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ABSTRACT In this study, we conducted a bibliometric analysis and comprehensive review of the studies
published between the period of 2012 and 2022 on resource management in internet of things (IoT)
networks using the Scopus database to determine the current state of research and gain insight into the
research challenges and opportunities in the field. The bibliometric analysis technique was employed to
bibliometrically analyze the published studies that were collected from the Scopus database and this helped
to discover the majority of research subjects in the field of resource management in IoT networks. Following
this, we conducted a comprehensive review of the relevant studies to provide an insight into the recent
progress and the research gaps in the field. According to the results of our bibliometric analysis and the
comprehensive review, we discovered that resource management problems in IoT networks is still a growing
challenge as a result of the limited available resources for operating IoT networks. Resource management
problem is a critical research area due to the advantages of IoT in terms of collecting vital data that could be
used in analyzing and predicting human behavior as well as environmental conditions. Also, the results of
our bibliometric analysis and comprehensive review further revealed that research on the use of conventional
artificial intelligence techniques, such as optimization approaches and game theory approaches, for resource
management are common, while research on the use of the modern artificial intelligence technique, like
deep learning approaches, is less common. Therefore, this study aims to fill the research gap in the area of
resource management in IoT networks by introducing the use of deep learning approaches. Deep learning is a
powerful artificial intelligencemethod that is advantageous for obtaining low-complexity resource allocation
solutions in a near real-time. Also, various open research issues that are associated with the use of deep
learning approaches are highlighted as future research directions to enable the development of novel deep
learning models for IoT networks.

22

23

INDEX TERMS Internet of Things, resource management, resource allocation, artificial intelligence, game
theory, optimization theory, machine learning, deep learning, bibliometric analysis.

I. INTRODUCTION24

Internet of Things (IoT) networks are useful for collect-25

ing vital data that could be used to analyze and predict26

human behavior, agricultural phenomena (e.g., plant disease27

detection, plant recognition, crop yield estimation), and envi-28

ronmental conditions (e.g., weather). Consequently, they29
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have been widely deployed in various daily activities to 30

achieve a smart world in several critical applications such 31

as smart environment, smart health, smart agriculture, smart 32

city, and smart industries [1], [2]. These applications are 33

bandwidth intensive, power consumers, and sensitive to data 34

transmission delay because of the big data they generate and 35

the need for real-time data transmission requirement. 36

The IoT networks use devices (e.g., smart phones, drones, 37

smart sensors, and smart cars) that are characterized by high 38
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throughput, low data transmission delay, and long battery39

lifetime to satisfy different critical application requirements.40

Unfortunately, the IoT networks are resource-constrained41

technologies with limited battery power resources, limited42

computational resources (e.g., power, time, and memory),43

and limited storage resources at the device level. Also, at the44

radio / network level, they have limited bandwidth, channel,45

spectrum, and transmit power resources [1], [3]. The limited46

device resources are typically costly to acquire, for example47

the cost of acquiring new in-built batteries for a large number48

of devices after deployment is significantly highwhile battery49

replacement is impractical and inefficient in some use-cases50

(e.g., implanted biomedical devices). Similarly, their radio51

resources are also costly to acquire, for example the cost52

of procuring new radio resources (e.g., spectrum) is signifi-53

cantly high [1]. Consequently, because of these limitations,54

the prolong battery lifetime, low data transmission delay,55

and high throughput requirements of the various critical IoT56

applications may not be easy to achieve. Therefore, the scarce57

resources of IoT networks need to be strictly managed to58

satisfy the stringent requirements of the IoT applications59

to increase throughput, reduce data transmission delay, and60

increase their battery lifetime.61

For the reasons highlighted above and towards a successful62

implementation of the IoT technologies in different critical63

applications, researchers in this field have considered the use64

of different artificial intelligence techniques such as opti-65

mization approaches and game theory approaches in many66

IoT applications to develop resource management schemes67

to manage power, bandwidth, and computational resources in68

order to optimize the power requirements of devices, increase69

throughput, and reduce data transmission delay. However,70

the resource management solutions that are based on opti-71

mization and game theory approaches typically have high72

computations. Other researchers have combined computing73

technologies (e.g., cloud computing and fog computing) with74

IoT to improve on the limited power and bandwidth resources75

concerns by offloading the computation task of the IoT76

devices to the cloud systems or fog systems. But then, this77

has resulted to an increased computational complexity and78

cost because of the problem of how to optimally allocate the79

computational resources of the cloud and fog computing to80

the IoT devices [4]. Also, both cloud and fog computing are81

still developing technologies with several resource allocation82

issues [4].83

Due to the scarce resources necessary to drive the IoT84

networks in different time-critical applications [4], there is85

a need to improve the performance of the IoT networks.86

In addition, there is a need to improve on the shortcomings87

of most of the solutions obtained to the resource management88

problem formulations for IoT networks, which calls for more89

intensified research efforts. Therefore, this paper presents90

the major resource management challenges of IoT networks,91

review different artificial intelligence methods like optimiza-92

tion theory approaches, deep learning approaches, game the-93

ory approaches, as well as their benefits and disadvantages,94

to assist researchers who are interested in this research area. 95

Also, this papermotivates the use of deep learning approaches 96

for solving major resource allocation problems in the IoT net- 97

works to improve on the computational complexity problems 98

of the optimization theory and game theory approaches. Deep 99

learning is a powerful modern artificial intelligence method 100

that is advantageous for obtaining low-complexity resource 101

allocation solutions compared to other artificial intelligence 102

methods such as optimization, machine learning (ML), and 103

game theory. Moreover, this paper is closed with the pre- 104

sentation of some research challenges and future research 105

directions to develop new sophisticated resourcemanagement 106

algorithms for IoT networks using deep learning. Following 107

these efforts, the major contributions of this paper are pre- 108

sented as follows: 109

1) We provide a bibliometric analysis of the studies 110

published on resource management in IoT networks 111

between the period of 2012 and 2022. 112

2) We provide a comprehensive review of optimization, 113

deep learning, and game theory approaches in wireless 114

IoT networks, along with their benefits and disadvan- 115

tages. We also provide a comprehensive review and 116

analysis of the resource allocation solutions that are 117

based on game theory, optimization, and deep learning 118

approaches for IoT networks. 119

3) The performance comparison of resource allocation 120

solutions using deep learning theory, game theory, and 121

optimization theory approaches in IoT networks was 122

presented. 123

4) The provision of future research directions for develop- 124

ing novel resource allocation approaches for IoT net- 125

works based on the promises inherent in deep learning. 126

The details about the structuring of this work are pro- 127

vided as follows. Section II presents the research design and 128

methodology of this study. Section III presents a discussion 129

on the benefits of IoT networks and resource management 130

challenges associated with IoT networks. Section IV presents 131

a review of key optimization approaches that could be used 132

to seek solutions to resource management challenges in IoT 133

networks. Section V presents a review on the basics and 134

use of deep learning to improve the resource management 135

challenges in IoT networks. Section VI presents a review 136

on the examples of the game theory approaches used for 137

solving resource management challenges in IoT networks. 138

In Section VII, the comparison of game theory, deep learning, 139

and optimization theory approaches is presented. SectionVIII 140

presents the major challenges associated with the use of deep 141

learning approaches for solving resource management prob- 142

lems in IoT networks and the key future research directions. 143

Section IX concludes this study. 144

II. RESEARCH DESIGN AND METHODOLOGY 145

The review technique employed in this study entails three 146

phases. They are (1) the data collection phase, (2) the bib- 147

liometric analysis phase, and (3) the comprehensive review 148

and analysis phase. 149
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FIGURE 1. Cluster analysis of the studies published on resource management in IoT
networks.

FIGURE 2. Density analysis of the studies published on resource management in IoT networks.

FIGURE 3. Timeline analysis of the studies published on resource management in IoT networks.

A. DATA COLLECTION OF RELEVANT STUDIES150

This phase involves the collection of studies that are relevant151

to resource management in IoT networks. To achieve this,152

the guideline proposed in [5] was followed. Consequently, 153

the published studies related to resource management in IoT 154

networks were collected from the standard Scopus database. 155
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The Scopus database was used in this study because it156

