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Appendix A: Block Gibbs sampler

The block Gibbs sampler in |1] for the hierarchical representation Eq (7) of Eq (3),
allowing for different A;;’s in the target distribution Eq (5) is re-presented here for
completeness.

To update a single column and row of ® per iteration - focusing on the last column
and row - let X be a p X p symmetric matrix with a zero main diagonal and 7 in the
upper off diagonal entries. Secondly, partition the matrices ®, S and Y as follows
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Notice that the conditional distribution of the last column in Eq (5) can be presented as
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here D is the diagonalised matrix of the vector 715. The following change of variables

B =01
v =0 — 02107015
with Jacobian independent of (3,7), yields the following conditional distribution
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It follows that
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where C' = {(s92 + \)©11 + D'} 1. See [1] for a discussion on how the positive
definite constraint on © is adhered to in the formulation above.

Moreover, T can be updated by observing that the conditional posterior distribution of
the 1/7;;’s in Eq (5) are independently inverse Gaussian (INV — GAU) with /\;j =\

and 4 = \ (A5/03)
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The block Gibbs sampler algorithm is summarised by

Algorithm 1 Block Gibbs sampler

1: Set the hyperparameters (s,r) for the gamma distribution in Eq (7) and initialise
{Ni}r_, and 7.
fori=1,2,...,pdo
Partition ®, S and Y as in Eq .
Sample v ~ GA(n/2 41, (s22 + A)/2) and B ~ N(—=C'sy1,C).
Update 615 = 8,02 =B 000 =7+ B8 07,3
end for
for i # j do
Sample )\ij ~ GA(l + 7, |0,~j| + S)
Sample §;; ~ INV — GAU(z', \') and update 7;; = 1/8;;
end for

—
=

For the choice of the hyperparameters (r, s), [1] suggest r = 1072 and s = 107° for
excellent performance in the adaptability of A;; to each 6;; and A; = 1.

Appendix B: Additional synthetic data analysis
figures

Figs[1] and [2] provide additional insight into the comparative performance of the of the
B-net estimator with regards to the estimated scale-free, band and cluster network
structures. The best suited sparsity threshold for p = 30 for said structures is presented
in Fig[p] Similarly, Figs 3] [ and [6] depict the aforementioned insights for p = 100.
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(c) Model 7: cluster.
Fig 1. Comparison of the true DN, B-net and D-net graphical structure
estimates for the scale-free, band and cluster structure for p = 30.
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(b) Model 6: band.
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(c) Model 7: cluster.
Fig 2. Comparison of the true DN, B-net and D-net adjacency matrix
estimates for the scale-free, band and cluster structure for p = 30.
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(c) Model 7: cluster.

Fig 3. Comparison of the true DN, B-net and D-net graphical structure
estimates for the scale-free, band and cluster structure for p = 100.
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(a) Model 5: scale-free.
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(b) Model 6: band.
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(c) Model 7: cluster.
Fig 4. Comparison of the true DN, B-net and D-net adjacency matrix
estimates for the scale-free, band and cluster structure for p = 100.
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(a) Model 5: scale-free. (b) Model 6: band. (c) Model 7: cluster.
Fig 5. Optimal Bayesian sparsity threshold selection for p = 30. The median
of the absolute sparsity error and best performing MCC for the scale-free, band and
cluster structure under varying thresholds for each Bayesian sparsity criterion in Eq (9)
(dotted) and Eq (8) (dot-dash) for dimension p = 30. The best performing threshold is
indicated by a vertical line with the accompanying MCC value displayed in the legend.
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(a) Model 5: scale-free. (b) Model 6: band. (¢) Model 7: cluster.
Fig 6. Optimal Bayesian sparsity threshold selection for p = 100. The median
of the absolute sparsity error and best performing MCC for the scale-free, band and
cluster structure under varying thresholds for each Bayesian sparsity criterion in Eq (9)
(dotted) and Eq (8) (dot-dash) for dimension p = 100. The best performing threshold is
indicated by a vertical line with the accompanying MCC value displayed in the legend.
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