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a b s t r a c t

It is well known that high gain observers exist for single output nonlinear systems that are uniformly
observable and globally Lipschitzian. Under the same conditions, we show that these systems admit
semi-global and finite-time converging observers. This is achieved with a derivation of a new sufficient
condition for local finite-time stability, in conjunction with applications of geometric homogeneity and
Lyapunov theories.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Research on nonlinear observers has achieved remarkable
progress since the formal introduction of the concept and the
Lyapunov approach based results of existence and design in Thau
(1973). With the advance of the nonlinear observability theory
(Hermann&Krener, 1997) in the differential geometric framework
(Isidori, 1995), quite a number of early works have been devoted
to establishing the link between nonlinear observer and nonlinear
observability. The existence of exponential observers is closely
related to the observability of the linearized system (Kou, Elliott,
& Tarn, 1975; Xia & Gao, 1988). Uniform observability of a single
output nonlinear system results in a triangular structure useful
for observer design (see Gauthier, Hammouri, and Othman (1992);
Gauthier and Kupka (1994); Hammouri, Targui, and Armanet
(2002) and their other works). These findings are employed in
all three major classes of nonlinear observer design methods that
abound in the literature. Linearized observability is a standing
assumption for both the Lyapunov based approach (Raghavan
& Hedrick, 1994; Thau, 1973) and the observer canonical form
approach (Bestle & Zeitz, 1983; Krener & Isidori, 1983). High-gain
observers are very much associated with the triangular structure
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derived from the uniform observability of nonlinear systems
(Gauthier et al., 1992; Gauthier &Kupka, 1994). Newdevelopments
of all three design methods have been carried out in various
directions (Kazantzis & Kravaris, 1998; Krener & Respondek, 1985;
Rajamani & Cho, 1998; Shim, Son, & Seo, 2001; Xia & Gao, 1989).
Observers with finite-time convergence have certain advan-

tages and are therefore desirable in some situations of control
and supervision (Menold, Findeisen, & Allgöwer, 2003a). There is
a series of methods that achieve finite-time convergence (Engel
& Kreisselmeier, 2002; Haskara, Ozguner, & Utkin, 1998; Hong,
Huang, & Xu, 2001; Michalska & Mayne, 1995). Some of these ob-
servers, such as the slidingmodeobservers, are not continuous. The
continuity property and its importance in finite-time stability are
realized in Bhat and Bernstein (2000, 2005). It is also interesting
to point out that continuous observers are realized to be differ-
ent and unique in the nonlinear context (Krener, 1986; Xia & Zeitz,
1997). For instance, linearized observability is no longer necessary
for the existence of a continuous observer (Xia& Zeitz, 1997). A first
approach to design such an observer is a dedicated introduction
of time-delay in the observers (Engel & Kreisselmeier, 2002). This
approach was extended to linear time-varying systems in Menold
et al. (2003a) and to nonlinear systems that can be transformed
into the observer canonical form Menold, Findeisen, and Allgöwer
(2003b). Sauvage, Guay, and Dochain (2007) also proposed non-
linear finite-time observers for a class of nonlinear systems, with
a time-delay in the observers. A finite-time observer for a class of
observer error linearizable systems has recently been constructed
in Perruquetti, Floquet, and Moulay (2008). The major technique
used is homogeneity (Qian & Lin, 2001).
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The aim of this paper is to prove a general result: a uniformly
observable and globally Lipschitzian single output nonlinear
system admits semi-global finite-time observers. This paper is
organized as follows. The definition of finite-time stability and its
criteria are reviewed in Section 2. In Section 3,wepresent the semi-
globally finite-time stable observers for single output nonlinear
systems. Finally, the paper is concluded in Section 4.

2. Preliminaries

Consider the following system

ẋ = f (x(t)), f (0) = 0, x ∈ Rn, x(0) = x0, (1)

where f : D → Rn is continuous on an open neighborhoodD of
the origin x = 0.

Definition 1 (Bhat & Bernstein, 2000). The zero solution of (1) is
finite-time convergent if there is an open neighborhoodU ⊂ D of
the origin and a function T : U\{0} → (0,∞), such that ∀x0 ∈ U,
the solutionψ(t, x0) of system (1) is defined andψ(t, x0) ∈ U\{0}
for t ∈ [0, T (x0)), and limt→T (x0) ψ(t, x0) = 0. Then, T (x0) is called
the settling time. If the zero solution of (1) is finite-time convergent,
the set of point x0 such that ψ(t, x0) → 0 is called the domain
of attraction of the solution. The zero solution of (1) is finite-time
stable if it is Lyapunov stable and finite-time convergent. When,
U = D = Rn, the zero solution is said to be globally finite-time
stable.