contains the journal articles published in important scien-157

tific databases such as IEEE Xplore and ScienceDirect [5].158

In the Scopus search engine, we input the search string such159

as ‘‘resource management’’ AND ‘‘Internet of Things’’ to160

retrieve the studies published between 2012 and 2022. Also,161

various inclusion and exclusion criteria, such as Literature162

Type (Articles and Review) and Language (English), were163

applied to reduce unrelated studies. The essence of this phase164

was to thoroughly screen and select the important relevant165

articles for a comprehensive review. Based on this effort,166

14 articles relevant for the scope of this study were selected.167

These articles are comprehensively reviewed and analyzed168

during the third phase.169

B. BIBLIOMETRIC ANALYSIS OF RELATED RESEARCH170

This phase was used to bibliometrically analyze the collected171

raw data of published studies from the Scopus database using172

the keywords cluster, density, and timeline analysis as con-173

ducted in [6]. For this to be achieved, the VOSviewer [7]174

software was employed to analyze the knowledge domain of175

the collected articles using the search terms (keywords, titles,176

and abstracts), type of analysis (co-occurrence), and counting177

method (full counting). The results of the bibliometric anal-178

yses allow researchers to understand the relationships among179

the frequency of the co-occurring keywords in the collected180

articles, and also to understand the core future research direc-181

tions of the topics in a field.182

The keywords cluster analysis of the collected published183

studies on resource management in IoT networks is presented184

in Figure 1. The figure reveals how a collection of keywords185

is grouped into various clusters that include nodes, links,186

and colors. The size of the nodes indicates the frequency of187

co-occurrence, the links indicate the co-reference, and the188

different colors identify individual clusters.189

In Figure 1, there are three major clusters, which are190

presented as green, red, and blue. The clusters indicate191

how strong is the connection between the keywords in192

the published studies. The red cluster denotes ‘‘manage-193

ment’’ and has been a major research focus in the area194

of resource management and IoT networks. This cluster195

revealed a strong connection with ‘‘research’’, ‘‘develop-196

ment’’, ‘‘control’’, ‘‘industry’’, ‘‘review’’, ‘‘survey’’, ‘‘health-197

care’’, ‘‘water’’, and ‘‘energy management’’. This implies198

that ‘‘management’’ subject has been an important focus199

of the studies published on resource management and IoT200

networks between 2012 and 2022. The green cluster rep-201

resents ‘‘algorithm’’. This cluster is strongly linked with202

different subjects such as ‘‘resource allocation’’, ‘‘optimiza-203

tion problem’’, ‘‘iiot’’, ‘‘energy’’, ‘‘price’’, ‘‘rate’’, ‘‘power’’,204

‘‘energy efficiency’’, ‘‘power allocation’’, ‘‘sensor node’’,205

‘‘non convex’’, and ‘‘joint optimization’’. The ‘‘algorithm’’206

cluster revealed that research on seeking solutions to resource207

allocation issues in IoT using optimization approaches and208

game theory approaches are common. However, research on209

the use of deep learning approaches is less common. This210

research gap provides a scope for more research efforts on the 211

use of deep learning approaches to improve resource man- 212

agement in IoT networks. The blue cluster denotes ‘‘cloud 213

computing’’. The blue cluster is strongly linked with ‘‘fog 214

computing’’, ‘‘computing resource’’, ‘‘fog node’’, ‘‘mobile 215

device’’, ‘‘genetic algorithm’’, and ‘‘fog computing environ- 216

ment’’. The cluster revealed that research interests in the 217

use of computing technologies for resource management in 218

IoT are less popular due to the complexity of allocating the 219

computing resources of such technologies to the IoT devices. 220

The blue cluster further revealed the use of optimization 221

approaches, like genetic algorithm, to compute the alloca- 222

tion of the computing resources of fog computing. It is also 223

important to point out that the clusters are strongly linked 224

with ‘‘management’’. This is an indication that ‘‘manage- 225

ment’’ is a popular and leading research in the published 226

studies over the last decade. Additionally, this reveals that 227

‘‘management’’ is a major research area in IoT towards 228

addressing the resource management challenges associated 229

with IoT. 230

The keywords density analysis of the collected published 231

studies on resource management in IoT networks is presented 232

in Figure 2. The figure reveals the number of times that the 233

keywords in the search string manifested in the published 234

studies over the period of 2012 and 2022. The results of the 235

keywords density analysis also confirm the outcomes of the 236

cluster analysis. 237

The timeline analysis of the published studies between the 238

period of 2012 and 2022 on resource management in IoT 239

networks is shown in Figure 3. The figure shows the visu- 240

alization of the mapping of keywords unto the color-coded 241

timespan of the studies that were conducted between the 242

period of 2012 and 2022. 243

Figure 3 further reveals the changes in the direction of 244

research focus between the period of 2012 and 2022. This 245

indicates that within the timeline, more studies focus on the 246

use of optimization approaches for resource management in 247

IoT networks while some studies also focus on the use of 248

game theory approaches for resource management in IoT 249

networks. 250

Therefore, according to the results of our bibliometric 251

analysis of the studies published between the period of 252

2012 and 2022, resource management in IoT networks is 253

still a growing challenge as a result of the limited avail- 254

able resources for operating IoT networks. Consequently, 255

the resource management problem is a critical research area 256

due to the advantages of IoT in the context of collecting 257

vital data that are useful for analyzing and predicting human 258

behavior as well as environmental conditions related to air 259

quality, water quality, and weather. Also, the results of our 260

bibliometric analysis revealed that research on the use of 261

artificial techniques, such as optimization approaches and 262

game theory approaches, for resource management are com- 263

mon while research on the use of artificial intelligence, 264

like deep learning approaches, is less common. Based on 265

the results of the bibliometric analysis, we were able to 266
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TABLE 1. Comparison with the existing related studies.

VOLUME 10, 2022 94695



S. O. Olatinwo, T.-H. Joubert: DL for Resource Management in IoT Networks

TABLE 1. (Continued.) Comparison with the existing related studies.

determine the best relevant studies and present a compre-267

hensive review and analysis of the studies in the following268

section.269

C. COMPREHENSIVE REVIEW OF RELATED RESEARCH 270

In this phase, we provide in Table 1 a comprehen- 271

sive review and analysis of the collected relevant papers 272
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on resource management challenges and artificial intel-273

ligence approaches in the IoT networks. Examples274

include [1], [2], [8], [9], [10], [11], [12], [13], [14], [15], [16],275

[17], [18], [19]. Also, in Table 1, we provide a comparative276

analysis of this study and the existing related studies.277

To complement the existing studies, we focus this study on278

the major resource management challenges in IoT networks.279

Also, different from the existing surveys that have consid-280

ered the use of either game theory, deep learning theory,281

or optimization theory to seek solutions to either the power282

resource management, channel resource management, band-283

width resource management, spectrum resource management284

or computational resource management problems in IoT net-285

works, our work covers a comprehensive review of the use286

of optimization approaches, game theory approaches, and287

deep learning approaches for seeking solutions to the major288

resource management challenges in IoT, including bandwidth289

resource management, power resource management, chan-290

nel resource management, spectrum resource management,291

and computational resource management. Also, their advan-292

tages, disadvantages, and their proposed resource allocation293

solutions for IoT networks, are discussed. Table 1 present the294

comparison of this work and the existing related studies.295

III. IoT NETWORKS: BENEFITS AND RESOURCE296

MANAGEMENT CHALLENGES297

In this section, we discuss the benefits of IoT in various298

applications. We also discuss the inherent resource manage-299

ment issues in the IoT networks. To address different resource300

management issues in IoT networks, we study different301

recent approaches for solving resource allocation problems,302

their advantages and disadvantages. We also compare the303

approaches and provide different future research directions304

for the use of deep learning approaches for resource manage-305

ment in IoT.306

A. BENEFITS OF IoT IN REAL-LIFE APPLICATIONS307

IoT is an appealing technology for addressing different appli-308

cation challenges. It enables real-life applications to be smart309

by connecting several smart devices (e.g., sensors and actu-310

ators) together through the internet to make the devices and311

their data accessible ubiquitously [20] and [21]. Also, it lever-312

ages the devices to collect, compute, and transmit data for313

decision-making purposes.314

To transmit data to remote locations at the application315

layer, the IoT employs different types of communication316

protocols to enable the exchange of data between a specific317

application and the end-users [22], [23]. The application318

layer communication protocols used in IoT are based on319

the exclusive-pair, publish-subscribe, request-response, and320

the push-pull communication model [24]. The exclusive-pair321

communication model provides a continuous bidirectional322

full-duplex communication setup between a client and a323

server. An example of an exclusive-pair protocol is the324

WebSocket protocol. The publish-subscribe communication325

model entails a data publisher, a data consumer, and a data326

broker. The data publisher represents the data source, the 327

data broker performs the role of receiving data for a topic 328

published by the publisher while the data consumer performs 329

the role of subscribing to the topics managed from the broker. 330

Some examples of the publish-subscribe protocols include 331

AMQP and MQTT. The request-response model provides a 332

stateless bidirectional communication setup between a client 333

and a server where the client sends a request to the server and 334

the server provides a response to the request. Some examples 335

of the request-response communication protocols include 336

XMPP and RESTful HTTP. The push-pull communication 337

model entails a data publisher that pushes its data into a data 338

queue and a data consumer that pulls the published data from 339

the data queue. An example includes a queue-based protocol. 340

The use of IoT technology is vital to everyday human 341

activities. Such activities can be classified into several areas, 342

including smart industries, smart environment, smart city, and 343

smart health [1], [21]. 344

Examples of the IoT applications under the class of smart 345

industries are water industry [25], automatic interactions 346

among machines [26], quality control, inventory tracking, 347

logistics and supply chain, packaging optimization, and pro- 348

duction on demand [27], [28]. Examples of the IoT applica- 349

tions under the category of smart environment are smart water 350

quality sensing [29], [30], [31], [32], [33], [34], [35], smart 351

agriculture [36], [37], [38], [39], smart industrial plants, smart 352

lighting [40], [41], [42], smart homes [43], [44], [45], [46], 353

and smart water supply [47], [48], [49], [50], [51]. Exam- 354

ples of the IoT applications under the category of smart 355

health [52], [53], [54], [55] include the monitoring of 356

the organs or health conditions of a patient, remote 357

surgery, diagnosing a patient’s health condition(s), authenti- 358

cation of patients, and making real-time information about 359

a patient’s health condition available to the appropriate 360

remote healthcare centers [56], [57]. Examples of the IoT 361

applications under the class of smart city include intel- 362

ligent transportation [58], [59], [60], [61], [62], assisted 363

driving [63] and [64], passenger services, logistic ser- 364

vices [65] and [66], car parking and counting [67], [68], 365

[69], [70], fleet management [71], [72], [73], emergency 366

reporting services [74], [75], [76], and intelligent traffic 367

control [77], [78], [79]. 368

For instance, in smart water quality sensing and water 369

supply applications, IoT technology could assist to efficiently 370

monitor changes in water quality, control the distribution 371

of clean water for various consumption uses, guarantee the 372

safety of the public health since it helps to increase access to 373

clean water, and prevents the distribution of unclean water to 374

the public. 375

In smart industries, under the concept of Industry 4.0, IoT 376

technology could be leveraged to monitor andmanage several 377

industrial applications and processes by connecting machines 378

that combine different sensor devices to a central system to 379

allow visualization and decision activities. 380

An important implementation goal for devices in IoT 381

application networks is small size. The devices consist of 382
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sensors, processors, communication radios, and batteries that383

