveweight BV (kg):	-6/90	Breed: F F14J2	ŠG1	S✓		20.40	ATHOL BARON Birth Ident: BLP-90-188 (91208)	
Fertility BV (%):	2.3/77		V (\$): ∨tBV (kg):	406/83 24/47	Birth Ident: DYBP-95-138 (9 Breed: PF F16	•	Breed: PF F16	
Total Longevity BV (days):	320/76	Protein BV (kg): 27/61 Fe	ertility BV (%):	3.9/49	Breed: PF F16 Genomic Indicator:	G3,G1	Genomic Indicator: BW (\$): 38/99	
Somatic Cell BV:	-0.13/87	Milk BV (ltr): 796/64 SC	CC BV: -	402/51 0.32/58	BW (\$): 80/99 Protein B∨ (kg): 15/99	Lwt BV (kg): 24/99 Fertility BV (%): 1.5/99	ATHOL CLASP-OC Birth Ident: DYBP-91-117 Breed: PF F16 81 GP	
Overall Opinion BV:	-0.04/86	Milk Protein Age (ltr) (%) (kg)	Milkfat (%) (kg) Days	LW	Fat B∨ (kg): 2/99 Milk B∨ (ltr): 472/99	TotL BV (days): 232/99 SCC BV: 0.21/99	Genomic Indicator: BW (\$): 73/64 PW (\$): 262	
Udder Overall BV:	0.22/83	6 yr 11 m ^D 6349 4.06 258 4	4.56 289 215	592	DAM:		10 Lacts. Protein Milkfat	
Dairy Conformation BV:	0.20/87	5 yr 0 m D 5747 4.11 236 5	4.59 215 171 5.04 290 271	391 417	Birth Ident: BNTT-94-22		Milk (%) (kg) (%) (kg) Days 4777 3.52 168 3.97 190 208	
Fat %:	5.2		4.52 232 220 4.79 223 238	392 324	Breed: FJ F12J4		BALSOMS TAYLOR	
Protein %:	4		4.65 190 220	392	Genomic Indicator: BW (\$): 179/56	PW (\$): 251/87	Birth Ident: BJGL-86-110 (87208)	
		Avg D 5110 3.99 204	4.69 240 223	6 Lacts.	Milk Protei		Breed: F F16 Genomic Indicator: BW (\$): 49/99	
					Age (ltr) (%) (k 9 yr 11 m 5673 4.00 2	kg) (%) (kg) Days LW 27 4.37 248 243 373	DAM:	
					9 yr 0 m 5681 3.86 2 [.]	19 4.80 273 214 372	Birth Ident: BNTT-91-35	
					8 yr 0 m 5926 4.03 23 7 yr 0 m 5879 3.80 23	39 5.27 312 238 396 24 4.59 270 229 399	Breed: FJ F8J8 Genomic Indicator:	
					6 yr 0 m 4762 3.99 19	90 5.01 239 230 215 nprinted lactations	BW (\$): 135/54 PW (\$): 10/8 6 Lacts. Protein Milkfat	
					Avg 5221 3.91 20		Milk (%) (kg) (%) (kg) Days 3666 3.86 141 4.68 171 220	
	provement Corporation					rentage Uncertain D / S √ = Parent	age Confirmed by DNA DO01 50	

01.50 Official Publication	of Livestock Improveme			Generatio	n Do	diaroo			
LIC			Infee	Generatio	on Pe	aigree		MINDA	
	k Improvement Corj land	poration		I Averages as at estry : BW :		PTPT / HERDCO LOCATIO PW : DA		DDE :	
						SRB COLLINS ROYAL HU Birth Ident: BHDF-95-25 (96 Breed: SF F16		BARTONS BICKFORD Birth Ident: VGR-89-67 (90266) Breed: F F15J1 Genomic Indicator: BW (\$): 17/99	
			Birth Ident: CQVB-00-80			Genomic Indicator:		COLLINS STORM HEATHER	
CUTFORTHS LORD BR	S3,G1 G3,G1	S√ D√	Breed : FJ F11J5 Genomic Indicator: BW (\$): Protein BV (kg):	(501642) G 3,G1 152/99 9/99	S√ D√	BW (\$): 125/99 Protein B∨ (kg): 22/99 Fat B∨ (kg): 25/99 Milk B∨ (itr): 523/99	Lwt B∨ (kg): 40/99 Fertility B∨ (%): 0.8/99 TotL B∨ (days): 165/99 SCC B∨: 0.13/99	Birth Ident: BHDF-92-12 Breed: F F16 Genomic Indicator: BW(\$): BW(\$): 74/56 PW(\$): 122/ 3 Lacts. Protein Milk (%) (%) Milk (%) (%)	
Birth Ident: HXVV-05-83	506063)		Fat BV (kg):	22/99		Birth Ident: CQVB-97-3		4089 3.80 156 4.43 181 210	
Sex :	MALE		Milk BV (ltr): Liveweight BV (kg):	-200/99 6/99		Breed: JF J10F6 Genomic Indicator (g):	S⊄ G2,G1 S√	WILLIAMS LORD NORMAN Birth Ident: CLRL-91-7 (92412)	
Breed :	JF J7F5		Fertility BV (%):	4.2/99		BW (\$): 137/61	PW (\$): 431/84	Breed : PJ J16	
Date of Birth :	31/07/2005		Total Longevity BV (days): Somatic Cell BV:	237/99 0.08/99		Milk Protein Age (ltr) (%) (k 12 yr 0 m 4111 4.01 16	g) (%) (kg) Days LW	Genomic Indicator: BW (\$): 60/99 DTR OF NO 18	
Genomic Indicator:			Fat %:	5.5		11 yr 1 m 4168 3.90 16 10 yr 0 m 4629 3.97 18	52 5.18 216 232 251	Birth Ident: CQVB-95-7 Breed : FJ F12J4	
BW (\$):	245/85		Protein %:	4.1		9 yr 0 m 4478 4.06 18	32 5.22 234 263 357	Genomic Indicator: BW (\$) : 66/54 PW (\$): 139/	
Protein BV (kg):	21/88					8 yr 0 m 4320 4.02 17 Plus 6 u	74 4.63 200 239 205 nprinted lactations	3 Lacts. Protein Milkfat	
Fat BV (kg):	25/88		WOODNOOK LAURIE	BIRD JC8		Avg 4406 4.11 18		Milk (%) (kg) (%) (kg) Days 4062 3.72 151 5.08 206 262	
Milk BV (ltr):	124/90		Birth Ident: HXVV-01-78						
Liveweight BV (kg):	9/90		Breed: CJ A8J8	S⊂G1	S✓	GLENMARIE IMPRESS LA		NGARANGI IMPRESSARIO HB No: A/34439/M (61368)	
Fertility BV (%):	1.8/77		Genomic Indicator: BW (\$): 154/65	PW (\$): Lwt BV (kg):	498/85 -23/59	Birth Ident: DGHT-95-14 (61		Breed: PA A16	
Total Longevity BV (days):	377/78		Protein BV (kg): 9/67	Fertility BV (%):	-1.3/58	Breed: PA A16 Genomic Indicator:	S3,G1	Genomic Indicator: BW (\$): 38/99	
Somatic Cell BV:	-0.43/86		Fat BV (kg): 10/67 Milk BV (ltr): 27/69	TotL BV (days): SCC BV:	269/59 -0.33/64	BW (\$): 38/99 Protein BV (kg): 1/99	Lwt B∨ (kg): -15/98 Fertility B∨ (%): -4.1/99	GLENMARIE MILKY LAUREL Birth Ident: DGHT-92-55 Breed: PA A16 VHC SY	
Overall Opinion BV:	0.01/84		Milk Protei Age (Itr) (%) (k	n Milkfat (g) (%) (kg) Days	LW	Fat BV (kg): -8/99 Milk BV (ltr): 164/99	TotL BV (days): 202/99 SCC BV: -0.49/99	Genomic Indicator: BW (\$): 132/77 PW (\$): 220/8	
Udder Overall BV:	0.40/83		11 yr 0 m 2640 3.68	97 5.30 140 120	т 376			12 Lacts. Protein Milkfat	
Dairy Conformation BV:	0.32/87		9 yr 0 m 4686 4.03 14 7 yr 11 m 3862 4.10 14			OKURA JUDDS BELLBIR Birth Ident: CFWR-95-364		Milk (%) (kg) (%) (kg) Days 4819 3.55 171 4.38 211 248	
Fat %:	5.2		7 yr 0 m 4209 4.35 11 5 yr 11 m 4295 3.96 1	33 5.67 239 235	т 422	Breed: PJ J16	VHC		
Protein %:	4.1		4 yr 11 m 4836 4.08 19	7 5.75 278 228	525	Genomic Indicator:		Birth Ident: FTH-88-39 (89429)	
			3 yr 11 m 4588 4.11 13 2 yr 11 m 4265 4.08 13 1 yr 11 m 3331 3.93 13	74 5.17 221 233	482	BW (\$): 158/60 Milk Protein Age (ltr) (%) (k	PW (\$): 377/86 n Milkfat xg) (%) (kg) Days LW	Breed: PJ J16 Genomic Indicator: BW (\$): 109/99	
			Avg 4079 4.05 1			11 yr 2 m 2997 3.80 1 10 yr 1 m 3500 3.82 13 9 yr 1 m 3865 4.05 14 8 yr 0 m 3192 4.21 13 7 yr 0 m 3594 4.39 15	14 5.59 168 163 328 34 5.67 199 202 286 56 5.51 213 213 337 34 6.19 197 235 271	OKURA TAURUS BILLY Birth Ident: CFWR-93-198 Breed: PJ J16 A Genomic Indicator: BW (\$): -22/ BW (\$): 40/55 PW (\$): -22/ 2 Lacts: Protein Milkfat Milk (%) (kg)	