For example

ẏ(t) = −ldy(t)cα + ky(t), y(0) = x, (2)

where dycα = |y|αsign(y), l, k > 0, α ∈ (0, 1), is continuous
everywhere and locally Lipschitzian everywhere except at the
origin. Hence every initial solution inR\{0} has a unique solution.
If |x|1−α < l

k , multiplying (2) by e
−kt , we have

d(e−kty(t))
dt

= −l|y(t)e−kt |αe(α−1)ktsign(y(t)).

The solution trajectories are unique and described by

µ(t, x) =



sign(x)ekt
[
|x|1−α −

l
k
+
l
k
ek(α−1)t

] 1
1−α

,

t <
ln(1− k

l |x|
1−α)

k(α − 1)
, 0 < |x|1−α <

l
k
,

0, t ≥
ln(1− k

l |x|
1−α)

k(α − 1)
,

0, t ≥ 0, x = 0.

(3)

Clearly, the solutions initiated at x : |x|1−α < l
k , converge to y = 0

in finite time.

Lemma 1. Suppose there is a Lyapunov function V (x) defined on a
neighborhoodU ⊂ Rn of the origin, and

V̇ (x) ≤ −lV (x)α + kV (x), ∀x ∈ U \ {0}. (4)

Then, the origin of (1) is finite-time stable. The set

Ω =

{
x|V (x)1−α <

l
k

}
∩U (5)

is contained in the domain of attraction of the origin. The settling time

satisfies T (x) ≤ ln(1− kl V (x)
1−α)

k(α−1) , x ∈ Ω.

Proof. Note that the following inequality holds:

V̇ (x) ≤ −lV (x)α
(
1−

k
l
V (x)1−α

)
< 0, ∀x ∈ Ω \ {0}.

Since V is positive definite and V̇ takes negative values onΩ \ {0},
Ω is forward invariant. Moreover, x = 0 is the unique solution
of (1) satisfying x(0) = 0 (Yoshizawa, 1966). Thus every initial
condition x ∈ Ω has a unique solution ψ(t, x) ∈ Ω . Consider
x ∈ Ω \ {0}, which results in

V̇ (ψ(t, x)) ≤ −lV (ψ(t, x))α + kV (ψ(t, x)). (6)

Next, applying the comparison lemma to differential inequality (6)
and the differential equation (2) yields

V (ψ(t, x)) ≤ µ(t, V (x)), (7)

where µ is given by (3). It follows from (3) and (7) that

ψ(t, x) = 0, t ≥
ln(1− k

l V (x)
1−α)

k(α − 1)
,∀x ∈ Ω. (8)

Obviously, the setΩ is contained in the domain of attraction of the
origin.
Now, consider the following system:

ẋ = f (x, u), (9)

where x ∈ Rn, u ∈ Rp are the states and inputs of the system,
respectively. f : Rn

×Rp
→ Rn is assumed to be smooth enough,

and f (0, 0) = 0. The state variables x are not available for direct
measurement, only outputs y ∈ Rm are available:

y = h(x), (10)

where h : Rn
→ Rm and is smooth enough.We give the following

definition: �

Definition 2. Let a dynamic system be described by

ż = g(z, y, u), (11)

in which z ∈ Rn, and g : Rn
× Rm

× Rp
→ Rn is

continuous. Denote the solution of (9) and (11) with respect to
the corresponding input functions and passing through x0 and z0
respectively as x(t, x0, u) and z(t, z0, y, u), respectively.Wedenote
x(t, x0, u) simply by x(t), and z(t, z0, h(t, x0, u), u) by z(t). If
(i) z0 = x0 implies z(t) = x(t), for t ≥ 0 and u;
(ii) there exists an open neighbourhood U ⊂ Rn of the origin

such that e0 = z0− x0 ∈ U implies z(t)− x(t) ∈ U and a function
T : U \ {0} → (0,∞), such that

‖z(t)− x(t)‖ → 0, as t → T (e0), (12)

then, the system (11) is called a finite-time observer of the
system (9) and (10). All points e0 = z0 − x0 such that (12) holds
constitute a domain of observer attraction. If the open setU can be
chosen asRn, then (11) is called a global finite-time observer. If for
any given compact W ⊂ Rn containing the origin, there exists
a finite-time observer of the form (11), such that W is contained
in the domain of observer attraction, then (9) and (10) are said to
admit semi-global finite-time observers.

