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Experimental work starting in the late 19th and into the early 20th century discovered that 
bone tissue (and indeed other tissues) contains diffusible substances that trigger the induction 
of bone formation.1–3 Levander proved that alcoholic extracts of bone induce the formation of 
bone when implanted in heterotopic extraskeletal sites, (where there is no bone).1 The 
hypothesis of putative substances or “morphogens”, (first described by Turing as “forms 
generating substances”),4 was a fundamental concept preceding several extraordinary 
experimentalists poised to dissect the rules of tissue induction and morphogenesis.4 Amongst 
others, Urist and Reddi persevered to identify the putative osteogenic activity present within 
the extracellular matrix of bone, dentine and other matrices including the kidney and the 
uroepithelium.5–7 

The classic work of Urist identified the critical role of acid demineralization of the bone 
matrix to predictably induce new bone formation in extra-skeletal heterotopic sites of rodents 
and lagomorphs, and proposed the term bone morphogenetic protein complex within the bone 
matrix initiating de novo bone formation by induction.6 The therapeutic exploitation of the 
“bone induction principle”8 was immediately seized upon for the treatment of tibial non-
union in humans using demineralized bone matrices.5,8 Continuous research across the globe 
finally yielded protein purification to homogeneity with amino-acid sequencing resulting in 
molecular cloning of a series of human bone morphogenetic proteins (hBMPs), members of 
the transforming growth factor-β (TGF-β) supergene family.9,10 After the incisive work of 
Wozney and Özkaynak in 1988 and 1990, respectively,9,10 cloning was followed by the 
production of recombinant human BMP-2 and BMP-7. The biological activity of the 
recombinant human morphogens was confirmed by outstanding data from several animal 
studies, including non-human primates’ species.11 

Whilst occasional reports appeared that validated the clinical efficacy of BMPs to regenerate 
bone in human patients,12,13 all too often critical examination of published radiographic 
images revealed the failure to achieve clinically significant osteoinduction and bone 
regeneration comparable to autologous bone auto transplants. The next three decades of 
therapeutic use enforced the sobering realisation that translation of animal trial results to 
humans was all too unpredictable.14–25 The question this raises is what are the differences, 
and why are there differences in biological response to osteoinductive morphogens between 
most mammals (and even non-human primates) and Homo sapiens, possibly for molecular 
and physiological discrepancies in regulatory complexity between species.26 We are not in 
the position to answer these questions at present; however, it places researchers and clinicians 
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in this field in an uncomfortable position – how do we interpret animal trial data knowing that 
its usefulness is limited? At present, the only answer can be with great caution. 

Knowing as we now do that the use of a single morphogen delivered by collagenous substrata 
routinely fails to match autologous bone in clinical use, a critical reappraisal of future 
osteoinductive strategies in humans is required. Using the autologous bone graft as a sensible 
blueprint we must seek to replicate the multiple constituents that confer on a bone graft the 
capacity to regenerate bone post transplantation. With this in mind, it is necessary to consider 
the cellular, mineral and morphogen constituents of a bone graft. 

Selection of the most appropriate osteoinductive morphogen or morphogen combination is a 
fundamental consideration. The clinical use of either hBMP-2 or hBMP-7 solo has so far 
yielded results that are too unpredictable to allow clinicians to use them with any degree of 
confidence. It behoves to reconsider the biological relevance of the previously dismissed 
“apparent redundancy”, i.e. why are there several members of the TGF-β superfamily 
demonstrating osteoinductive capabilities.11 Whilst it may indeed be a protective redundancy, 
it is more likely that synergistic activity of multiple morphogens deployed at critical spatial 
and temporal junctures will optimize bone tissue regeneration. Morphogen choice should no 
longer be based on expediency but on biological imperatives. 

Systematic preclinical studies in the Chacma baboon Papio ursinus showed that the three 
recombinant human mammalian transforming growth factor-βs induce substantial amounts of 
bone formation when implanted heterotopically in the rectus abdominis muscle.11,27–29 The 
hTGF-β3 isoform engineers hyper cellular bone organoids with rapid induction of mineralized 
bone and osteoid, the latter populated by highly secreting contiguous osteoblasts.27–29 Gene 
expression pathways by qRT-PCR show that the induction of bone formation is via several 
profiled BMPs expressed following implantation of hTGF-β3.27–29 This downstream 
expression of BMPs elicited by hTGF-β3 may escape the antagonistic activity of Noggin, 
whereas direct implantation of high doses (often several mg) of hBMPs activates the Noggin 
antagonist pathway and may explain the limited effectiveness of hBMPs in clinical 
contexts.27–29 