^		Thre	e Generation P	edigree			
2 LIC						MINDA	
Livestock Improvement Corporation New Zealand			lerd Averages as at ancestry : BW :	PW :	PTPT / HERDCO LOCATI DA		
BROOKLANDS RAMPA Birth Ident: NDDX-08-170 Sex : Breed : Date of Birth : Genomic Indicator: BW (\$): Protein BV (kg):	i g 3 s√ NT	VALDEN HI APPLAU Birth Ident: JVLH-02- Breed : SF F16 Genomic Indicator: BW (\$): Protein BV (kg): Fat BV (kg): Milk BV (Itr): Liveweight BV (kg): Fertility BV (%): Total Longevity BV (day Somatic Cell BV: Fat %: Protein %:	13 (103180)	Fat BV (kg): 27/94 Milk BV (ltr): 438/93 VALDEN POSH AMBER Birth Ident: Birth Ident: PMX-00-145 Breed: PF F16 Genomic Indicator (g): BV(\$): BVV (\$): 81/74 Milk Proi Age (ltr) 9 yr 1 m 5640 5 yr 10 m 8233 4 yr 10 m 8203 3 yr 11 m 6978	(97380) G3,G1 S✓ D✓ G3,G1 S✓ D✓ G3,Lvt BV (kg): 33/94 4 Fertility BV (%): 0.7/90 4 TotL BV (days): 323/91 5 SCC BV: -0.29/93 LY-ET B9 V(G2,G1 S✓ D✓ PW (\$): 224/90 tein Milkfat (kg) (%) (kg) Days LW 201 4.27 241 222 254 310 4.69 408 300 377 295 4.65 383 305 T 220 323 4.41 389 305 270	SRA INKSTERS CHARLIE Birth Ident: CJKB-93-5 Breed: SF F16 83 GP Genomic Indicator: BW (\$): 117/58 Fored: SF F16 83 GP Genomic Indicator: WW (\$): SLacts. Protein Milk (%) (kg) 4700 3.51 165 4.71 222 243 Genomic Indicator: BW (\$): Birth Ident: BOR-95-3 (96388) Breed: PF F16 Genomic Indicator: Bired: PF F16 88 VG \$70* Genomic Indicator: BW (\$): -52/99 ROJAN EMIN JEBEL-ET Birth Ident: HYWT-88-89 Breed: PF F16 88 VG \$70* Genomic Indicator: BW (\$): -52/99 Stacts. PF f16 88 VG Sred: JPF F16 Stacts. Protein Birds: JPF F16 Stacts. Protein	
Fat BV (kg): Milk BV (ltr):	26/83 310/86	DAM: Birth Ident: BDTQ-05	-56		unprinted lactations 261 4.40 318 283 7 Lacts	Milk (%) (kg) (%) (kg) Days	
Liveweight BV (kg): Fertility BV (%): Total Longevity BV (days): Somatic Cell BV: Overall Opinion BV: Udder Overall BV: Dairy Conformation BV: Fat %: Protein %:	4/89 -1.3/64 334/66 0.03/75 0.42/85 0.20/82 0.28/87 5 4	Age (ltr) (%)	60 Fertility BV (%): 1.5/4 61 TotL BV (days): 264/4 63 SCC BV: -0.08/5 otein Milkfat (%) (%) Days LV (kg) (%) (kg) Days LV 176 T 27 223 5.19 313 208 39 184 4.80 242 200 T 27 250 4.95 313 248 38 246 4.26 273 259 26 158 4.85 188 218 T 31	4 Breed: SJ J16 3 Genomic Indicator: 9 BW (\$): 158/99 6 Protein B∨ (kg): 0/98 Fat B∨ (kg): 3/95 Milk B∨ (ltr): -522/95 DAM: Birth Ident: BDTQ-03-79 Breed: F F14J2 Genomic Indicator: BW (\$): 148/55 s. Age (ltr) (%) 7 yr 1 m 4480 3.52 6 yr 0 m 5530 3.72 3 yr 11 m 5220 3.84	(99416) C3,G1 S✓ D✓ C3,G1 S✓ D✓ C4,C4,C4,C4,C4,C4,C4,C4,C4,C4,C4,C4,C4,C	Genomic Induction. Dif (c): 10000 MITCHELLS ADS COLLEEN SJ2 Birth Ident: DTWX,94-64 Breed: SJ J16 HC SW (S): 180/67 PW (S): 180/67 PW (S): 180/67 PW (S): 10 Lacts. Protein Milk (%) (%) (%) Milk (%) (%) (%) SRD BENTONS HOT KAT Birth Ident: Genomic Indicator: Birth Ident: SVH × 97-150 Paece: SF F16 Sr02 Genomic Indicator: Birth Ident: BDTQ-00-43 Birted: FJ F12J4 Genomic Indicator: BW (\$): 159/67 BW (\$): 159/67 PW (\$): 159/67 PW (\$): 159/67	