3. Finite-time observers

Consider a single output nonlinear system

Γ :

ż = F(z)+
p∑
i=1

Gi(z)ui,

y = h(z),
(13)
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where z ∈ Rn, u = [u1, . . . , up]T ∈ Rp and y ∈ R. If (Γ ) is
uniformly observable for any uniformly bounded input (Gauthier
et al., 1992). Then, a coordinate change can be found to transform
the system (13) into the form (Hammouri et al., 2002)

ẋ1 = x2 +
p∑
i=1

g1i(x1)ui,

ẋ2 = x3 +
p∑
i=1

g2i(x1, x2)ui,

...

ẋn = f (x1, . . . , xn)+
p∑
i=1

gni(x1, . . . , xn)ui,

y = x1 = C0x, C0 = [1, . . . , 0],

(14)

where f and gij (i = 1, . . . , n, j = 1, . . . , p) are continuous
functions with f (0) = 0, gij (0, . . . , 0) = 0. In addition, gij and f
satisfy the global Lipschitzian condition with Lipschitzian constant
l. For p = 1, by introducing S(θ) = ST(θ) > 0 which satisfies
−θS(θ) − AT0S(θ) − S(θ)A0 + C

T
0C0 = 0 and S(θ) ≥ δ0I , an

exponential observer has been built inGauthier et al. (1992),where
A0 is the anti-shift operator A0 : Rn

→ Rn, A0 i,j = δi,j−1, and
δ0 > 0 is a scalar. In this paper, the observer of the system (14) can
be designed as follows:

˙̂x1 = x̂2 + s1de1cα1 +
p∑
j=1

g1j(x̂1)uj,

˙̂x2 = x̂3 + s2de1cα2 +
p∑
j=1

g2j(x̂1, x̂2)uj,

...

˙̂xn = snde1cαn + f (x̂1, . . . , x̂n)+
p∑
j=1

gn,j(x̂1, . . . , x̂n)uj,

(15)

where [s1 s2 · · · sn]T = S−1(θ)CT0 and αi = iα − (i − 1)(i =
1, . . . , n), α ∈ (0, 1]. The dynamics of the observation error e =
x− x̂ is given by
ė1 = e2 − s1de1cα1 + f̃1,
ė2 = e3 − s2de1cα2 + f̃2,
...

ėn = −snde1cαn + f̃n,

(16)

where f̃1 =
∑p
j=1(g1j(x1) − g1j(x̂1))uj, f̃2 =

∑p
j=1(g2j(x1, x2) −

g2j(x̂1, x̂2))uj, . . . , f̃n = f (x1, . . . , xn) − f (x̂1, . . . , x̂n)
+
∑p
j=1(gnj(x1, . . . , xn) − gnj(x̂1, . . . , x̂n))uj, S(θ) is the same as

in Gauthier et al. (1992).
Now, we are ready to state our main result.

Theorem 1. Assume that the input u ∈ Rp uniformly bounded by
some u0 ≥ 0, and the nonlinear system (13) is uniformly observable
and globally Lipschitzian. Then, it admits semi-global finite-time high
gain observers.

The proof of Theorem 1 is divided into the following several
parts.
First, we focus on (16) without f̃i, i.e.,
ė1 = e2 − s1de1cα1 ,
ė2 = e3 − s2de1cα2 ,
...
ėn = −snde1cαn .

(17)

Lemma 2 (Perruquetti et al., 2008). For α > 1 − 1
n−1 , the system

(17) is homogeneous of degree α − 1 with respect to the weights
{(i− 1)α − (i− 2)}1≤i≤n.

Lemma 3 (Perruquetti et al., 2008). There exists ε1 ∈ (1 − 1
n−1 , 1]

such that for all α ∈ (1− ε1, 1), (17) is globally finite-time stable.