are used for sensing, processing, transmission, and power384

supply operations, respectively. Because of the small size385

of the devices, they only have space to accommodate tiny386

batteries with limited battery power. They use standard radios387

with a limited bandwidth for wireless communication chan-388

nels, and processors with a limited processing speed and389

storage constraints. These limitations have made the study of390

resource management an essential research focus for IoT net-391

works to efficiently manage the scarce resources–typically,392

power, bandwidth, and time–and to improve the network393

performance of critical real-life applications.394

B. RESOURCE MANAGEMENT CHALLENGES395

IN IoT NETWORKS396

This section discusses the major resource management chal-397

lenges that currently confronts the performance of the IoT398

networks. Figure 4 describes the major challenges in IoT399

networks. The resource management challenges described in400

Figure 4 are discussed as follows.401

1) POWER RESOURCE MANAGEMENT402

One of the major issues to address while implementing IoT403

networks for different critical applications is the problem404

of power management due to the limited power resources405

of IoT devices. The IoT devices deployed in various appli-406

cations run on battery. Most times, it may be impractical,407

inefficient, and costly to replace the in-built batteries of the408

devices after deployment. Unfortunately, once the battery409

power of these devices is drained, it becomes impossible for410

the network to sense and communicate their measurements411

to remote locations. Also, many of the sensing field areas are412

off a conventional power grid [80]. Consequently, it may be413

impossible to supply the necessary power required to satisfy414

the communications bandwidth and latency (or transmission415

delay) requirements of different applications since data sam-416

pling rate is application-dependent [81]. The objective of417

power resource management is to achieve a minimum energy418

consumption and a maximum energy efficiency to improve419

the performance of IoT networks. Hence, sophisticated power420

management algorithms are needed to optimize the power421

requirements of IoT devices to reduce energy consumption,422

extend device lifetime, and improve the energy efficiency of423

the network on the basis of the limited power resources.424

2) COMPUTATIONAL RESOURCE MANAGEMENT425

Typically, various critical applications such as the industrial426

IoT (IIoT) and the internet of medical things require real-427

time data processing and minimal data transmission delay.428

To achieve this, the objective of the computational resource429

management is to efficiently minimize computations such as430

the computational time (i.e., delay) and the computational431

power. Hence, the computational resource management is432

essential to minimize the amount of time used by devices433

while sending their critical data. This is due to the nature of434

the data of critical applications and the need to ensure the435

safety of lives. As a result, critical application data needs 436

to be communicated timeously to the appropriate quarters to 437

aid quick decisions. To support the data latency requirements 438

of different devices with low computational power, effi- 439

cient computational resource management algorithms must 440

be developed to improve the latency performance in critical 441

IoT applications. 442

3) BANDWIDTH RESOURCE MANAGEMENT 443

The devices deployed in various critical IoT applications are 444

mostly heterogeneous in nature due to the increasing use of 445

different detected parameters in sensor fusion applications. 446

This results in heterogeneous traffic with different throughput 447

requirements. Bandwidth is a scarce resource in IoT appli- 448

cations due to limited available electromagnetic spectrum, 449

but further depends on the transmit power as another scarce 450

resource. The objective of bandwidth resource management 451

is to increase the achievable throughput of the IoT devices 452

in the IoT networks to improve their data transmission per- 453

formance. Since bandwidth determines the data transmission 454

capacity (i.e., throughput) of a wireless channel according to 455

Shannon’s equation [82], [83], efficient bandwidth resource 456

management algorithms will contribute to supporting the 457

throughput requirements of different devices. 458

4) CHANNEL RESOURCE MANAGEMENT 459

The channel is a communication medium that is used by the 460

devices in an IoT network to exchange control messages and 461

packets in the downlink channel and uplink channel, respec- 462

tively. The control message from a base station device is used 463

to schedule the IoT sensor devices to transmit their packets 464

to the base station over the uplink channel [84]. Due to the 465

limited channel resource and the quantum number of IoT 466

devices that want to use the channel, the objective of chan- 467

nel resource management is to prioritize control messages 468

as well as manage (control) the channel. Channel resource 469

management can be achieved by formulating the channel 470

resources as a resource allocation problem and solve using 471

different artificial intelligence techniques. Furthermore, the 472

IoT networks may integrate various devices that wants to 473

sense and communicate critical data to the base station. As a 474

consequence, for proper utilization of the channel it is very 475

important to design different access management schemes 476

to manage the devices channel utilization process to pre- 477

vent problems like access collision, energy wastage, energy 478

consumption, and delay. For example, it is well established 479

that significant energy is mostly expended by IoT devices 480

during data communication due to several factors, includ- 481

ing the wireless channel conditions causing congestions and 482

collisions. Hence, another objective of the channel resource 483

management is to manage how the IoT devices can efficiently 484

access the channel. 485

5) SPECTRUM RESOURCE MANAGEMENT 486

Spectrum is a scarce wireless communication resource that 487

is mostly shared by the unlicensed the IoT devices, which 488
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FIGURE 4. Resource management challenges in IoT networks.

does not have an exclusive right to licensed band of the489

spectrum, with the licensed devices. Because of the limited490

available spectrum, spectrum resource management has been491

a growing problem because of the growing increase in the492

number of spectrum uses.493

Also, because of the increasing demands and competition494

for the limited spectrum resources by the IoT devices, the495

objective of spectrum resource management is to manage496

and improve the use of the limited spectrum resource to497

avoid a collision problem. This helps to improve the spectrum498

efficiency performance of an IoT network.499

IV. A REVIEW OF OPTIMIZATION THEORY APPROACHES500

FOR RESOURCE MANAGEMENT CHALLENGES501

IN IoT NETWORKS502

Optimization approaches are powerful operation research503

tools that have been exploited by researchers to develop504

resource management techniques for IoT networks. The505

examples of such approaches are based on convex pro-506

gramming, heuristic programming, and meta-heuristic507

programming. These approaches, their applications, advan-508

tages, disadvantages, and their resource allocation solutions509

for IoT networks are briefly reviewed in this section.510

A. CONVEX OPTIMIZATION APPROACHES511

Convex optimization approaches involve the use of linear512

programming methods (e.g., simplex method and interior513

method) to solve resourcemanagement problem formulations514

that could be proven to be convex in nature using techniques515

like partial derivatives and Lagrangian [2]. The implication516

of this is that convex optimization approaches can only be517

applied to IoT network resource management problems if the518

convexity of formulated problems as an optimization problem519

could be established. When convex optimization approaches 520

are employed to solve IoT networks resource management 521

problems, optimal solutions are typically obtained to such 522

problems. 523

In literature, convex optimization approaches have been 524

developed for solving resource management problems related 525

to wireless IoT networks. A good example is presented in [85] 526

where an interior method-based resource allocation algorithm 527

was proposed to jointly solve power and transmission time 528

allocation problems in IIoT to compute optimal power and 529

transmission time solutions for improving user fairness and 530

throughput. 531

Advantages: Convex optimization approaches are suitable 532

for obtaining an optimal resource allocation solution for IoT 533

applications resource management problems. 534

Disadvantages: Most convex optimization approaches 535

have a high computational complexity (e.g., computational 536

time and computational power) and may not be suitable for 537

obtaining resource allocation solutions in real-time opera- 538

tions for time-critical IoT applications [2] and [86]. 539

B. HEURISTIC OPTIMIZATION APPROACHES 540

Heuristics are problem-specific techniques that have been 541

widely employed in wireless IoT networks, either separately 542

or jointly with other optimization techniques, to solve com- 543

plex resourcemanagement problemswhen other optimization 544

techniques do not fit. 545

Heuristic optimization approaches in wireless IoT net- 546

works may be developed using the optimization framework 547

of problem-independent metaheuristic algorithms or logical 548

ideas depending on the resource management problem that is 549

formulated in the context of complexity. 550
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As an example, [87] employed the framework of a whale551

optimization algorithm to develop a heuristic algorithm for552

solving an IoT resource management problem that involved553

the improvement of the overall communication cost of the554

network gateways in an IoT network. In [88], the authors555

proposed a heuristic algorithm based on the rules of logic556

for a channel allocation resource management problem.557

The authors in [89] employed strategies from genetic algo-558

rithms (GAs) to develop a heuristic that seeks a solution for559

reducing the overall power consumption of the network by560

considering the transmit power allocation and the distribution561

of resource blocks among IoT devices in a fog computing562

enabled IoT network.563

Advantages: Typically, heuristic algorithms are advanta-564

geous in terms of reducing the computational complexity565

of resource management solutions. Heuristic algorithms are566

suitable for solving hard optimization problems.567

Disadvantages: Most of the solutions obtained to resource568

management problems using heuristic algorithms are569

sub-optimal. This implies that the quality of such solutions570

may diminish when the problem dimensionality is increased.571

Most times, the sub-optimal solutions obtained to IoT net-572

works resource management problems may not be close to573

optimal solutions. Using heuristic approaches, the computa-574

tion of resource allocation decisions for obtaining solutions to575

resource management problems require online computations576

that often waste the limited power resources. Also, most577

resource allocation algorithms based on heuristics in IoT578

applications are still confronted by the difficulty of obtaining579

resource allocation solutions in real-time operations. Heuris-580

tic algorithms are problem-specific and may not be reused for581

other resource allocation problems.582

Because of the dynamic and heterogeneous nature of IoT583

networks in time-critical applications, heuristic algorithms584

may not efficiently handle the dynamically changing and585

heterogeneous characteristics of IoT networks. Hence, more586

adaptive and strategic approaches are required to address587

this.588

C. META-HEURISTIC OPTIMIZATION APPROACHES589

Most times, resource management problems in wireless IoT590

networks are non-linear, and consequently convex program-591

ming approaches cannot be applied. Meta-heuristic optimiza-592

tion approaches, which are suitable for most optimization593

problems in practice, are sought to solve non-linear IoT594

resource management problems, and near-optimal solutions595

are often obtained.596

Meta-heuristic optimization approaches are formed from597

the concepts of swarm intelligence and evolutionary theory.598

In the realm of wireless IoT networks, they may be applied599

to various types of optimization problems which involves600

adapting the standard meta-heuristic or non-linear optimiza-601

tion approaches such as particle-swarm optimization (PSO),602

ant colony optimization (ACO), forest optimization, and GAs603

to several resource management problems in wireless IoT604

networks. Researchers have exploited these approaches to605

make the reward function converge quickly to a near optimal 606

solution for an objective function. 607

For example, in [90] the authors formulated a non-convex 608

energy efficiency optimization problem owing to the lack 609

of convexity of the problem structure. To address the power 610

and time management issues of the formulated optimization 611

problem, a PSO algorithm was adapted. In [91], we describe 612

an adapted PSO algorithm to solve both time and power 613

resourcemanagement problems of an IoT network to improve 614

energy efficiency. In [92], a PSO algorithm was applied to 615

a cognitive wireless sensor network to address the spectrum 616

sensing problem and determine which of the devices that 617

may use the channel in order to improve the network energy 618

efficiency and throughput. In [93], the authors considered 619

the application of ACO to the problem of computational 620

overhead in IIoT to compute near-optimal solutions that can 621

reduce the computation overhead and latency to increase 622

the efficiency of the system. The authors of [94] developed 623

a forest optimization resource allocation algorithm for the 624

proposed IoT system to reduce the energy consumption and 625

delay associated with the process of computing and allocating 626

resources. The work in [94] also considered other conven- 627

tional optimization approaches that are based on GA and 628

PSO. The proposed forest algorithm was compared with both 629

GA and PSO, and the forest optimization resource allocation 630

algorithm outperformed the other algorithms in terms of com- 631

putational complexity and network performance. 632

Advantages: Meta-heuristic approaches work well for the 633

IoT network resource management problems they are applied 634

to and may be adapted to most IoT resource management 635

optimization problems in practice. 636

Disadvantages: The computation of resource allocation 637

decisions for obtaining solutions to resource management 638

problems using meta-heuristic algorithms require intensive 639

online computations that expends the scarce power resources. 640

Also, in practice, resource allocation meta-heuristic algo- 641

rithms are computationally complex and costly because they 642

incur high timing overhead during operation, especially when 643

many IoT devices are considered. Unfortunately, the IoT net- 644

works in time-critical applications may not tolerate the delay 645

due to the timing overhead and computational complexities as 646

such applications require a real-time processing and are sen- 647

sitive to delay due to their critical data to human lives, public 648

safety, health, and well-being. Solutions obtained to most IoT 649

network resource management problems in literature using 650

meta-heuristic algorithms are only near optimal, which may 651

obviously impact the QoS performance of the network. This 652

limitation is typically due to the settings of parameters and 653

operators for the designed objective functions to be solved. 654

D. SUMMARY 655

A summary of the reviewed optimization method is presented 656

in Table 2 to compare different optimization methods based 657

on the addressed resource allocation problem, cost function, 658

benefits, and disadvantages of the proposed optimization 659

solutions 660
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V. DEEP LEARNING FOR RESOURCE MANAGEMENT661