A 115			Three G	eneratio	n Pe	digree		
Livestock Improvement Corporation			Herd Av	verages as at ry: BW :		PW :	DE : ON : ITE : 15/04/2013	
PRIESTS SOLARIS-ET Birth Ident: JVLH-07-183 Sex : Date of Birth : Genomic Indicator: BW (\$): Protein BV (kg): Fat BV (kg): Milk BV (ltr): Liveweight BV (kg):	€ G3,G1 (508154) MALE JF J10F6 3/08/2007 217/98 18/99 24/99 24/99 272/99 -3/95	S√ D√	INGRAMS RAMROD Birth Ident: BNQL-02-34 (5 Breed : JF J10F6 Genomic Indicator: BW (\$): Protein BV (kg): Fat BV (kg): Fat BV (kg): Milk BV (Itr): Liveweight BV (kg): Fertility BV (%): Total Longevity BV (days): Somatic Cell BV: Fat %: Protein %: DAM: Birth Ident: JQXQ-02-11 Breed: JF J9F7	-	S√ D√ \$√ 400/83	WILLAND ADS SAMUAL Birth Ident: FHKD-96-3 (974 Breed: PJ J16 Genomic Indicator: BW (\$): 147/99 Protein BV (kg): 0/99 Fat BV (kg): 17/99 Milk BV (Itr): -502/99 DAM: Birth Ident: BLYK-97-37 Breed: FJ F11J4 Genomic Indicator (g): BW (\$): 158/73 Milk Protein Age (Itr) (%) (k 12 yr 10 m 6031 4.08 22 11 yr 10 m 6031 4.08 24 9 yr 10 m 5441 4.12 22 9 yr 10 m 6419 4.04 24	72) SG3,G1 S✓ D✓ Lwt BV (kg): -53/99 Fortility BV (%): 1.5/99 TotL BV (days): 156/99 SCC BV: 0.52/99 SCC BV: 0.52/97 SCC BV: 0.52/97	JUDDS ADMIRAL Birth Ident: FTH-88-39 (89429) Breed: PJ J16 Genomic Indicator: BW (\$): 109/99 WILLAND SAMS MELI GR Birth Ident: FHKD-93-11 Breed: PJ J16 Genomic Indicator: BW (\$): 171/79 Birth Ident: FHKD-93-11 Breed: PJ J16 Genomic Indicator: BW (\$): 171/79 BW (\$): 171/79 9 Lacts. Protein Milk (%) (kg) (%) (kg) Days 4112 4.10 Genomic Indicator: BW (\$): Saffee Genomic Indicator: BW (\$): Saffee Genomic Indicator: BW (\$): 34/99 DAM: Birth Ident: BLYK-94-15 Breed: JF J8F6 Genomic Indicator: BW (\$): 132/55 PW (\$): 268/8 9 Lacts. Protein Milk (\$) (kg) (\$\$) (\$\$) (\$\$) (\$\$) (\$\$) (\$\$) 288/8 9 Lacts. Protein Milk (\$\$) (kg) (\$\$) (\$\$) (\$\$) (\$\$) 288/7 9 Lacts. Protein Milk (\$\$) (\$\$) (\$\$) (\$\$\$) (\$\$\$) (\$\$\$) (\$\$\$) 283 9 Lacts. Protein
Fertility BV (%): Total Longevity BV (days): Somatic Cell BV: Overall Opinion BV: Udder Overall BV: Dairy Conformation BV: Fat %: Protein %:	2.4/98 231/98 -0.96/99 0.42/90 0.44/88 1.03/92 5 3.9		BW (\$): 169/72 Protein BV (kg): 14/74 Fat BV (kg): 22/74	Lwt BV (kg): Fertility BV (%): TotL BV (days): SCC BV: Milkfat (%) (kg) Days 6.44 226 167 4.87 117 130 4.84 151 189 4.84 151 189 4.84 151 283 252 4.82 233 266 4.59 180 231 4.97 198 206	-9/63 -1.6/66 212/67 -0.85/72 LW 366 395 187 413 430 350 376 6 Lacts.	Breed: CJ J12F4 Genomic Indicator: BW (\$): 132/99 Protein BV (kg): 0/99 Fat BV (kg): 4/99 Milk BV (ltr): -137/99 DAM: Birth Ident: JQXQ-00-1 Breed: FJ F11J5 Genomic Indicator: BW (\$): 162/56 Milk Protein Age (ltr) (%) 9 yr 1 m D 2342 3.66 12 7 yr 1 m D 2970 3.75 17 5 yr 0 m 5198 3.72 15	Formula G3,G1 S ✓ D ✓ Lwt BV (kg): -34/99 Fertility BV (%): 2.6/99 TotL BV (days): 2.08/99 SCC BV: -0.98/99 SCC BV: -0.98/99 Wilkfat 9 9(%) (kg) Days LW 66 4.79 112 130 266 14 4.8 133 144 293 226 14 4.84 133 144 293 317 24 4.74 4.74 250 366 366 mprinted lactations 4.56 188 207 8 Lacts	Breed: PJ J16 Genomic Indicator: BW (\$): 92/99 BELGARD COLOGNE JC8 Birth Ident: DWPY-86-25 Breed: CL F8J8 S× Genomic Indicator: BW (\$): 133/78 PW (\$): 133/78 BW (\$): 133/78 PW (\$): 15/99 SRC HIBI SECRET SKELTON Birth Ident: FKNW-89-3 (652033) Breed: SF P16 Genomic Indicator: BW (\$): 115/99 DAM: Birth Ident: MIR-97-18 Breed: JF J10F6 Genomic Indicator: BW (\$): 113/8 Birth Ident: 75/55 BW (\$): 113/8 Bacets. Protein Milk (%) (%) (%) (%) (%) Days 3956 3956 4.17 165

Addendum B – Bull Marketing Reports (BMR) of KiwiCross™, Holstein-Friesian and Jersey sires

509004	M	ΑΤΑΚΙ	JRI ATL/	ANTIS	IS KiwiCross Cu 1/08/2008					Current LIC Rank 5 Newstee				ead Centre Bulls UNREGISTERED	
BW		aeBW / R	el BW/F	Rel		OAD / R	lel	Hi / Re	el AP	R / Rel	EBI / Rel	PLI / Rel	Updated	SPS	
	233/81		5544/6	69 1	958/8	34				25/08/2010	2009				
raits other th	an produ	uction BVs					Produc	ction BVs	S						
lanagement				-1	1		Fa	at	Protein	Milk Vol	Livewt F	- ertility Res	Surv Tot Long	SCC	
daptability to	milkina	0.03 / 86	slowly		au	ickly	24/	86	21/85	247/87			/ 68 193 / 68	-0.26/	
hed Tempera		0.01/86				acid	5.0	%	4.0%						
ilking speed		0.00/81	slow		fas		0.0	/0	1.070						
verall opinio	n		undesirable			sirable	Pedigr	<u></u>					Other Values		
onformation		0.117.00	78 dtrs		40	onabio	Sire	00	501038	8001	TS NORTHSE	٨	NZ HF %	29	
tature	•	-0.52 / 90			tal	1	Dam		KFYY-06-1		MENO MHTTN		NZ Jsy %	29	
apacity		-0.01 / 87				pacious			300534		RA MANHATTE		NZ Ayr %	23	
ump angle		-0.01/86				pacious			MENO PIERE I		NZ Total %	∠ 59			
ump width		0.10/86			wi										
							MGG S				DECK KO PIER	RE	% White	1	
egs		0.30/72				rved	MGG [Jam	am GHJG-99-3 LIC-FJOF		JORD		Inbreed	2.3	
dder support		0.07 / 91				ong						Breed 16ths	F7J8A		
ront udder		0.03 / 89				ong	Other BVs Single		Circula Car						
ear udder		0.06 / 89			hig				0.7/04	/ 181	Single Ger				
ront teat plac		0.32 / 89				ose	Calvin	g Dim	-2.7 / 64			e Locus Descr Phenotype Descr		r	
ear teat plac	ement	0.47 / 89				ose	SGL			1.9	A2		A2A2		
ldder overall			undesirable			sirable	Body (Cond	-0	.14	Alpha SI C				
airy conform	ation	-0.04 / 88	undesirable		de	sirable					Beta Case				
											Beta Lacto	oglobulin			
											BLAD		BLAD FREE		
											Citrullinae	mia	citrullinaemia free	е	
BW and BV F	listory				TOP His						CVM		CVM FREE		
AE Run	BW	Milk		Vol Dtr	AE Ru		2	UO	DC	TOP D					
Date		Volum	ie	Count	Date	-	-			Count	Kappa Ca	sein			
11/05/2013	233	247		92	11/05/20			0.13	-0.04	78	Optimum				
13/04/2013	222	256		92	16/02/20	013 0.2	21	0.18	-0.08	78	Quantum				
09/03/2013	232	333	-20	92	08/12/20	0.2 0.2	25	0.09	-0.09	64	Red Facto	r			
16/02/2013	219	297	-1	92	06/10/20	012 0.4	14	0.00	-0.07	32	1.00.1 4010	•			
2/01/2013	218	257	-38	92	12/05/20		12	0.09	-0.09	0	Tot Long /	Fert History			
8/12/2012	208	237	-30	92	11/02/20			0.09	-0.10	0		te Total Long	Fertility		
0/11/2012	204	172		88	10/12/20			0.10	-0.06	0	26/04/201		-1.5		
27/10/2012	216	182		85	08/10/20			0.10	-0.05	0	01/02/201		-3.3		
13/10/2012	183	97	0	81	16/07/20			0.18	0.00	0	27/04/201		-0.7		
11/05/2012	185	34	7	0	14/05/20			0.18	0.00	0	27/01/201		-0.7		
11/00/20134	try proof		/	U	14/03/20	0.4	10	0.10	0.00	0	01/07/201		-1.1		