A proof of this can be found in Perruquetti et al. (2008), with the
following Lyapunov function

Vα(e) = ẽTS(θ)ẽ, (18)

where ẽ =
(
de1c

1
r · · · denc

1
αn−1r

)T
, e = (e1 · · · en)T, r =∏n−1

i=1 [(i−1)α−(i−2)]. Moreover, by Lemma4.2 (Bhat &Bernstein,
2005), we have

− c1(α, θ)[Vα(e)]

1
r2
+α−1

1
r2 ≤ LfαVα(e)

≤ −c2(α, θ)[Vα(e)]

1
r2
+α−1

1
r2 , (19)

where c1(α, θ) = −min{z:Vα(z)=1} LfαVα(z) and c2(α, θ) =
−max{z:Vα(z)=1} LfαVα(z).
The above construction of homogeneity and proof are also sim-

ilar to those in Perruquetti et al. (2008), which are actually rooted
in Bhat and Bernstein (2000). The above proof is independent of θ .
However, c2(α, θ) in (19) has the following property.

Lemma 4. c2(α, θ) satisfies limα→1 c2(α, θ) = θ .

Proof. It can be easily verified that max{e:V1(e)=1} Lf1V1(e) =
max{e:V1(e)=1}

[
−θeTS(θ)e− e21

]
= −θ . It is obvious that

Lf1V1(e
∗) = −θ , where e∗ = [0 0 · · · 0 1

√
snn
]
T and snn = [S(θ)]n,n.

Because there is a one-to-one correspondence between the set {z :
Va(z) = 1} and {z : V1(z) = 1}, that is for any z = [z1, . . . , zn]T ∈

{z : Va(z) = 1}, there is a z̄ =
[
dz1c

1
r , . . . , dznc

1
αn−1r

]
∈ {z :

V1(z) = 1} and limα→1 ‖z̄− z‖2 = 0. Since LfαVα(z) is continuous,
then, for any ε, ε1 > 0, there exists η > 0, when |α − 1| < η,
‖z− z̄‖2 < ε1, resulting in Lf1V1(z̄)− ε < LfαVα(z) < Lf1V1(z̄)+ ε.
Therefore, max{z:Vα(z)=1} LfαVα(z) < max{z̄:V1(z̄)=1} Lf1V1(z̄) + ε =
−θ + ε. Then, limα→1max{e:Vα(e)=1} LfαVα(e) ≤ −θ.

On the other hand, let e∗∗ =
[
0 0 · · · 0 s

−αn−1r
2

nn

]T
, then

e∗∗ ∈ {e : Vα(e) = 1}, and limα→1 LfαVα(e
∗∗) =

Lf1V1(e
∗) = −θ. Then, max{e:Vα(e)=1} LfαVα(e) ≥ LfαVα(e

∗∗).
Therefore, limα→1max{e:Vα(e)=1} LfαVα(e) ≥ limα→1 LfαVα(e

∗∗) =
−θ . Then, limα→1max{e:Vα(e)=1} LfαVα(e) = −θ. Thus, the proof is
completed. �

Lemma 5. When α = 1, for u ∈ Rp uniformly bounded by some
u0 ≥ 0, there exists a large enough θ1 ≥ 1, such that if θ ≥ θ1,
then (16) is exponentially stable.

Proof. Using the techniques in Gauthier et al. (1992), we can
obtain the result easily. �

For the system (14) with x0 ∈ Rn, and the system (15) initiated
at x̂0 ∈ Rn, we have the following proposition.

Lemma 6. For the system (16), there exists ε2 ∈ [1 − 1
n−1 , 1) such

that for all α ∈ (1− ε2, 1], the following inequalities hold:

Vα(e) ≤ S‖e0‖2, ∀t > 0, (20)

‖ẽ‖2 ≤
S
δ0
‖e0‖2, ∀t > 0, (21)

Please cite this article in press as: Shen, Y., & Xia, X. Semi-global finite-time observers for nonlinear systems. Automatica (2008), doi:10.1016/j.automatica.2008.05.015
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where Vα(e) and ẽ are given by (18), e0 = x0− x̂0, S = maxi,j |S(1)|i,j
and δ0 > 0 is a scalar. Moreover, for i = 2, . . . , n, k = 1, . . . , i,
there exists θ2 ≥ 1 such that if θ ≥ θ2, the following inequalities
hold

|ek(t)|
1

αi−1r /θ i ≤ |ek(t)|
1

αk−1r /θ k. (22)

Proof. Let d = eT0S(θ)e0, A
′
= V−1α ([0, d]), S′ = V−11 ({d}). Let f ′α

denote the vector field of system (16). Then,A′ and S′ are compact.
Define ϕ′ : (0, d] × S′ → R by ϕ′(α, e) = Lf ′αVα(e). Then ϕ