CHALLENGES IN IoT NETWORKS662

Deep learning (DL) is a subset of ML and artificial intel-663

ligence that was introduced in 2006 by Hinton et al. [95].664

DL originates from neural network and has a good learn-665

ing capability from data compared to ML [96]. DL has a666

better efficiency compared to ML for a large data. Also,667

DL uses multiple layers for data abstraction representation668

and building computational models. These advantages have669

significantly increased the popularity of DL and enabled DL670

to be successfully applied in several fields like natural lan-671

guage processing, computer vision, and healthcare to develop672

computational models.673

Because of the capabilities of DL, it is emerging674

as a promising learning theory approach for solving675

resource management problems in wireless IoT networks.676

DL is a data-driven approach that leverages data to solve677

resource management problems in practical IoT networks.678

As described in Figure 5, DL also uses a processing pipeline679

that is similar to ML, but then, DL uses a generic feature680

extractor to obtain non-hand-crafted features from the input681

data unlike ML.With this, DL is able to learn a deeper insight682

from a large volume of input data and is able to provide a683

reliable model. The major steps in a DL processing pipeline684

can be classified into five phases, namely (1) data collection,685

(2) data understanding and preparation, (3) DL model686

building and training, (4) model validation, and (5) model687

deployment. The data collection phase is used to collect the688

training and test data for developing a resource manage-689

ment model. The data understanding and preparation phase690

is used to perform an exploratory data analysis and pre-691

pare the dataset to be in the right format that can be fed692

into a DL algorithm. The data preparation entails the data693

representation of the input data in a matrix representation694

containing a bunch of vectors. A better data representation is695

important to remove noise and complexity from the dataset.696

This helps to obtain a data representation with a reduced697

size [97].698

Abetter data representationmakes the input data to use less699

memory resources and helps to speed-up the training and run-700

ning of DL models for resource management. A better data701

representation also helps DL to efficiently learn the important702

information from the input data without memorizing noise,703

thus, speeding up the training and running of DL model.704

Also, a better data representation helps to build a reliable705

model [97].706

The DL model building and training phase is used to707

train a DL algorithm on the training dataset while the model708

validation phase is used to validate the trained model using709

the test dataset. Lastly, the model deployment phase is used710

for deploying a trained DL model on IoT devices. To provide711

insight into different DL algorithms that can be used to build712

DLmodels for resource management in IoT networks, differ-713

ent DL algorithms are discussed in the subsequent sections714

under DL approaches.715

Also, this section presents different DL approaches, their 716

advantages, disadvantages, and different resource allocation 717

solutions that are based on DL. 718

A. DEEP LEARNING APPROACHES 719

DL approaches have recently been employed to seek solu- 720

tions to a variety of IoT network resource management 721

challenges, such as power resource management, bandwidth 722

resource management, and spectrum resource management, 723

by developing a deep learning model. 724

A DL model is a multi-layer neural network that performs 725

the feature extraction and transformation of the input data 726

into a vector representation (or feature vectors) [98]. Hence, 727

a DL model could also be simply referred to as a deep neural 728

network (DNN) model. A DL/DNN model consists of essen- 729

tial components like neurons, weighted connections, input, 730

multiple hidden, and output layers, activation functions [98]. 731

The input, hidden, and output layers are densely connected 732

layers of a deep learning model, and each layer may consist 733

of multiple neurons. The input layer is used to only accept 734

and pass the input data x (e.g., network data such as channel 735

realizations) to the hidden layers positioned at the centre of a 736

deep learning network. No computation is performed by the 737

neurons in the input layer. 738

The hidden layer is used to perform computations like 739

feature extraction, transformation, weighted sum, and non- 740

linearity of the weighted sum on the input data through 741

its neurons. For example, each neuron of the hidden layer 742

does a non-linear operation on the input data. Each neuron 743

computes the weighted sum (6) or net input h of all its 744

input data by multiplying each signal with its corresponding 745

weight and adding up the computed dot products, and sending 746

the weighted sum to its activation function as described in 747

Figure 6 and Eqn. (1) [99]. 748

h =
K∑
k=1

xkwk = x1w1 + x2w2 + . . .+ xKwK (1) 749

where x is the input data andw is the weight of the connection 750

link between the neurons in the input layer and the neurons 751

in the hidden layer. 752

An activation function is a mathematical function that 753

enables the neurons in a DNN to communicate with each 754

other over their weighted connections. It converts the 755

weighted sum to a linear function as an output y. This output 756

is then passed to the next layer through another associated 757

weighted connection. The examples of some available acti- 758

vation functions in DL/DNN are sigmoid function, rectified 759

linear unit (ReLU) function, and tanh function. The sigmoid 760

function takes real number values as an input and convert it 761

to an output that is restricted to a value between 0 and 1. 762

The sigmoid function produces an s-shaped curve. The ReLU 763

function converts the input of whole number values to an 764

output of positive numbers, and produces a rectified curve. 765

While the tanh function also takes real number values and 766
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convert it to an output that is restricted to a value between−1767

and 1 [99]. Similar to the sigmoid function, the tanh function768

also produces an s-shaped curve. Table 3 presents the math-769

ematical representation of these commonly used activation770

functions.771

Using the sigmoid activation function in Table 3, for exam-772

ple, the computation of the output value y of the neuron given773

in Figure 6 is described in (2) and (3) [99] as:774

y = f (h) = f (x1w1 + x2w2 + . . .+ xkwk) (2)775

ysigmoid =
1

1+ e−(x1w1+x2w2+...+xkwk )
(3)776

The ReLU function is advantageous for performing com-777

putations in the hidden layer to reduce the problem of778

vanishing gradients during training while the tanh and sign-779

moid functions are advantageous for computing the output780

of the output layer neuron(s). However, the derivative of781

the ReLU function is faster to compute compared to the782

sigmoid function, and this makes the ReLU function to be783

advantageous over the sigmoid function for DNN training.784

Afterward, the hidden layer transfers the computation785

results to the output layer. The output layer then produces the786

information learned by the network as the output. Note, the787

flow of data (i.e., data propagation) from the input layer to788

the output layer is known as a forward propagation. That is,789

forward propagation explains how the information flow from790

the input layer to the output layer of a DNN.791

The neurons are an essential component in a DL model.792

The neurons are modeled based on how the neurons in the793

human brain work together as groups of neurons to perform794

a functionality. The neurons in a deep learning model are795

nodes that enable the flow of data and computations within796

the model.797

The weighted connections or synapses are employed to798

connect the neurons in the input layer to the next neurons in799

the hidden layer, and to the neuron(s) in the output layer. Each800

weighted connection has an associated weight that is relative801

to the importance of the neurons in a DL model.802

To develop a reliable model, the weights of the neurons803

are fine-tuned iteratively during the training of a DL model804

based on the loss function at the output layer. To measure the805

performance of a DL model, in each epoch, the loss function806

of the model is computed on the test set using a mean square807

error (MSE) [99] or a cross-entropy [99] as described in (4)808

and (5).809

MSE loss =
1
m

∑
i

(
ypi − yi

)2
i (4)810

where ypi is the prediction of the model and yi is the expected811

output for a given training sample x.812

Cross entropy loss = −
1
K

K∑
k=1

((
y(k)e log

(
y(k)p

))
813

+

(
1+ y(k)e

)
log

(
1− y(k)p

))
(5)814

where y(k)e is the expected output and y(k)p is the predicted 815

output of the kth training sample for a given input sample x(k). 816

From (5), the cross entropy loss uses negative log probabil- 817

ities to find the difference between the predicted output and 818

the expected output. 819

The loss function represents the cross-entropy loss between 820

the expected output and the predicted output or the measure 821

of the prediction error of a model. The loss function is used to 822

determine if the prediction accuracy of the trained DL model 823

is good. For example, the lower the loss function, the higher 824

the prediction accuracy of the trained model. 825

During training, the backpropagation algorithm is used 826

to back propagate the computed loss function, which is the 827

difference between the predicted result and the expected 828

result, for each training epoch from the output layer to the 829

hidden layer [100], [101] as shown in Figure 7 to fine-tune 830

the weights of each neuron in the hidden layer by calculating 831

the gradient (i.e., partial derivative) of the loss function with 832

respect to the weights of each neuron in the hidden layer 833

using a gradient-based optimization algorithm (i.e., an opti- 834

mizer) [102], [103]. The optimizer is employed to calculate 835

and adjust the weights of the hidden layer to minimize the 836

loss function. Examples of the gradient-based optimization 837

algorithms are Adam algorithm [102] and stochastic gradient 838

descent algorithm [103]. The differentiation process follows 839

the chain rule. The process continues until the loss function 840

reduces to a threshold [104], [105], [106]. Figure 7 provides 841

a typical illustration of the training of a DL model. 842

The use of DL to solve resource management problems in 843

IoT applications relies on training and building a DL/DNN 844

model to which network data in the form of channel rep- 845

resentation or matrix representation is provided as training 846

sample inputs. This requires following the DLmodel building 847

pipeline described in Figure 5 to train and test a DL-based 848

resource management model in any of Tensorflow [107], 849

MXNet [108] or PyTorch environment [109]. The model 850

is then evaluated to investigate its prediction accuracy by 851

testing it on unseen channel data samples that it has not been 852

exposed to before. The result visualization of the model is 853

also carry out to visualize the results of the model using the 854

Matplotlib tool [110]. The model deployment phase is used 855

to deploy the DL-based resource management model that 856

have been trained and tested in a Keras, Tensorflow, MXnet, 857

or PyTorch environment where it can be compiled into an 858

executable form for deployment and exported to different IoT 859

devices hardware/processor platforms like the Texas Instru- 860

ments [111], Intel [112], ARM [113], and Raspberry Pi [114]. 861

Figure 8 gives an insight into the process of DL model 862

compilation and deployment on IoT devices. 863

The trained model may then be used to compute and pro- 864

vide a resource allocation solution to a resource management 865

problem. However, the computation of the resource allocation 866

solutions may be intensive as each layer of the model carries 867

out the task of matrix-vector multiplications [115]. But then, 868

it may be advantageous over the conventional optimization 869

approaches depending on the design. 870
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TABLE 2. Summary of proposed optimization methods for resource management in IoT networks.