LIC

Bull Marketing Report

AE Run Date: 11/05/2013

28/05/2013

509046	BF	ROOKI	LANDS	RAMP	ANT			wiCross 08/2008		urr	ent Ll	C Rank	12	News	tead Cent UNREG	re Bull
BW		aeBW / R	el BW /	Rel		OAD	/ Rel	Hi / F	lel A	PR /	Rel	EBI / Rel	PLI /	Rel	Updated	SPS
			214/	79		5144	4/67	1740	/82				39/	53	25/08/2010	2009
Traits other th	an produ	uction BVs					Р	roduction B	Vs							
Management				-1	1		_	Fat	Protein	M	lilk Vol	Livewt	Fertility	Res Si	Irv Tot Long	SCC
Adaptability to		0.21/85	slowly			quickly		26/83	23/82		18 / 86		-2.7/64	181/6		0.08/8
Shed Tempera		0.20/85				placid		5.0%	4.0%							
Milking speed		0.05 / 80				fast		0.070	1.070							
Overall opinio			undesirable			desirable	P	ediaree							Other Values	
Conformatio			68 dtrs					re	1031	80	VAL DE	N HI APPLAU	ISE-ET SC	PF	NZ HF %	40
Stature	-	0.11/89				tall		am	BDTQ-05		V/ LDL				NZ Jsy %	19
Capacity		0.04 / 86				capacious		G Sire	9941		МІТСН	ELLS LIKABI	ILL S.13		NZ Ayr %	0
Rump angle		-0.12 / 84				sloping		G Dam	BDTQ-03		WITCH				NZ Total %	59
Rump width		-0.22 / 84		-		wide		GG Sire	9832		SDD B	ENTONS HO	TKAT		% White	25
_egs		0.00/69				curved		GG Dam	BDTQ-00		SKD B		I IVAI		Inbreed	1.3
Jdder suppor		0.21/89				strong	IVI	GG Dam	BDTQ-00	-45					Breed 16ths	F12J4
Front udder		-0.12 / 88				strong	_								bleed lotins	F IZJ4
Rear udder		0.09/87				high	C	ther BVs				Single Ge	enes			
Front teat place	omont		wide			close		alving Diff	0.7/5	9 /	157	Cattle Loo		Р	henotype Desc	r
Rear teat place		0.49/88				close		GL	0.770	-7.5	101	A2			2A2	
Udder overall	ement		undesirable			desirable		ody Cond		-0.01		Alpha SI (Casein		-/ (L	
			undesirable			desirable		ouy cona		0.01		Beta Cas				
Dairy conform	ation	0.19787	undesirable			desirable						Beta Lact				
												BLAD	ogiobulin	B	LAD FREE	
												Citrullinae	mia		trullinaemia fre	0
BW and BV H	listory				TOP	History						CVM	anna		VM FREE	c
AE Run	,	Milk		Vol Dtr		Run					TOP Dtr	Factor XI		U		
Date	BW	Volum		V Count	Da		00	UO	DC		Count	Kappa Ca	aain			
11/05/2013	214	318	181	77	11/05		0.37	0.11	0.19		68	Optimum	Isem			
13/04/2013	218	310	146	77	16/02		0.42	0.20	0.28		68	Quantum				
09/03/2013	210	278	140	77	08/12		0.42	0.20	0.20		61					
16/02/2013	204	242	143	77	06/12		0.33	-0.03	0.09		31	Red Factor	or			
12/01/2013	194	242	51	77	12/05		0.33	0.03	0.08		0	Tot Long	Fert Histo	orv		
08/12/2012	204	258	45	77	12/05		0.25	0.09	0.24		0		ate Total I		ertility	
10/11/2012	204	350	45 25	75	10/12		0.26	0.10	0.24		0	26/04/20			-2.7	
27/10/2012	208	350	25	75			0.26	0.12	0.25		0	01/02/20			-1.3	
					08/10							27/04/20			2.4	
13/10/2012 11/05/2013 ^{&}	209 227	355 498	-9	66	16/07		0.28	0.09	0.27		0	27/04/20			2.4	
		498	-9	0	14/05	12011	0.28	0.09	0.27		0	21/01/20	12 32	U	2.0	

506063	ะมา	FOR	THS LO		AN	ĸ	(iwiCross	C C	urrent LI	C Rank 3	Ne	wstead (Centr	e Bull
						3	1/07/2005	5				U	REG	STERE
BW	ae	BW / Re	el BW / Re	el		OAD / Re	el Hi/F	Rel AF	PR / Rel	EBI / Rel	PLI / Rel	Upda	ted	SPS
			244/8	36		5736/7	4 2064	/87		128/22	176/69	25/08/2	2010	2006
Fraits other than pr	oduct	ion BVs					Production B	Vs						
Management	ouuot		-1		1		Fat	Protein	Milk Vol	Livewt Fe	ertility Res	Surv Tot	long	SCC
Adaptability to milk	na 0	11 / 84			quic	kly	25 / 88	21/88	123 / 90				5 / 78	-0.43 / 8
Shed Temperamen		.05 / 84			plac		5.2%	4.1%	1207 00	0700 1.	0///	110 010	,,,,0	-0.4070
Milking speed		0.20 / 79			fast		5.270	4.170						
Overall opinion			undesirable				Pedigree					Other V	/eluce	
Conformation	0	.00704	69 dtrs		ues		Sire	50104		NS LORD NELS	ON	NZ HF		19
Stature	0	.02 / 89			tall		Dam	HXVV-01-		NOOK LAURIE		NZ JSV		37
Capacity		.29 / 86					MG Sire	61636		MARIE IMPRES		NZ Ayr		21
Rump angle			high pins		slop		MG Dam	CFWR-95-		A JUDDS BELLE		NZ Tota		77
Rump width		.00 / 85			wide		MGG Sire	89429		A JODDS BELLI S ADMIRAL	SIRD	% Whit		20
Legs		0.05 / 70			curv		MGG Sire	CFWR-93-		A TAURUS BILL	v	Inbreed		0.5
Jdder support		.34 / 90			stro		MGG Dam	CEWR-93-	198 OKUR	A TAURUS BILL	Ŷ			0.5 F5J7A4
Front udder		.34 / 90			stro							Breed '	oths	F5J/A4
Rear udder		.20/88			high		Other BVs			Single Gene	s			
Front teat placeme		0.10/88			clos		Calving Diff	-2.2 / 99	/ 49.078	Cattle Locus		Phenotype	Descr	
Rear teat placeme		0.10788			clos		SGL		0.4	A2	0000	i nonotype	0000	
Jdder overall			undesirable			irable	Body Cond		.19	Alpha SI Ca	sein	BB		
			undesirable			irable	Body Cond			Beta Caseir		A1B		
Dairy conformation	0	.32/8/	undesirable		des	irable				Beta Lactog		AB		
										BLAD	obuiin	BLAD FRE	F	
										Citrullinaem	ia	citrullinaer		•
BW and BV Histor	V				TOP Histo	orv				CVM	ia	CVM FRE		2
AE Rup		Milk		Vol Dtr	AE Rur	- -		_	TOP Dtr	Factor XI		SVIVITRE	-	
Date	N	Volume	Res Surv	Count	Date	00	OU UO	DC	Count	Kappa Case	in	AB		
11/05/2013 24	4	123	80	81	11/05/201	13 0.00	0.40	0.32	69	Optimum	111	TT		
13/04/2013 24		124	80	81	16/02/201			0.32	69	Quantum		FP		
09/03/2013 22		125	92	81	08/12/201			0.32	69	Red Factor		rP		
16/02/2013 22		123	92	81	06/10/201			0.34	69	Red Factor				
12/01/2013 20		127	84	80	12/05/201			0.34	69	Tot Long / F	ert History			
08/12/2012 20		120	84	80	11/02/201			0.39	69	Extract date		Fertility		
)9)2	120	114	80	10/12/201			0.39	69	26/04/2013		1.8		
27/10/2012 19		129	114	80	08/10/201			0.37	69	01/02/2013		1.8		
	94 94	129	111	80	16/07/201			0.38	69	27/04/2012		1.0		
13/10/2012 13								0.37				1.9		
11/05/20138 25	1	33	101	0	14/05/201	11 0.18	3 0.44		69	27/01/2012	382			