Synergistic binary applications or single relatively high doses of hTGF-β3 have shown that 
hTGF-β3 induces bone by expressing a variety of bone morphogenetic proteins (BMPs). 
Tissue induction thus invocated singly by hTGF-β3 recapitulates the synergistic induction of 
bone formation by binary applications of hTGF-β1 and -β3 with hBMP-7.30 The induction of 
bone formation could be profoundly enhanced by binary applications of a recombinant hBMP 
with relatively low dose of hTGF-β1 or -β3 with a ratio by weight of 20:1.11,30 Molecularly, 
the rapid induction of bone formation by binary applications of hBMP-7 and hTGF-β3 or by 
hTGF-β3 applied singly resides in the up-regulation of selected genes involved in tissue 
induction and morphogenesis. Genes include Osteocalcin, RUNX-2, BMP-7, TGF-β1 and -β3, 
with however down regulation of TGF-β2.30 Synergistic binary applications also induce the 
morphogenesis of rudimentary embryonic growth plates indicating that the “memory” of 
developmental events in embryo can be re-deployed post-natally by the application of 
morphogens’ combinations. 

The biological acceptance of the inductive activity of a single recombinant human protein 
above the natural milieu and equilibrium of the extracellular matrix of bone containing 
several pleiotropic naturally derived morphogens attached to the mineralized collagenous 
matrix of bone has been the fundamental error of the biotechnology industry developing 
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recombinant hBMPs for translation in clinical contexts.31 Eager clinician scientists embraced 
the powerful biological activity of a single recombinant hBMP with no proper efficacy 
studies beyond in vitro and in vivo rodent’ models.18,31 

A final, and as it turned out, fundamental error of biotechnology companies, was to seek 
regulatory approval for doses much higher than those tested in pre-clinical animal studies 
justified by the vague rationale that higher doses were needed in clinical contexts.31 It turned 
out that even massive doses of several milligrams proteins per gram of carrier, (aside serious 
collateral effects), were needed to yield insufficient regeneration often inferior to autogenous 
bone grafts.14,19–25 

Morphogens’ delivery matrices are enforced upon physicians by commercial dictates that 
have proven in humans to be inadequate. Delivery system choices are bewildering but suffice 
to say that the material characteristics that are required are compression resistance, to bind 
and desorb morphogen at appropriate rates and resorb readily. Whilst allografts and some 
synthetic ceramics have shown the characteristics of spontaneous osteoinductivity the 
phenomenon is inadequate for therapeutic use although may exploited for synergy between 
delivery and morphogen. It must be conceded that at present, the insoluble collagenous bone 
matrix or demineralized bone matrix remains the most appropriate choice for delivery, and 
future investigations may focus on combining demineralized bone matrices with polymers 
that will allow the manufacture of customisable shapes. 

What cellular populations are required can be determined by the careful study of the cellular 
populations of bone grafts. Once we know these facts, the next stage is to determine where 
and how are these cells to be obtained? The stem cell niche has become yet another medical 
plat du jour promising to solve many of the regenerative challenges of medicine. Harvesting, 
isolating and expanding a cellular population is expensive, time consuming and at present of 
little clinical importance. Returning to the constituents of an autologous bone graft as a 
waypoint it seems that the most pragmatic approach to obtain relevant osteogenic cellular 
populations via low morbidity bone aspirates from one of several donor sites.32 

In his optimistic classic Editorial Comment “The reality of a nebulous enigmatic myth”,33 
Marshall Urist stated that pre-clinical and clinical research on the bone induction principle8 
“are bound to dispel the myth and appreciate the reality of bone induction for the benefit of 
patients with crippling diseases of the bone and joints”. Fifty years later, reading that several 
tens of milligrams of hBMPs are needed to induce an uninspiring bone volume in human 
patients the Bone Research Laboratory, (not in Los Angeles but in Johannesburg), still 
wrestles with this nebulous enigma. 

We have repeatedly posed the challenge to molecular biologists, clinicians, tissue engineers 
and regulators alike to encourage and facilitate the exploration of a novel approach to 
therapeutic bone regeneration. We are convinced it will be a vanguard that will deliver the 
goal that surgeons and patients aspire to – a low morbidity, reliable technique for the 
reconstruction of osseous defects of any size. 
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