FIGURE 5. DL pipeline.

To make the reading of this paper to be interesting, a list of871

the abbreviations of some important terms used in this section872

is presented in Table 4.873

The development of DL models involves the use dif-874

ferent DL architectures in Keras and Tensorflow such as875

convolutional neural networks (CNNs), recursive neural net-876

works, and recurrent neural networks (RNNs) along with877

fundamental ML techniques like supervised, reinforcement,878

and unsupervised learning to develop different DL mod-879

els for solving IoT applications optimization problems. The880

DNN architectures used to develop DL models for resource881

management problems have varying benefits and shortcom- 882

ings. This must be considered when selecting a DL algo- 883

rithm for designing a DL-based resource allocation algorithm 884

for IoT networks. An example of a DL model for solving 885

resource management problems (e.g., time resource alloca- 886

tion and power resource allocation) in IoT applications is 887

given in Figure 9. In Figure 9, we show how the input data in 888

the form of a channel representation or matrix representation 889

is fed into a DL/DNN architecture through the input layer to 890

predict power resource allocation for the IoT devices in the 891

IoT applications. 892
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FIGURE 6. Illustration of an artificial neuron with a weighted sum plugged into an
activation function.

TABLE 3. Examples of activation functions.

Examples of DL approaches for resource management893

include the supervised DL approaches, the unsupervised DL894

approaches for resource management, and the deep reinforce-895

ment learning approaches.896

1) SUPERVISED DEEP LEARNING APPROACH897

The supervised deep learning approach is formed by898

combining DNNs with supervised learning [105]. This899

approach uses labeled data. Hence, a supervised DL900

approach for resource management is a data-driven super-901

vised learning method that combines a DL technique with902

a conventional optimization method to enable a DL archi-903

tecture to learn from the resource allocation solutions of904

the conventional optimization method, which serves as905

labeled data. Examples of the DL architectures used in906

supervised DL approaches are MLP, CNN, and RNN [1].907

Examples of the RNN architectures are GRU, Bi-GRU,908

Bi-LSTM, and LSTM. Also, examples of the CNN architec-909

tures are ResNet, Xception, AlexNet, and VGG.910

In this approach, IoT resource management problem for-911

mulations and a conventional optimization approach (e.g.,912

GAs, PSO) may be treated as a black-box and applying a913

DL technique to the black-box to learn the input parameters914

and output solution (i.e., resource allocation solutions) of the915

conventional optimization algorithm. In this approach, the916

conventional optimization technique is leveraged as a super-917

visor and its output solution is employed to train and develop918

a supervised DL-based approach as a resource management919

algorithm.920

Supervised DL approaches can be easily implemented 921

for resource management by using important open-source 922

frameworks like Tensonflow, Keras, and Torch, which 923

contain several DL algorithms. To evaluate the perfor- 924

mance of this approach, it may be tested for resource 925

allocation solution prediction accuracy. Examples of the pro- 926

posed supervised DL approaches for resource management 927

include [106], [117], [118], and [119]. 928

In [117], a supervised DL based approach was presented 929

to predict an optimal transmit power for different channel 930

coefficients in a wireless powered communication network 931

(WPCN). The authors employed a multilayer perceptron 932

(MLP) architecture to learn the resource allocation solutions 933

(i.e., output labels) of an iterative optimization algorithm used 934

to solve the formulated transmit power minimization problem 935

and the channel vectors (i.e., input labels) that correspond 936

to the resource allocation solutions as the training data. The 937

proposed model achieved an approximate resource alloca- 938

tion accuracy compared to the iterative optimization algo- 939

rithm using the standard MSE for performance evaluation. 940

The authors did not report the percentage of the prediction 941

accuracy for the proposed model. Also, the proposed model 942

achieved an improved computational complexity against the 943

baseline iterative optimization algorithm. 944

Advantages: The proposed MLP model for computing an 945

optimal transmit power and time allocation for the formulated 946

problem achieved a low MSE, indicating a high prediction 947

accuracy in transmit power and time, due to the use of nor- 948

malization in the model. 949

Disadvantages: The computation time of the proposed 950

MLP model is low. 951

In [118], a supervised DL based approach was pre- 952

sented to predict the optimal transmit power and PS ratios 953

resource allocation that can minimize the sum-transmit- 954

power of a SWIPT-based IoT system. They used a con- 955

ventional optimization algorithm to solve the optimization 956

problem of the paper. The power and PS ratios resource 957

allocation solutions (i.e., output labels) computed by the 958

optimization algorithm with their correspondence channel 959

vectors (i.e., input labels) were learned by using four DL 960
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architectures like FFNN and RNN architectures like LSTM,961

Nonlinear AutoRegressive network with eXogeneous inputs962

(NARX) [118], and layer recurrent network (LRN). The per-963

formance of the models was evaluated in terms of prediction964

accuracy using MSE. The authors reported resource alloca-965

tion prediction accuracies of 6.1%, 5%, 0.35%, and 5.6%966

on the LRN, NARX, LSTM, and FFNN models in com-967

parison with the baseline optimization algorithm. Also, the968

models achieved a better computational time compared to the969

baseline optimization algorithm. The developed models were970

deployed on the system devices by testing it in a deployable971

environment.972

Advantages: The proposed FFNN and the RNN models973

(i.e., NARX and LRN) are beneficial for obtaining resource974

allocation solutions with a low computational time. The RNN975

models (i.e., LSTM and NARX) are advantageous in terms976

of a low MSE loss for resource allocation prediction (i.e.,977

a high prediction accuracy in resource allocation). Also, the978

proposed RNN models have a low computational power979

with respect to the number of the devices in the system.980

Disadvantages: The proposed LSTM model is not efficient981

for obtaining resource allocation solutions in terms of the982

computational time. The proposed FFNN model has a high983

MSE loss for resource allocation prediction compared to984

the RNN models. The RNN methods are susceptible to the985

exploding gradient issue.986

In [106], a supervised DL model was presented to com-987

pute power and sub-band allocation solutions for a wireless988

network with an objective to improve the overall network989

throughput. The authors employed a GA algorithm to solve990

and obtain solutions to a power and sub-band allocation prob-991

lem based on the channel quality information (CQI) value992

and the location indicator (LI) of the network devices. Fur-993

thermore, they employed an SAE architecture that consists994

of a block AEs was used to pre-train and develop the DNN995

model for predicting power and sub-band allocation solutions996

in their work. The prediction accuracy of the model was997

evaluated using the MSE. The authors reported prediction998

accuracies of 86.14% and 86.31% for their model with three999

and four hidden layers compared to the baseline GA algo-1000

rithm. The developed model was deployed on the system1001

devices by testing it in a deployable environment.1002

Advantages: The proposed AEs model has a high training1003

accuracy on small training samples as well as a high test1004

accuracy on large training samples.1005

Disadvantages: The proposed AEs model requires a large1006

hyperparameter tuning and processing time during training,1007

indicating a high computational time and a high computa-1008

tional power in computing resource allocation for the system1009

devices. Hence, the proposed AEs model may not be efficient1010

to provide resource allocation solutions in a real-timemanner.1011

The AEs model also needs sufficient data to be able to build1012

a reliable model that can generalize well.1013

In [119], a supervised DL based approach was presented1014

to compute the transmit power for the devices in a wireless1015

network by extracting and learning the spatial features in1016

FIGURE 7. An illustration of a DL model training.

FIGURE 8. DL model compilation and deployment process.

the channel gain in order to maximize the energy efficiency 1017

or the spectral efficiency of the network. In the paper, the 1018

channel samples (in dB) of a pre-trained CNN was used 1019

to reproduce an existing power control scheme of transmit 1020

power results for the given channel data samples. Also, the 1021

authors used a CNN architecture with a 3 X 3 convolution 1022

to perform a 2D spatial convolution on the input data. The 1023

channel samples (i.e., the training data) are fed into the CNN 1024

model to find a transit power for each channel sample and 1025

to train a CNN model. Then, the model was used to pre- 1026

dict an optimal transmit power allocation based on current 1027

channel state information to improve the energy efficiency or 1028

the spectral efficiency of the network. The performance of 1029

the proposed model outperformed a baseline CNN model in 1030

terms of computational time. The authors did not report the 1031

percentage of prediction accuracy. The developed model was 1032

deployed on the system devices by testing it in a deployable 1033

environment. 1034

Advantages: The proposed CNN model achieved a high 1035

prediction accuracy in transmit power resource allocation. 1036

Disadvantages: The proposed CNNmodel has a high com- 1037

putational time with respect to the number of devices in the 1038

system. It also requires a high computational power. 1039
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TABLE 4. List of abbreviations.