Latest ancestry proof

507036	LY	NSKE	S LAN	CASTE	R	-	(iwiCross 1/08/2006		Curr	ent LIC	Rank	11 No	ewst	ead Cent	re Bulls
BW		aeBW / Re	BW / F	Rel		OAD / Re	el Hi/R	el A	PR /	Rel	EBI / Rel	PLI / Re	el	Updated	SPS
			217/	86		5726/7	4 1735/	/88					2	25/08/2010	2007
raits other th	an produ	uction BVs					Production B	/s							
/lanagement	•		-	.1	1		Fat	Protein	M	ilk Vol	Livewt I	Fertility R	es Su	rv Tot Long	SCC
daptability to		-0.02 / 86 s	lowly	1	aui	ckly	24 / 89	17 / 88		8 / 90			43 / 76		-0.13/8
Shed Tempera		0.00/85 r			pla		5.2%	4.0%		-	-				
Ailking speed		-0.14/80 s			fast		0.270								
Overall opinio	h	-0.05 / 86 L					Pedigree							Other Values	
Conformation		0.00700	74 dtrs		doc		Sire	9941	16	MITCH	ELLS LIKABU	11 8 12		NZ HF %	24
Stature	•	-0.05 / 90 s			tall		Dam	BNTT-02		WITCH		JEL 333		NZ Jsv %	38
apacity		0.19/86 f					MG Sire	9624		ATHO	ENIGMA			NZ JSY % NZ Ayr %	0
Rump angle		0.09/85 h					MG Dam	BNTT-94		ATHOL	ENIGWA			NZ Total %	
										DAL OO					61
tump width		0.06/85 r			wid		MGG Sire	8720		BALSO	MS TAYLOR			% White	0
egs		0.11/70 s					MGG Dam	BNTT-91	-35					Inbreed	0.1
Jdder support		0.17/90 v			stro									Breed 16ths	F7J9
Front udder		0.39/88			stro		0/1 D) /				<u>.</u>				
Rear udder		0.15/88			hig		Other BVs			10.010	Single Ge				
Front teat place	ement				clos		Calving Diff	-1.0/9		19,948	Cattle Loc	us Descr		nenotype Desc	ſ
Rear teat plac	ement	0.16/89 v	vide		clos	se	SGL		-2.5		A2		A2	2A2	
Jdder overall		0.23/83 ι	Indesirable		des	sirable	Body Cond		-0.10		Alpha SI C				
Dairy conform	ation	0.20/87 L	Indesirable		des	sirable					Beta Case	ein			
,											Beta Lacto	oglobulin			
											BLAD		BL	AD FREE	
											Citrullinae	mia	cit	rullinaemia free	Э
BW and BV H	listory				TOP Hist	tory					CVM		C	/M FREE	
AE Run	DW	Milk	Dec C	Vol Dtr	AE Ru	n co	UO			TOP Dtr	Factor XI				
Date	BW	Volume	Res Surv	Count	Date	" 00	00	DC		Count	Kappa Ca	sein			
11/05/2013	217	68	43	90	11/05/20	13 -0.0	5 0.23	0.20)	74	Optimum	0011	TT	-	
13/04/2013	218	70	44	90	16/02/20			0.20		74	Quantum		FF		
09/03/2013	218	70	44	90	08/12/20			0.20		74	Red Facto		ГГ		
16/02/2013	218	70	44	90	06/10/20			0.20		74	Red Facto	1			
12/01/2013	207	70	55	90	12/05/20			0.21		74	Tot Long /	Fert History	_		
08/12/2012	207	72	55	90	11/02/20			0.24		74		te Total Lor		ertility	
10/11/2012	208	73	55	90	10/12/20			0.23		74	26/04/201		9 1	2.4	
											01/02/20			2.4	
27/10/2012	207	74	58	90	08/10/20			0.24		74	27/04/20		-	2.0	
13/10/2012	207	75	58	90	16/07/20			0.24		74				1.7	
11/05/2013&	126	-177	3	0	14/05/20	11 -0.0	2 0.29	0.23		73	27/01/201	12 301		1.7	

508154	PF	RIESTS	SOLAR	RIS-ET		• • •	wiCross 08/2007	Cu	rrent LIC	Rank 1	0 New	stead Centr	
BW		aeBW / Rel	BW / R	el	0,	AD / Rel	Hi / R	el API	R / Rel	EBI / Rel	PLI / Rel	Updated	SPS
			220/ 9	99	56	649/86	2001/	/98		88/10	168/53	25/08/2010	2008
Traits other th	an produ	uction BVs				P	roduction B	√s					
Management			-1	1	1	_	Fat	Protein	Milk Vol	Livewt Fe	ertility Res	Surv Tot Long	SCC
		0.45 / 90 slo	wlv		quickly	v	23/99	18/99	269 / 99		5/98 -84		-0.99/9
Shed Temper		0.42/89 ne			placid		5.0%	3.9%	2007.00	0,00 2	0.00	211700	0.0070
Milking speed		-0.17 / 85 slo			fast		0.070	0.070					
Overall opinic		0.41/90 un			desira	hle D	edigree					Other Values	
Conformatio		0.41700 01	118 dtrs		debird		ire	503041		IS RAMROD		NZ HF %	25
Stature		-0.43 / 93 sn			tall		am	JQXQ-02-1				NZ Jsy %	51
Capacity		1.04 / 91 fra			capac		IG Sire	667072		US JC12		NZ Ayr %	0
Rump angle		-0.36 / 90 hig			slopin		IG Sire	JQXQ-00-1		US JC 12		NZ Ayr %	76
Rump width					wide								
		0.05/90 na					IGG Sire	662033		BI SECRET SH	ELION	% White	50
egs		-0.12 / 78 str			curveo		IGG Dam	MMR-97-18	3			Inbreed	3.1
Jdder suppor	t	0.36 / 93 we			strong							Breed 16ths	F6J10
ront udder		0.30 / 92 100			strong					Cinela Carr	-		
Rear udder		0.54 / 92 lov			high		Other BVs	0.5.(00)	47.570	Single Gene			
Front teat pla		0.20 / 92 wi			close		Calving Diff	-2.5 / 99		Cattle Locus	s Descr	Phenotype Descr	
Rear teat place	ement	0.56 / 92 wi			close		GL		.2	A2			
Jdder overall		0.45 / 88 un			desira	ble E	Body Cond	0.	25	Alpha SI Ca		CC	
Dairy conform	ation	1.01/92 un	desirable		desira	ble				Beta Caseir		A2A2	
										Beta Lactog		AB	
										BLAD		BLAD FREE	
										Citrullinaem	ia	citrullinaemia free	•
	History				TOP History	1				CVM		CVM FREE	
		Milk	Res Surv	Vol Dtr	AE Run	00	UO	DC	TOP Dtr	Factor XI			
AE Run	DW			Count	Date	00	00	DC	Count	Kappa Case	ein	BB	
	BW	Volume						4.04	118	Optimum		TT	
AE Run Date	BW 220	Volume 269	-84	4,752	11/05/2013	0.41	0.45	1.01					
AE Run Date 11/05/2013			-84 -96		11/05/2013 16/02/2013	0.41	0.45	1.01	117			FP	
AE Run Date 11/05/2013 13/04/2013	220	269		4,752						Quantum		FP	
AE Run Date 11/05/2013 13/04/2013 09/03/2013	220 217 222	269 272	-96 -99	4,752 4,711 4,638	16/02/2013 08/12/2012	0.42 0.25	0.44	1.03 1.06	117 97			FP	
AE Run Date 11/05/2013 13/04/2013 09/03/2013 16/02/2013	220 217 222 221	269 272 275 274	-96 -99 -98	4,752 4,711 4,638 4,541	16/02/2013 08/12/2012 06/10/2012	0.42 0.25 0.24	0.44 0.53 0.59	1.03 1.06 1.10	117 97 80	Quantum Red Factor		FP	
AE Run Date 11/05/2013 13/04/2013 09/03/2013 16/02/2013 12/01/2013	220 217 222 221 213	269 272 275 274 275	-96 -99 -98 -72	4,752 4,711 4,638 4,541 4,464	16/02/2013 08/12/2012 06/10/2012 12/05/2012	0.42 0.25 0.24 0.22	0.44 0.53 0.59 0.57	1.03 1.06 1.10 1.09	117 97 80 76	Quantum Red Factor Tot Long / F	ert History		
AE Run Date 11/05/2013 13/04/2013 09/03/2013 16/02/2013 12/01/2013 08/12/2012	220 217 222 221 213 213 215	269 272 275 274 275 274 275 278	-96 -99 -98 -72 -74	4,752 4,711 4,638 4,541 4,464 4,340	16/02/2013 08/12/2012 06/10/2012 12/05/2012 11/02/2012	0.42 0.25 0.24 0.22 0.23	0.44 0.53 0.59 0.57 0.60	1.03 1.06 1.10 1.09 1.06	117 97 80 76 70	Quantum Red Factor Tot Long / F Extract date	ert History Total Long	Fertility	
AE Run Date 11/05/2013 13/04/2013 09/03/2013 16/02/2013 12/01/2013 08/12/2012 10/11/2012	220 217 222 221 213 215 216	269 272 275 274 275 274 275 278 281	-96 -99 -98 -72 -74 -75	4,752 4,711 4,638 4,541 4,464 4,340 3,968	16/02/2013 08/12/2012 06/10/2012 12/05/2012 11/02/2012 10/12/2011	0.42 0.25 0.24 0.22 0.23 0.18	0.44 0.53 0.59 0.57 0.60 0.58	1.03 1.06 1.10 1.09 1.06 0.98	117 97 80 76 70 52	Quantum Red Factor Tot Long / F Extract date 26/04/2013	ert History Total Long 247	Fertility 2.5	
AE Run Date 11/05/2013 13/04/2013 09/03/2013 16/02/2013 12/01/2013 08/12/2012 10/11/2012 27/10/2012	220 217 222 221 213 215 216 219	269 272 275 274 275 278 281 281	-96 -99 -98 -72 -74 -75 -81	4,752 4,711 4,638 4,541 4,464 4,340 3,968 3,484	16/02/2013 08/12/2012 06/10/2012 12/05/2012 11/02/2012 10/12/2011 08/10/2011	0.42 0.25 0.24 0.22 0.23 0.18 0.48	0.44 0.53 0.59 0.57 0.60 0.58 0.71	1.03 1.06 1.10 1.09 1.06 0.98 0.85	117 97 80 76 70 52 28	Quantum Red Factor Tot Long / F Extract date 26/04/2013 01/02/2013	ert History Total Long 247 231	Fertility 2.5 2.4	
Date 11/05/2013 13/04/2013 09/03/2013 16/02/2013 12/01/2013 08/12/2012	220 217 222 221 213 215 216	269 272 275 274 275 274 275 278 281	-96 -99 -98 -72 -74 -75	4,752 4,711 4,638 4,541 4,464 4,340 3,968	16/02/2013 08/12/2012 06/10/2012 12/05/2012 11/02/2012 10/12/2011	0.42 0.25 0.24 0.22 0.23 0.18	0.44 0.53 0.59 0.57 0.60 0.58	1.03 1.06 1.10 1.09 1.06 0.98	117 97 80 76 70 52	Quantum Red Factor Tot Long / F Extract date 26/04/2013	ert History Total Long 247 231 219	Fertility 2.5	

106170	90	PELDHU	DOT O	τλτεςι		2E	Friesiar	1	Cur	rent I I(Rank 4	New	stead Cent	re Bull
100170	Эг	ELDHO	1313	ALESI	VIAN S		16/08/200		oui				AN (SUPPLEM	
BW		aeBW / Rel	BW / Re	el		OAD / R	el Hi/	Rel	APR	/ Rel	EBI / Rel	PLI / Rel	Updated	SPS
			248/8	36		5355/7	74 205	9/88					25/08/2010	2006
raits other th	an nrodi	uction BVs					Production	R\/s						
/anagement	an prou		-1		1		Fat	Prot	toin	Milk Vol *	Livewt * Fe	rtility * Ros	Surv Tot Long	SCC
	milkina	-0.02 / 84 slo		-		iickly	32 / 89	30 /		47 / 90			78 435 / 78	-0.23/8
hed Tempera		-0.05 / 84 ne				acid	4.7%	3.7		41700	02700 0.		400710	0.207
filking speed		0.37 / 79 sl			fa		4.770	3.7	70					
verall opinio	n	0.11/84 ur				sirable	Pedigree						Other Values	
conformation		0.117.04 0	69 dtrs		uc	Sirubic	Sire	1	01046	GRAVS	NAUTILUS S2	c .	NZ HF %	41
tature *	•	-1.06 / 89 sn			ta	1	Dam		V-00-25		NAUTILUS 32	F	NZ Jsy %	6
apacity		0.34 / 86 fra				pacious	MG Sire		93270		S EXCELLENC	v	NZ Ayr %	0
ump angle		-0.19 / 85 hi				oping	MG Dam		V-96-88		5 EXCELLENC	1	NZ Total %	47
ump width		0.35 / 85 na				de	MGG Sire		90274		WSONS BELV		% White	2
egs		0.39 / 70 st				rved	MGG Dam		V-86-52			LDLIKL	Inbreed	0.3
ldder support			eak			rong	NOO Dam	CI IVI	V-00-32				Breed 16ths	F15J1
ront udder		0.18 / 88 10				rong							Dieed Iotiis	1 1331
lear udder		0.04 / 88 10				ah	Other BVs				Single Gene	S		
ront teat place	oment	0.16 / 88 wi				ose	Calving Dif	f -0.	5/99	/ 65.016	Cattle Locus		Phenotype Desc	r
ear teat plac		0.46 / 88 wi				ose	SGL		2.3	3	A2		A1A2	
dder overall	cincin	0.29 / 82 ur				sirable	Body Cond		0.0	0	Alpha SI Ca	sein	BB	
airy conform	ation	0.19/87 ur				sirable					Beta Casein		A2B	
deviated with			laconable		ue	311 4010					Beta Lactog	lobulin	AB	
	in breed										BLAD		BLAD FREE	
											Citrullinaemi	a	citrullinaemia free	e
3W and BV H	listory				TOP His	story					CVM		CVM FREE	•
AE Run	-	Milk		Vol Dtr	AE RI	un o				TOP Dtr	Factor XI		OTMITTLE	
Date	BW	Volume	Res Surv	Count	Date	0	D UC		DC	Count	Kappa Case	in	AB	
11/05/2013	248	792	79	86	11/05/20	013 0.1	1 0.2	9	0.19	69	Optimum		AT	
3/04/2013	249	794	79	85	16/02/20				0.20	69	Quantum		FP	
9/03/2013	249	795	78	85	08/12/20				0.20	69	Red Factor		11	
6/02/2013	250	797	77	85	06/10/20				0.25	69	ited i actor			
2/01/2013	234	799	69	85	12/05/20				0.30	69	Tot Long / Fe	ert History		
8/12/2012	235	800	69	85	11/02/20				0.29	69		Total Long	Fertility *	
10/11/2012	234	802	68	85	10/12/2				0.29	69	26/04/2013	435	5.8	
27/10/2012	234	803	73	85	08/10/2				0.29	69	01/02/2013		5.8	
13/10/2012	232	803	73	85	16/07/2				0.29	69	27/04/2012	435	6.0	
11/05/2012	234	515	51	0	14/05/2				0.29	69	27/01/2012	450	6.0	

âL	Ι	Bull I	Marketing	Report	AE	Run Date	e: 11/05/2	2 013 2	8/05/2013	
109004	VALDEN T	F TREAS	URER-ET	Fr	iesian	Current L	IC Rank		Abb	oattoir
				10/0	06/2008			REGISTERE	D HOLSTEIN-F	RIESIAN
BW	aeBW / Rel	BW / Rel		OAD / Rel	Hi / Rel	APR / Rel	EBI / Rel	PLI / Rel	Updated	SPS
		163/85		1733/73	1574/88				25/08/2010	2009