2) UNSUPERVISED DEEP LEARNING APPROACH1040

The unsupervised deep learning approach is formed by com-1041

bining DNNs with unsupervised learning. This approach uses1042

unlabeled data. Consequently, an unsupervised DL approach1043

for resource management is an unsupervised method that1044

does not learn from any conventional optimization algorithm1045

solutions, but learn directly from the formulated optimization1046

objective function of an IoT application resource manage-1047

ment problem. Examples of the DL architectures used in1048

unsupervised DL approaches are RBM, DBN, GAN, and1049

DBM. Examples of the variants of the auto-encoder (AE) are1050

SAE, VAE, and DAE [1]. In this approach, the objective func-1051

tion could be set as a loss function to train a DL model. Then,1052

the DL model can be fine-tuned to optimize the loss function1053

using an optimizer like a stochastic gradient descent [120].1054

Unsupervised DL approaches can be easily implemented1055

for resource management by using important open-source1056

frameworks like Keras, Tensorflow, and PyTorch, which1057

contain several DL algorithms. Examples of the proposed1058

unsupervised DL approaches for resource management1059

are [116] and [120].1060

In [120], a supervised and an unsupervised DL based1061

approaches were presented to compute the transmit power1062

allocation and the power splitting ratio that can minimize the1063

power consumption of a SWIPT system. The authors used a1064

GA algorithm to obtain a resource allocation solution to the1065

formulated power minimization problem in the paper based1066

on the channel gains between the devices and the BS. The1067

channel gains and the generated resource allocation solutions1068

are used as a training sample (x, y). The authors constructed1069

a DBN model to extract and learn the features of the training1070

dataset. The model was evaluated using cross-entropy and1071

the model achieved an approximate transmit power allocation1072

and a power splitting ratio prediction accuracy. Also, the1073

model achieved an improved computation time in resource1074

allocation prediction. However, the authors did not discuss1075

the percentage of the prediction accuracy of the proposed1076

model. The developed model was deployed on the system 1077

devices by testing it in a deployable environment. 1078

Advantages: The proposed DBN model for resource allo- 1079

cation was able to achieve a near real-time computational 1080

time for resource allocation to the devices in the system. 1081

Disadvantages: The computation power of the proposed 1082

DBN is linearly proportional to the number of devices in the 1083

system. Hence, the computational requirement is increased as 1084

the system devices increase. Also, the proposed model has a 1085

low prediction accuracy in resource allocation. 1086

The authors of [116] have presented an unsupervised DL 1087

approach to compute an optimal transmit power for interfer- 1088

ence management and sum-throughput maximization of an 1089

IoT system. The authors used a PCNet architecture to learn 1090

the features of training dataset and develop a DNN model for 1091

computing an approximate transmit power for a given channel 1092

realization. The authors reported an accuracy of 6.12% and 1093

5.92% for their model compared to the conventional opti- 1094

mization algorithms. The model was deployed on the system 1095

devices by testing it in a deployable environment. 1096

Advantages: The proposed PCNet model achieved a low 1097

computational time and also requires a low computational 1098

power for resource allocation. 1099

Disadvantages: The proposed PCNet model has a low pre- 1100

diction accuracy for resource allocation with a small dataset. 1101

3) DEEP REINFORCEMENT LEARNING APPROACH 1102

The deep reinforcement learning approach is formed by com- 1103

bining DNNs with reinforcement learning [121]. In a deep 1104

reinforcement learning (DRL) approach for resource man- 1105

agement, an IoT application resource management problem 1106

may be mathematically modeled using the Markov deci- 1107

sion process (MDP) framework. The MDP framework is 1108

employed to model the state space, the action space, and 1109

the reward of an agent. In this approach, a neural network 1110

is employed as an agent. The state space consists of the 1111

environment states, wheras the action space consists of a set 1112

of actions available to the agent in each environment state. 1113

At each discrete time with a step t , the agent interacts with 1114

the environment and observes the environment state from the 1115

state space and learns from its interaction with the environ- 1116

ment. Then, the agent makes an action from the action set. 1117

Based on the action chosen, the agent receives either a reward 1118

or a penalty for making a good or a bad decision, respectively. 1119

Following this, the environment moves to a new state with a 1120

transition probability. The reason why the agent learns from 1121

its interactions with the environment is to compute an optimal 1122

policy that optimizes the overall accumulative rewards of 1123

different actions from the environment states. Examples of 1124

deep reinforcement learning approaches are deep Q-networks 1125

(DQNs), dueling DQNs, and deep Q-learning (DQL) [1]. 1126

Examples of the proposed deep reinforcement learning 1127

approaches for resource management are [122] and [123]. 1128

In [122], a dueling DQN model was presented to compute 1129

a transmit power solution for the secondary users (SUs) to 1130

enable them to accurately sense the spectrum usage in almost 1131
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FIGURE 9. A DL/DNN architecture with input data in the form of a channel representation, two hidden layers for resource allocation computation and
prediction in IoT applications.

real time. The authors used a social network consisting of1132

third-party sensing devices to collect the power information1133

of the primary users (PUs) for the SUs. Also, they employed1134

a dueling DQN algorithm that combined neural networks1135

to train on the collected PU power information to enable1136

the model to predict an optimal transmit power to realize a1137

dynamic spectrum sharing among the PUs and the SUs. The1138

model achieved an improved prediction accuracy in resource1139

allocation. The model was deployed on the system devices by1140

testing it in a deployable environment.1141

Advantages: The proposed dueling DQN model has a high1142

prediction accuracy for RAwith a large number of PUs power1143

information dataset.1144

Disadvantages: The proposed dueling DQN model has a1145

high computational power and a high computational time1146

for RA.1147

In [123], a DRL approach was presented to compute an1148

optimal transmit power for the SUs in a cognitive radio sensor1149

network (CRSN) to allow them to share a spectrum resource1150

with the PUs without causing interference, and to improve1151

the channel usage success rate of the SUs. The network is1152

composed of a set of SUs, PUs, and sensor devices. The1153

sensor devices that were deployed spatially in the CRSN1154

environment were used to collect the power information of1155

the PUs using a channel model and the locations of the1156

devices in the environment. The generated power information1157

serves as the training data. The authors developed a DQN1158

model that was trained using the input data and the model1159

was used to predict an optimal transmit power for the SUs1160

to allow spectrum sharing among the PUs and the SUs.1161

Thereafter, the predicted transmit power is used by the SUs1162

to update or adjust their transmit power and allow them to1163

send their own data successfully. The performance of the1164

DQN model was evaluated using the loss function in the1165

transmit power prediction for the SUs. The model achieved1166

an improved computational time. The developed model was1167

deployed on the system devices by testing it in a deployable1168

environment.1169

Advantages: The proposed DQN model achieved a low 1170

computational time due to the small PU datasets and the 1171

number of sensors available in the model. 1172

Disadvantages: The proposed DQN model has a high loss 1173

function, indicating a low prediction accuracy for resource 1174

allocation, due to the small number of the used PU datasets. 1175

B. SUMMARY 1176

A summary of the studied DNN models is presented in 1177

Table 5. Using DL approaches, the resource allocation 1178

decisions for obtaining solutions to resource management 1179

problems can be taken offline or their intensive online com- 1180

putation could be minimized to reduce the use of power 1181

resources related to online computations as in the case of 1182

the optimization theory approaches. With DL approaches, 1183

optimal resource allocation solutions may be computed for 1184

IoT networks resource management problems with a low 1185

computational complexity. 1186

DL approaches are suitable for solving both convex and 1187

non-convex resource allocation problems in IoT networks and 1188

can provide resource allocation solutions in an almost real- 1189

time manner. 1190

The prediction accuracy of the DL-based resource alloca- 1191

tion approaches for IoT networks is still low and the level 1192

of prediction accuracy also depends on the quality of the 1193

available input data.Most DL-based resource allocation algo- 1194

rithms for IoT networks have a large size and may not work 1195

well on most of the devices in IoT networks in practical 1196

applications due to their limited storage space. 1197

The supervised DL approach may be disadvantageous to 1198

obtain an optimal solution to some IoT applications resource 1199

management problems since its performance is technically 1200

bound by the resource allocation solution of the adapted 1201

conventional optimization algorithm. 1202

The unsupervised DL approach may be limited in perfor- 1203

mance in terms of training and obtaining an optimal resource 1204

allocation solution, when applied to IoT applications resource 1205

management problems. The conventional loss functions used 1206

VOLUME 10, 2022 94707



S. O. Olatinwo, T.-H. Joubert: DL for Resource Management in IoT Networks

to train DL with a guaranteed performance are typically1207

designed for classification and regression problems.1208

The deep reinforcement learning approach does not use1209

the obtained optimal or near-optimal resource allocation1210

solutions but leverages a trial-and-error means to seek1211

optimal resource allocation solutions to IoT application1212

resource management problems. Hence, it may be limited in1213

performance.1214

C. IoT NETWORK DATASET FOR RESOURCE1215

MANAGEMENT RESEARCH1216

The dataset plays a huge role in the training and building1217

DL models to solve resource management problems in IoT1218

applications. The examples of the network dataset types that1219

could be employed to train a DL model for resource man-1220

agement are simulated dataset, real IoT device dataset, and1221

synthetic dataset. The simulated datasets are generated by1222

simulating a wireless channel model and other system con-1223

ditions, including the locations of the devices in the systems.1224

The real IoT device datasets are generated from the devices1225

through measurements. The synthetic network dataset may1226

be generated from the real IoT network dataset through1227

the process of augmentation to increase the network dataset1228

samples available to train a DL model. Currently, different1229

from other application domains where there is a quantum1230

number of datasets, in the area of resourcemanagement in IoT1231

networks there exists only a few datasets for doing resource1232

management research. The available datasets do not represent1233

all channel environments of IoT networks. This is because it1234

is presently not practical to produce a dataset that can capture1235

different resource management problems in various channel1236

environments of IoT applications.1237

Hence, a particular dataset for a specific network prob-1238

lem may not be technically useful to train and test different1239

models. This can be attributed to the stochastic and dynamic1240

nature of wireless channels with several channel realizations1241

at different times. Owing to this fact, it is impractical for the1242

training dataset generated based on a particular IoT network1243

scenario to be re-used for other scenarios.1244

Because of the stochastic nature of wireless channels and1245

the need to obtain an appropriate dataset for a particular1246

network scenario, there is currently no benchmark datasets1247

for doing resource management research. As a result of this,1248

researchers working on resource management problems in1249

IoT networks must create their own datasets. To achieve this,1250

researchers often use a simulation approach to create datasets1251

that capture the channel environments in their formulated1252

scenarios and resource management problems. The process1253

involved in creating their own datasets is time consuming and1254

resource-intensive.1255

VI. A REVIEW OF GAME THEORY APPROACHES APPLIED1256

TO RESOURCE MANAGEMENT CHALLENGES1257

IN IoT NETWORKS1258

Game theory has been exploited in literature as an optimiza-1259

tion approach to compute resource allocation solutions for1260

IoT networks. This section presents a review of different 1261

game theory approaches, their advantages, disadvantages, 1262

and different resource allocation solutions that are based on 1263

game theory. 1264

A. GAME THEORY APPROACHES 1265

Game theory is one of the alternative approaches leveraged 1266

to solve resource management problems in IoT networks. 1267

Game theory is a strategic approach employed to model the 1268

behavior of devices as rational agents to optimize their gains. 1269

It can also be used to achieve a distributed resource allocation 1270

among a set of resource competitors, making it a powerful 1271

tool for solving resource management challenges in wireless 1272

IoT networks. 1273

Game theory approaches are applied mathematics that use 1274

computational approaches and optimization concepts to deal 1275

with decision making problems for the optimal control of 1276

resources by dynamically optimizing and adjusting ameasure 1277

of performance [124]. It provides mathematical optimization 1278

frameworks that could be leveraged to manage scarce and 1279

critical resources in IoT networks, i.e. transmission time, 1280

bandwidth, and power resources. 1281

Generally, games are classified into two categories, namely 1282

cooperative games and non-cooperative games [125]. In a 1283

cooperative game, there exists a set of IoT devices that have 1284

agreed to work collectively with the aim of maximizing 1285

their overall objective function values. This type of game 1286

involves enforcing an agreement. To do this, a cooperative 1287

policy is used to introduce a binding agreement or a coalition 1288

among the devices, and this enables them to always cooperate 1289

to make decisions together and negotiating how to allocate 1290

resources, while no agreement exists between the devices in 1291

a non-cooperative game and they may consequently defect. 1292

Examples of game theory that falls under the cooperative 1293

games are the coalition games, repeated games, and bargain- 1294

ing games [126], while examples of game models in the 1295

category of the non-cooperative game are the bid auction 1296

game theory, Stackelberg game theory, potential game theory, 1297

and the stochastic game [127]. 1298

Both cooperative and non-cooperative game theory may be 1299

used for modeling as well as analyzing the resource allocation 1300

strategies developed for different heterogeneous IoT devices 1301

in a resource management problem. To compute optimal 1302

or near-optimal resource allocation solutions for resource 1303

allocation game problems, equilibrium solution concepts like 1304

Nash equilibrium (NE) and Stackelberg equilibrium (SE) are 1305

used for non-cooperative games, while the Nash bargaining 1306

solution (NBS) is used for cooperative games [127]. 1307

1) EXAMPLES OF COOPERATIVE GAMES SOLUTIONS 1308

In [128], a cooperative coalition game theory was employed 1309

to formulate a power control problem in D2D communica- 1310

tion. In the study, the D2D users were modeled as players 1311

and a coalition game framework was developed to model the 1312

coalition of D2D pairs to form a group of D2D users and to 1313

encourage them to increase their objective function, which 1314
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is sum rate. The D2D pair coalition is a mutual agreement1315