Traits other than prod	uction BVs				F	Production B	Vs						
Management		-	·1	1		Fat	Protein	Milk Vol *	Livewt	* Fertility	* Res Su	v Tot Long	SCC
Adaptability to milking	0.53 / 89	slowly		quickly		17 / 89	39 / 89	281/91	22 / 92	3.1/73	188 / 74	337/74	0.64 / 87
Shed Temperament	0.55 / 89	nervous		placid		4.2%	3.7%						
Milking speed	0.30/85	slow		fast									
Overall opinion	0.73/89	undesirable		desirab	le F	Pedigree						Other Values	
Conformation		101 dtrs			5	Sire	103505	TELES	S EUON F	IRENZE		NZ HF %	34
Stature *	0.33 / 92	small		tall	0	Dam	PMX-06-18	7 VALDE	N E TREA	SURE-ET S	3F	NZ Jsy %	0
Capacity	0.38 / 90	frail		capacio	us N	MG Sire	101169	WHINL	EA PALAD	IUM ELSTO	D-ET	NZ Ayr %	0
Rump angle	0.12 / 89	high pins		sloping	P	MG Dam	PMX-02-15	0 VALDE	N INGAR 1	THEO-ET S	2F	NZ Total %	34
Rump width	0.90 / 89	narrow		wide	P	MGG Sire	97380	SRB H	ANSENS II	NGMAR		% White	20
Legs	-0.09 / 76	straight		curved	P	MGG Dam	PMX-00-14	5 VALDE	N POSH A	MBERLY-E	Т	Inbreed	2.5
Udder support	0.66 / 92	weak		strong								Breed 16ths	F16
Front udder	0.71/91	loose		strong						-			
Rear udder	0.33 / 91	low		high		Other BVs			Single				
Front teat placement	0.27 / 91	wide		close		Calving Diff	3.9 / 96	/ 3,853		Locus Descr		enotype Desc	r
Rear teat placement	0.52 / 91	wide		close		SGL).8	A2		A1	A2	
Udder overall	0.58 / 87	undesirable		desirab	le	Body Cond	0.	16		6I Casein			
Dairy conformation	0.80/90	undesirable		desirab	le				Beta C				
* deviated within breed	1									actoglobulin			
									BLAD			AD FREE	
									Citrullir	naemia		ullinaemia fre	e
BW and BV History				TOP History					CVM		C/	M FREE	
AE Run BW	Mill		Vol Dtr	AE Run	00	UO	DC	TOP Dtr	Factor				
Date	Volur	ne	Count	Date				Count	Kappa	Casein			
11/05/2012 162	1.02	6 100	127	11/05/2012	0.72	0.59	0.00	101					

Date	DVV	Volume	Res Sulv	Count	Date	00	00	DC	Count	Kappa Casei	n	
11/05/2013	163	1,026	188	137	11/05/2013	0.73	0.58	0.80	101	Optimum		
13/04/2013	165	1,023	156	135	16/02/2013	0.73	0.51	0.77	99	Quantum		
09/03/2013	163	1,020	158	135	08/12/2012	0.79	0.48	0.75	96	Red Factor		
16/02/2013	164	1,017	158	134	06/10/2012	0.56	0.87	0.64	27			
12/01/2013	155	1,018	176	130	12/05/2012	0.38	0.57	0.49	0	Tot Long / Fe	rt History	
08/12/2012	153	1,018	177	129	11/02/2012	0.38	0.58	0.49	0	Extract date	Total Long	Fertility
10/11/2012	162	1,018	175	116	10/12/2011	0.39	0.60	0.52	0	26/04/2013	337	3.1
27/10/2012	162	1,023	180	108	08/10/2011	0.37	0.58	0.52	0	01/02/2013	320	3.3
13/10/2012	164	1,025	179	101	16/07/2011	0.43	0.58	0.51	0	27/04/2012	347	3.6
11/05/2013 ^{&}	216	994	124	0	14/05/2011	0.43	0.58	0.51	0	27/01/2012	332	3.8
Latest ancest	ry proof									01/07/2011	323	5.1

306011		KIIRA (OM LAV	Δ			Jersey		Cu	rent LIC	Rank		Abb	oattoir
000011	0.			^		2	3/07/2005	;					REGISTERED	
BW		aeBW / Re	I BW/F	Rel		OAD / Re	el Hi/F	lel	APR	/ Rel	EBI / Rel	PLI / Rel	Updated	SPS
2	-		138/	88		4374/7	6 1339	/90	165	5/57	192/49	108/59	25/08/2010	2006
Fraits other the		ution D\/o					Production B	10						
Management	in prou			·1	1		Flocuction B	Prote	in	Milk Vol *	Livewt * Fe	rtility * Ros	Surv Tot Long	SCC
Adaptability to	milking	0.08/86				ickly	14 / 91	6/9		310 / 91			/ 81 128 / 81	-0.21/8
Shed Tempera		0.11/86				acid	5.5%	4.2%		010701	00701 4	0700 00	120701	-0.2170
filking speed	morn	0.19/81			fas		5.570	4.27	U					
verall opinior	1		undesirable				Pediaree						Other Values	
onformation		0.107.00	74 dtrs		40		Sire	30	0534	OKURA	MANHATTEN	ET S 13	NZ HF %	0
tature *		0.37/91 9			ta		Dam	CFWR			HEARTS LAVI		NZ Jsv %	56
apacity		0.85/88 f					MG Sire		9485		MS ACE OF HE		NZ Ayr %	0
ump angle		0.13/87					MG Dam	CFWR			ADMIRALS LU		NZ Total %	56
ump width		0.05/87		r	wie		MGG Sire		9429		ADMIRAL		% White	0
egs		0.24 / 75					MGG Dam	DYHY			JIR WAI LASSI	=	Inbreed	5.8
Jdder support		0.38/91				ong	MOO Balli	0	001	2, (1,1,1,0)		-	Breed 16ths	J16
ront udder		0.68/90	oose			ong							2.000 .0000	
lear udder		0.51/89	ow		hic		Other BVs				Single Gene	S		
ront teat plac	ement	0.16/90	wide			se	Calving Diff	-3.0	/ 70	/ 182	Cattle Locus	Descr	Phenotype Descr	
ear teat place	ement	-0.12/90 \	wide		clo	se	SGL		-1.		A2			
Jdder overall		0.61/85 u	undesirable		de	sirable	Body Cond		0.1	0	Alpha SI Ca	sein	BB	
airy conformation	ation	0.58/89 ι	undesirable		de	sirable					Beta Casein		A1A2	
deviated withi											Beta Lactog	lobulin	AB	
											BLAD			
											Citrullinaem	a		
3W and BV H	istory				TOP His						CVM		CVM FREE	
AE Run	BW	Milk	Res Surv	Vol Dtr	AE Ru		UO	C	C	TOP Dtr	Factor XI			
Date	100	Volume		Count	Date			-	50	Count	Kappa Case	in	BB	
11/05/2013	138	-318	69	90	11/05/20				.58	74	Optimum		TT	
13/04/2013	135	-316	67	90	16/02/20				.58	74	Quantum		FP	
09/03/2013	134	-332	69	90	08/12/20				.58	75	Red Factor			
16/02/2013	133	-355 -364	71 32	90	06/10/20				.58	75 75	Tot Long / F	ort History		
12/01/2013	147	-364	29	91 91	12/05/20				.59 .59	75		Total Long	Fertility *	
08/12/2012	150 144	-358	45	91	11/02/20				.59 .60	75	26/04/2013		-4.9	
27/10/2012	144	-357	45	91	08/10/20				.60 .59	75	01/02/2013		-4.9	
13/10/2012	144	-357	45	91	16/07/20				.59 .53	75	27/04/2012		-2.6	
13/10/2012 11/05/2013&	220	-356	-108	0	16/07/20				.53 .53	75	27/04/2012		-2.8	
Latest ancest			-108	U	14/05/20	0.10	0.01	0.	.55	15	01/07/2011	138	-1.1	