between D2D users to share resource blocks (i.e., channels).1316

Each D2D pair coalition decision space strategy includes1317

the transmit power resource vector for transmission and a1318

resource block for reuse/sharing. To cater for heterogeneity1319

among the D2D users, different power was assigned to the1320

resource block based on the interference a user encountered1321

when reusing the resource block. So, the transmit power1322

allocated to eachD2D user depends on the coalition it belongs1323

to and the interference of the reused resource block.1324

In [129], the authors formulated a cooperative power con-1325

trol bargaining game framework where radars are modeled1326

as players. The NBS equilibrium concept was employed to1327

encourage the players to bargain and play the NBS strategy1328

to control the allocation of transmit power. The decisions1329

available to the players included a set of transmit power.1330

The objective function values of the radars are based on the1331

NBS strategy, where the existence of the game is established1332

computationally to analyze the fairness in transmit power1333

allocation.1334

2) EXAMPLES OF NON-COOPERATIVE GAMES SOLUTIONS1335

The development of a non-cooperative auction theory algo-1336

rithm was presented in [130] to allocate the network1337

bandwidth/time-slot resources among the devices in a1338

wireless sensor network system. In the study, bandwidth rep-1339

resents the commodity that the sensor devices in the network1340

are bidding for, and the BS allocated bandwidth to the highest1341

bidders among the devices. The formulated auction game1342

contributed to optimizing the network performance in terms1343

of throughput and delay.1344

In [131], a non-cooperative repeated game theory was1345

employed to formulate a power control problem for the wire-1346

less communication channels of an IoT network. In the study,1347

wireless channels were modeled as players and a repeated1348

game framework was developed to model the repeated inter-1349

actions among different wireless channels. Each channel’s1350

decision space strategy includes the power cost for transmis-1351

sion and the signal-to-interference noise ratio (SINR) cost for1352

channel service quality. The decisions available to each player1353

is based on NE and the no-regret solution strategy concepts.1354

For equilibrium analysis, the strategy concepts were analyzed1355

to establish or prove the existence and uniqueness of the1356

proposed power control repeated game model.1357

In [132], the authors considered a power allocation and1358

interference management problem in a small-cell network to1359

reduce power consumption and the interference of macrocell1360

user equipment (MUE) and small-cell user equipment (SUE).1361

This study formulated a Stackelberg game framework to1362

model the SUE as the follower and theMUE as the leader. The1363

Stackelberg equilibrium concept was employed to compute1364

the strategies to be played by the followers. By leveraging1365

this strategy, the followers chose a transmit power from1366

the power allocation vector available in the decision space.1367

This helped to avoid interference among the users during1368

transmission. For equilibrium analysis, the existence of the1369

SE was established to prove the optimality of the developed 1370

Stackelberg game. 1371

Advantages: Resource allocation algorithms based on 1372

game theory are suitable for computing an optimal 1373

or a near-optimal resource allocation solution for IoT 1374

applications. 1375

Disadvantages: Most resource allocation algorithms based 1376

on game theory have a high computational complexity, which 1377

may increase the computational power cost and cause long 1378

delays in real-time operations. These disadvantages may 1379

significantly impact the performance of time-critical IoT 1380

applications. 1381

B. SUMMARY 1382

A summary of the reviewed game theory method is presented 1383

in Table 6 to compare different game theory methods based 1384

on the addressed resource allocation problem, cost function, 1385

benefits, and disadvantages of the proposed optimization 1386

solutions. 1387

VII. COMPARISON OF GAME, DEEP LEARNING, AND 1388

OPTIMIZATION THEORY APPROACHES FOR RESOURCE 1389

MANAGEMENT IN IoT NETWORKS 1390

The optimization theory provides several mathematical pro- 1391

gramming algorithms that could be employed to solve 1392

different categories of IoT networks resource management 1393

problems, for example convex and non-convex problems. But 1394

then, most of the resource allocation algorithms designed for 1395

resourcemanagement problems related to IoT networks using 1396

optimization theory are often faced with a high computational 1397

complexity related to computation power, computational time 1398

as well as storage space. This concernmay increase the power 1399

consumption and the data transmission delay of the devices 1400

in IoT networks. This may eventually conflict with achieving 1401

the goals of time-critical IoT applications. 1402

The game theory provides mathematical optimization 1403

frameworks that could be leveraged to solve resource man- 1404

agement challenges related to IoT networks to address the 1405

issues of transmission time, bandwidth, and power resources 1406

management. Also, it provides different equilibrium solu- 1407

tion concepts to compute optimal or near-optimal resource 1408

allocation solutions for the resource management challenges 1409

in IoT networks. However, most of the resource allocation 1410

algorithms developed for IoT networks resource manage- 1411

ment problems using game theory have a high computational 1412

complexity with a high computational power cost and long 1413

delays in real-time operations. Also, this concern may affect 1414

the performance of critical IoT applications in terms of data 1415

transmission delay, power efficiency, and throughput. 1416

The deep learning theory approach provides powerful 1417

mathematical tools that can be leveraged to obtain an opti- 1418

mal or near-optimal resource allocation solution that are less 1419

costly. But then, most of the existing resource allocation 1420

algorithms based on DL approaches in literature are less 1421

efficient in terms of prediction accuracy. Some suffer from 1422

an increase in training complexity with a large number of 1423
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TABLE 5. Summary of proposed DL models for resource management in IoT networks.

devices, while some are not efficient for deployment on the1424

devices in IoT networks due to the size and computational1425

resource requirements caused by storage space and power 1426

limitations. 1427
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Based on these quantitative and/or performance compar-1428

isons and the need to develop new sophisticated power-,1429

bandwidth-, channel-, computation and delay-aware resource1430

allocation algorithms for critical IoT applications, the use of1431

DL approaches is promising. However, the use of the DL1432

methods is associated with a number of major challenges that1433

need to be further investigated and addressed to improve the1434

performance of DL approaches for resource allocation in IoT1435

networks. Such challenges include small training dataset size1436

problem, hyperparameter optimization problem (e.g., number1437

of neurons in individual hidden layer, number of hidden1438

layers, activation function, number of batch size and epochs1439

during processing, optimizers), and computational complex-1440

ity problems (e.g., power, time, and storage) for large-scale1441

deep learning model.1442

VIII. CHALLENGES OF DEEP LEARNING APPROACHES1443

AND FUTURE RESEARCH DIRECTIONS1444

Currently, the DL methods have a number major challenges1445

that affect the deployment of DL methods on IoT devices1446

while other challenges affect the performance of resource1447

allocation in IoT networks. Such challenges include the1448

model size, scarcity of well-prepared datasets [133], [134],1449

lack of optimal hyperparameters, low resource allocation1450

prediction accuracy, and the need for an improvement in1451

the computational time of resource allocation. Consequently,1452

to develop efficient resource management solutions for crit-1453

ical IoT applications using the deep learning methods, these1454

major challenges still require further research efforts. Hence,1455

important future research directions are provided as follows.1456

1) ADDRESSING THE DATASET SIZE PROBLEM ASSOCIATED1457

WITH THE DEVELOPMENT OF DL-BASED RESOURCE1458

MANAGEMENT MODELS FOR IoT NETWORKS1459

Datasets are useful for improving the prediction accuracy and1460

the overall performance of the DL-based resource manage-1461

ment models for IoT networks. It is well established that DL1462

requires a large training dataset to be able to build amodel that1463

can achieve a good prediction accuracy and generalize well in1464

practice. Hence, researchers working in the area of resource1465

management in IoT networks need to generate a sufficiently1466

large dataset to build resource management models with a1467

good prediction accuracy and capability to generalize well1468

by being able to compute an optimal resource allocation for1469

any channel value. The use of data augmentation methods1470

is promising for increasing the training set. Data generation1471

of simulated data is another useful method. Also, the use1472

of transfer learning method is promising in cases of low-1473

resource dataset. Transfer learning method enable the reuse1474

of the learned representations of a pre-trained DL model1475

for resource management provided the problem domain of1476

two resource management tasks is related. Hence, the trans-1477

fer learning method is only useful if provided the problem1478

domain of two resource management tasks is related.1479

2) IMPROVING THE COMPUTATIONAL SPEED OF DL-BASED 1480

RESOURCE MANAGEMENT ALGORITHMS FOR 1481

IoT NETWORKS 1482

In practical applications, DL-based resource allocation algo- 1483

rithms compute solutions with almost real-time operations. 1484

To improve the computational speed of the DL-based 1485

resource allocation algorithms for IoT networks, future 1486

research is required to explore and develop new acceleration 1487

methods for hyperparameter optimization. Future research 1488

can also explore the use of techniques like parallel com- 1489

puting and distributed computing [135], [136]. This line of 1490

research is believed to reduce the computational speed of 1491

DL-based resource allocation algorithms for IoT networks 1492

and to also contribute to reducing the power requirements 1493

of the devices that implement the DL-based resource alloca- 1494

tion algorithms. Also, future studies are required to explore 1495

the use of hybrid models to improve on the computational 1496

time. 1497

3) ADDRESSING THE COMPUTATIONAL COMPLEXITY 1498

ISSUES OF DL-BASED RESOURCE MANAGEMENT 1499

ALGORITHMS FOR IoT NETWORKS 1500

The DL technique is promising to solve the resource man- 1501

agement challenges arising in time-critical IoT applications, 1502

unfortunately, most of these solutions are inefficient due to 1503

computational complexity issues in terms of their computa- 1504

tional storage space and computational power requirements 1505

when deployed on the constrained IoT devices. To enable DL 1506

resource management algorithms to be more efficient, future 1507

research is necessary to develop new methods for improving 1508

the computational complexity of DL resource management 1509

models. This line of research can benefit from the use of 1510

techniques that are suitable for improving the efficiency of 1511

DLmodels. Examples are knowledge distillation and pruning 1512

techniques [137]. This line of research is believed to signif- 1513

icantly contribute to enabling DL-based resource allocation 1514

algorithms for the devices in IoT networks. 1515

4) REDUCING THE COMPUTATION POWER OF DL-BASED 1516

RESOURCE MANAGEMENT ALGORITHMS FOR 1517

IoT NETWORKS 1518

In practice, the DL model computes resource allocation solu- 1519

tions through the matrix-vector multiplication operations of 1520

the layers. This computation process is sometimes intensive 1521

and requires the model to draw the scarce power resource 1522

of the IoT devices. Consequently, it is of high importance 1523

to see future studies explore and develop techniques for the 1524

DL models used for resource allocation computation in IoT 1525

networks to reduce their computational power. To achieve 1526

this, the use of model distillation and pruning techniques 1527

is promising to reduce the computational complexity of the 1528

model by reducing the size of the model and by removing the 1529

redundant parts of the model [138]. 1530
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5) IMPROVING THE PREDICTION ACCURACY OF DL-BASED1531