Bull Marketing Report

AE Run Date: 11/05/2013

28/05/2013

308066 F	PUKETA	WA MIN	S SUP	ERNO\	/A	Jersey		Curr	ent L	IC Rank		A	obattoir
					7	08/2007						REGISTERE	D JERSE
BW	aeBW / R	el BW / F	Rel		OAD / Rel	Hi / F	Rel	APR /	Rel	EBI / Rel	PLI / Rel	Updated	SPS
		167/	98		5775/86	5 1436	/99			259/37	153/56	25/08/201	0 2008
Traits other than pr	oduction BVs				F	Production B	Vs						
Management			1	1		Fat	Protei	n M	lilk Vol	* Livewt *	Fortility * Res	Surv Tot Lon	a SCC
Adaptability to milki	na 0.44/94				uickly	26 / 99	3 / 99		77 / 99			/ 96 256 / 96	
Shed Temperamen					acid	5.7%	4.0%				2.0700 00	200700	0.117
Ailking speed	0.28/91				ist	0.770	4.070						
Overall opinion		undesirable				Pediaree						Other Value	s
Conformation		222 dtrs				Sire	300	011	W/ILLI	AMS MINSTRE	=1	NZ HF %	0
Stature *	0.13/96			ta		Dam	BHYD-			TAWA OM SER		NZ Jsy %	71
Capacity	0.43 / 95					/G Sire		534		RA MANHATTE		NZ Ayr %	0
Rump angle	-0.04 / 94					/IG Dam	BHYD-			TAWA GLO SI		NZ Total %	71
Rump width	0.07 / 94		- 1			AGG Sire		451		MING SS FOF		% White	0
.egs	-0.06 / 86					/IGG Dam	XKC-9			AIG ADMIRAL		Inbreed	4.9
Jdder support	0.38 / 96				rong	NOO Duin	7110-01	- 141	T LIN		0021000	Breed 16ths	
Front udder	0.34 / 96				rong							Dicca folla	010
Rear udder	0.71/96				gh	Other BVs				Single Ge	nes		
Front teat placeme					ose	Calving Diff	-2.9	98 /	7,666	Cattle Loc	us Descr	Phenotype Des	scr
Rear teat placemer						SGL		-3.4		A2			
Jdder overall		undesirable				Body Cond		0.14		Alpha SI C	Casein	BC	
Dairy conformation		undesirable			esirable					Beta Case	ein	A1A2	
deviated within bre		anaconabic		ŭ	contable					Beta Lacto	palobulin	AA	
	,cu									BLAD	0		
										Citrullinae	mia		
BW and BV Histor	Y			TOP Hi	story					CVM		CVM FREE	
AE Run B	Milk	Res Surv	Vol Dtr	AE R	un oo	UO	D	~	TOP Dt				
Date	V Volun	ne Res Surv	Count	Date	e 00	00	D		Count		sein	BB	
11/05/2013 16	67 -251	66	2,162	11/05/2	013 0.55	0.60	0.4	11	222	Optimum		TT	
13/04/2013 16	-247	53	2,150	16/02/2	013 0.55	0.60	0.4	12	223	Quantum		FF	
09/03/2013 17	75 -242	2 49	2,133	08/12/2	012 0.64	0.67	0.4	11	202	Red Facto	r		
16/02/2013 18	-229	43	2,095	06/10/2	012 0.47	0.67	0.4	13	105		-		
12/01/2013 18	-215	5 -38	2,075	12/05/2	012 0.52	0.71	0.4	18	100	Tot Long /	Fert History		
08/12/2012 18	38 -207	-38	2,014	11/02/2	012 0.53	0.68	0.4	18	98	Extract da	te Total Long	Fertility *	
10/11/2012 19			1,861	10/12/2		0.58	0.4		83	26/04/20	13 256	-2.0	
27/10/2012 19			1,673	08/10/2		0.77	0.5		36	01/02/20	13 248	-2.0	
13/10/2012 19			1,208	16/07/2		0.46	0.4		0	27/04/201	12 227	-0.1	
11/05/2013& 22			0	14/05/2		0.46	0.4		0	27/01/20	12 213	-0.1	
Latest ancestry pr					0.24	0.40	0	-	•	01/07/20		2.1	

LIC

200020	т۸								Jersey	<u>م</u>	urre	ontil	C Rank	14 N		tead Cent	
309030	IA	WA G	RU	VERF	RC TAN	A			Jersey 2/08/2008	-	urre		C Rank	14 ING			
								1	2/08/2008)					R	EGISTERED	
BW	á	aeBW / R	el	BW / Re	el		0	AD / Re	el Hi/R	el Al	PR /	Rel	EBI / Rel	PLI / Re	el	Updated	SPS
				191/7	'9		6	359/6	7 1636	/83						25/08/2010	2009
Traits other than p	rodu	ction BVs							Production B	/s							
Management	loue			-1		1			Fat	Protein	М	ilk Vol *	Livewt *	Fertility * R	es Su	rv Tot Long	SCC
Adaptability to mil	kina	0.30/86	slow	lv .			quick	v	11 / 83	3/83		1/86			33 / 66		-0.08 / 8
Shed Temperame		0.30 / 86					placid		5.8%	4.4%	-						
Milking speed		-0.01 / 81					fast		0.070	4.470							
Overall opinion		0.38 / 86					desira	able	Pedigree							Other Values	
Conformation		0.007.00		75 dtrs			acont		Sire	30302	a	KIRKS	RI CHARISM	A ET GR		NZ HF %	0
Stature *		-0.11/90					tall		Dam	CVVK-03-			GROVE ACES			NZ Jsy %	82
Capacity		0.73/87					capad		MG Sire	9948			MS ACE OF I			NZ Ayr %	02
Rump angle		-0.18 / 86		nins			slopin		MG Dam	CVVK-00-			GROVE QUE			NZ Total %	82
Rump width		-0.23 / 85					wide		MGG Sire	9546			EN YABBA DA			% White	02
_egs			strai				curve		MGG Dam	CVVK-98-	-		GROVE OCH			Inbreed	4.6
Udder support		0.44 / 90					strong		NGG Dam	CVVIC-90-	-75	IAWA	GROVE OCH			Breed 16ths	4.0 J16
Front udder		0.80/89					strong									Breed Tours	310
Rear udder		0.43/88		5			high	9	Other BVs				Single Ge	nes			
Front teat placem	nt	0.05 / 89					close		Calving Diff	-3.3/6	1 /	165	Cattle Loc		P	nenotype Desci	r
Rear teat placeme		-0.16 / 89					close		SGL		-5.1		A2			2A2	
Udder overall	an.	0.81/83					desira	blo	Body Cond		0.00		Alpha SI C	Casein			
Dairy conformatio		0.66 / 88					desira						Beta Case				
deviated within b		0.00700	unue	silable			uesira	able					Beta Lacto		-		
deviated within b	eeu												BLAD	ogroballit	BI	AD FREE	
													Citrullinae	mia		ADTINEE	
BW and BV Histo	rv					TOF	P Histor	v					CVM	inna	C	VM FREE	
AE Rup		Milk		_	Vol Dtr		E Run					TOP Dtr	Factor XI		0		
Date	8W	Volum		Res Surv	Count		Date	00	UO	DC		Count	Kappa Ca	sein			
11/05/2013	91	-587		83	78	11/0	5/2013	0.38	0.81	0.66		75	Optimum	136111			
	92	-572		103	77		2/2013			0.63	-	71	Quantum				
	97	-550		93	77		2/2012			0.64		66	Red Facto	or.	_		
	09	-450		71	73		0/2012			0.48		27	Reu Facil	71			
	98	-423		-131	73		5/2012			0.33	-	0	Tot Long /	Fert History			
	98	-386		-135	73		2/2012			0.33	-	0		ate Total Lor	a F	ertility *	
	47	-558		-61	67		2/2012	0.35		0.34		0	26/04/20			-1.6	
	48	-560		-65	62		0/2011	0.33		0.37		0	01/02/20			-1.9	
	49	-561		-64	61		07/2011	0.30		0.38	-	0	27/04/20			2.2	
	49	-762		-38	0		5/2011	0.30		0.38		0	27/01/20			2.3	
11.00/2010	-10	-102		-00	0	1-4/0	012011	0.00	0.74	0.00		0	01/07/20	11 132		1.6	