RESOURCE MANAGEMENT ALGORITHMS FOR1532

IoT NETWORKS1533

Despite the promising benefits of the DL-based resource1534

management algorithms for solving resource allocation prob-1535

lems in IoT applications in almost real-time operations, their1536

accuracy is still limited in terms of the predicted resource1537

allocation solutions. This limitation may not guarantee the1538

efficient usage of scarce bandwidth, power, and computation1539

resources. As a result, further research efforts are essential1540

to design new methods for the DL-based resource allocation1541

algorithms in IoT networks to improve their prediction accu-1542

racy performance.1543

6) DEVELOPING EFFICIENT DL-BASED RESOURCE1544

ALLOCATION ALGORITHMS FOR IoT NETWORKS1545

In practice, there is no single DL architecture that is all-round1546

superlative to obtain the best resource allocation solutions1547

for different resource management challenges arising in IoT1548

networks due to the varying benefits and shortcomings of1549

different DL architectures. Consequently, when designing1550

DL-based resource allocation approaches for IoT networks,1551

it will be interesting to explore and exploit different types of1552

DL architectures for different resource allocation problems1553

associated with IoT networks to be able to develop effi-1554

cient DL-based resource allocation algorithms. This research1555

would help to obtain optimal resource allocation solutions for1556

improving throughput, power, and data transmission delay for1557

various critical IoT applications.1558

7) ADDRESSING THE PERFORMANCE ISSUE RELATED TO1559

UNSUPERVISED DL APPROACHES FOR IoT APPLICATIONS1560

RESOURCE MANAGEMENT PROBLEMS1561

Due to current lack of standard loss functions for resource1562

management problems related to IoT applications leverag-1563

ing unsupervised DL models, efficient structures must still1564

be thoroughly investigated and developed to guarantee that1565

the resource allocation solutions of the unsupervised DL1566

approach converge to an optimal point. There is a large scope1567

for improvement in the performance and resource allocation1568

solutions of the unsupervised DL approaches designed for1569

solving the resource management problems associated with1570

the IoT networks.1571

8) IMPROVING THE PREDICTION PERFORMANCE OF1572

DL-BASED RESOURCE MANAGEMENT MODELS FOR1573

IoT NETWORKS1574

The DL-based resource management models mostly use1575

gradient descent optimization algorithms (e.g., Adam and1576

SGD) that requires a differentiation or continuous function1577

to train a DL model. The use of algorithms based on gradient1578

descent to optimize the weights and the biases in a DL model1579

often results in a local optimal solution in prediction due to1580

losses during training [116]. To improve the performance of1581

DL-based resource management models, it is key to address1582

the inherent limitations of gradient descent optimization algo- 1583

rithms. A promising method is to investigate the design of 1584

novel custom stochastic optimization algorithms that uses a 1585

random search strategy or a Bayesian optimization strategy 1586

to optimize for network parameters, to improve the training 1587

speed, and to obtain a global optimal solution in prediction. 1588

9) ADDRESSING THE COMPLEXITY ISSUE OF DEEP 1589

REINFORCEMENT LEARNING APPROACHES 1590

DESIGNED FOR IoT NETWORKS 1591

Even though the deep reinforcement learning approaches 1592

have promising potential to obtain optimal resource alloca- 1593

tion solutions for IoT networks resource allocation problems, 1594

they are mostly confronted with a complexity issue during 1595

training. For example, as the number of IoT devices imple- 1596

menting a deep reinforcement learning approach is increased, 1597

the training complexity of this approach may escalate. This 1598

concern may increase the computational resources required 1599

of the learning algorithm implementation devices. Also, 1600

it may hinder the goal of obtaining resource allocation solu- 1601

tions in real-time operations as required by the time-critical 1602

IoT applications. To address the complexity issue associated 1603

with the deep reinforcement learning-based resource alloca- 1604

tion approaches in IoT networks, future research is required 1605

to design and integrate efficient training techniques in such 1606

approaches to reduce the training complexity and computa- 1607

tional resources. This line of research would contribute to 1608

efficiently managing the device power and speed. 1609

10) ADDRESSING THE HYPERPARAMETER OPTIMIZATION 1610

ISSUE ASSOCIATED WITH THE DEVELOPMENT OF DL-BASED 1611

RESOURCE MANAGEMENT MODELS FOR IoT NETWORKS 1612

The DL-based resource management models require the def- 1613

inition of hyperparameters like the number of hidden layers, 1614

the number of neurons in each hidden layer, the activation 1615

function(s), the optimizer, and the hidden layer parameters 1616

(e.g., weights and biases). The building of a good DL model 1617

for resource allocation prediction depends on the optimal 1618

tuning of the hyperparameters. To guarantee the realization 1619

of optimal hyperparameters to build a good model, future 1620

research need to consider the investigation and development 1621

of new optimization methods that can be used to determine 1622

optimal hyperparameters that enable the network to output a 1623

good solution. It will be interesting to also explore the use of 1624

different optimization techniques like Bayesian optimization 1625

and random search techniques. 1626

11) OPTIMAL ACTIVATION FUNCTION SELECTION 1627

STRATEGIES FOR IMPROVING THE PREDICTION ACCURACY 1628

PERFORMANCE OF DL-BASED RESOURCE MANAGEMENT 1629

MODELS FOR IoT NETWORKS 1630

The use of multiple activation functions may be advantageous 1631

to build a DL-based resource management model with a good 1632

prediction accuracy for IoT networks. But then, there is a need 1633

to be able to select an appropriate activation function based on 1634

the system channel conditions. This requires the investigation 1635
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TABLE 6. Summary of proposed game theory methods for resource management in IoT networks.

and design of an optimal search strategy that can select the1636

best activation function. A good idea could be to explore and1637

exploit a tabu search method to design an efficient strategy.1638

12) REDUCING DL MODELS COMPUTATIONAL RESOURCES1639

FOR RESOURCE ALLOCATION PREDICTIONS WITH THE1640

SAGEMAKER NEO TOOL1641

In practice, the DL models require significant computational1642

resources (e.g., computational size, computational power, and1643

computational time) for resource allocation inference in IoT1644

networks, as they sometimes contain several unnecessary1645

codes and functionality whichmay not really contribute to the1646

resource allocation prediction of DL models. Such redundant1647

associated codes and functionality increases the computa-1648

tional resources of theDLmodels. These limitations currently1649

make it hard to deploy DL models for resource allocation on1650

the resource-constrained IoT devices. To make DL models1651

deployable on the low-resource IoT devices, future research1652

may consider the use of the SageMaker Neo tool [139]. This1653

tool is envisaged as a promising tool that can be employed1654

to compile and deploy a computationally efficient resource1655

allocation DLmodel on IoT devices hardware/processor plat-1656

forms like the Texas Instruments, Raspberry Pi, ARM, Intel,1657

NVIDIA, and Xilinx [111], [113], [114]. The use of the1658

SageMaker Neo tool has to do with using the tool to optimize1659

an already built DL model in Keras, Tensorflow, PyTorch or1660

MXNet by training and tuning the model, choosing a tar-1661

get hardware platform, and deploying the optimized trained1662

model on the IoT devices. Also, according to the results of1663

the performance test reported on the Resnet-50 model with1664

the MXNet tool and the SageMaker Neo tool in [140], it was1665

reported that the SageMaker Neo tool achieved a computa-1666

tional time of about 5 times faster and a computational size1667

of about 15%more efficiency in RAM usage over theMXNet 1668

in making predictions with the ResNet-50 model. 1669

IX. CONCLUSION 1670

This study has presented a comprehensive review of the 1671

use of deep learning approaches towards addressing the 1672

resource management challenges in IoT networks to improve 1673

the performance of IoT networks for various time-critical 1674

applications (e.g., industrial IoT, IoT-enabled water quality 1675

sensing networks, remote surgery). First, we collected the 1676

related published studies between 2012 and 2022 from the 1677

Scopus database. Subsequently, we conducted a bibliometric 1678

analysis of the collected studies to determine the current 1679

research focus in the field. Following this, we conducted a 1680

comprehensive review of the relevant studies to determine 1681

the existing research gaps. The bibliometric analysis and 1682

the comprehensive review revealed that research on the use 1683

deep learning approaches for solving resource management 1684

challenges in IoT networks is less common. Because of the 1685

usefulness of IoT networks in various applications and the 1686

resource limitations associated with the IoT networks as well 1687

as the need to efficiently use the limited available resource, 1688

the IoT networks require advanced and sophisticated resource 1689

management solutions to be investigated and developed to 1690

improve their data communication performance and opera- 1691

tion lifetime. To fill this research gap, in this study, we intro- 1692

duced the use of deep learning on account of its advantages 1693

over other artificial intelligence techniques (e.g., optimiza- 1694

tion approaches and game theory approaches) in the context 1695

of computational complexity. Also, because of the lack of 1696

optimal solutions for most IoT networks resource manage- 1697

ment formulations when using the conventional optimiza- 1698

tion approaches, as such problems are mostly non-convex, 1699
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we motivate for the use of deep learning, the approaches in1700

this paper to compute resource allocation for the IoT devices1701

in the IoT networks. Moreover, we discussed the funda-1702

mentals of deep learning approaches along with their uses,1703

benefits, and challenges. Additionally, we point out important1704

potential research directions and discusses the challenges1705

to address when developing deep learning models to seek1706

resource management solutions in IoT networks. Moreover,1707

an important future work is to extend this work to other1708

areas of IoT, for example IoT network security. This line of1709

future work will help to manage the resource utilization of the1710

resource-intensive security schemes in IoT networks.1711
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