′ is
continuous and by Lemma 5 satisfies ϕ′(1, e) < 0, therefore, there
exists ε2 > 0 such that ϕ′((1 − ε2, 1] × S′) ⊂ (−∞, 0). Thus,
for α ∈ (1 − ε2, 1], Lf ′αVα takes negative values on S′. Therefore,
A′ is strictly positive invariant under f ′α for every α ∈ (1 − ε2, 1],
then ẽTS(θ)ẽ ≤ eT0S(θ)e0. Since S(θ) ≥ δ0I (Gauthier et al., 1992),
we have δ0‖ẽ‖2 ≤ ẽTS(θ)ẽ ≤ eT0S(θ)e0 ≤ S‖e0‖2. If ‖e0‖2 ≤ 1,
since 1 ≤ 1

r ≤
1
α1r
≤ · · · ≤

1
αn−1r

and θ ≥ 1, it is obvious
that inequalities (22) hold. If |ek(t)| > 1, it follows from (21)
that ek(t) is bounded. Then, there exists θ2 such that if θ ≥ θ2,
the inequalities (22) hold. �

Now, calculating the derivative of Vα(e) as defined in (18)
along the solution of system (16) by noting that d

dt deic
αi =

αi|ei|αi−1 (Hong, 2002), we can obtain

d
dt
Vα(e)(16) =

d
dt
Vα(e)(17) + 2ẽTS(θ)



1
r
|e1|

1
r −1 f̃1

1
α1r
|e2|

1
α1r
−1 f̃2

...
1

αn−1r
|en|

1
αn−1r

−1 f̃n



≤ −c2(α, θ)[Vα(e)]

1
r2
+α−1

1
r2 + 2l(u0 + 1)p

[
ẽTS(θ)ẽ

] 1
2

×

∑i,j |S(1)i,j|θ i+j−1

|ei|
1

αi−1r
−1 i∑
k=1
|ek|

αi−1r
×

|ej|
1

αj−1r
−1 j∑
k=1
|ek|

αj−1r


1
2

.

By Lemma 2.4 (Qian & Lin, 2001), there exist positive constants
c̄i (1 ≤ i ≤ n) such that the following inequalities hold.

i∑
k=1

|ei|
1

αi−1r
−1
|ek|

≤

i∑
k=1

[
c̄i|ei|

1
αi−1r + αi−1r

(
1− αi−1r
c̄i

) 1
αi−1r

−1

|ek|
1

αi−1r

]

,

i∑
k=1

bi,k|ek|
1

αi−1r ,

where bi,k > 0. Let b = maxi,k bi,k. Then,

d
dt
Vα(e)(16) ≤ −c2(α, θ)[Vα(e)]

1
r2
+α−1

1
r2 +

2bl(u0 + 1)pS
1
2

αn−1r

×
[
ẽTS(θ)ẽ

] 1
2

∑
i,j

 i∑
k=1

e
2

αk−1r
k

θ2k


1
2  j∑

k=1

e
2

αk−1r
k

θ2k


1
2


1
2

. (23)

Let ξk =
dekc

1
αk−1r

θk
, for θ ≥ max{θ1, θ2} ≥ 1, which results in

d
dt
Vα(e)(16) ≤ −c2(α, θ)[Vα(e)]

1
r2
+α−1

1
r2

+
2n2l(u0 + 1)pbS

1
2 θ

1
2

αn−1r

[
ẽTS(θ)ẽ

] 1
2

(
n∑
k=1

ξ 2k

) 1
2

. (24)

On the other hand, let ξ = [ξ1, ξ2, . . . , ξn]T, note that S(θ) ≥ δ0I ,
then,
n∑
k=1

ξ 2k ≤
1
δ0
ξ TS(1)ξ =

1
θδ0

[
deic

1
αi−1r

S(1)i,j
θ i+j−1

dejc
1

αj−1r

]
i,j

=
1
θδ0

[
deic

1
αi−1r S(θ)i,jdejc

1
αj−1r

]
i,j
=
1
θδ0
Vα(e). (25)

It follows from (24) and (25) that

V̇α(e) ≤ −c2[Vα(e)]

1
r2
+α−1

1
r2 + c3Vα(e), (26)

where

c3 =
2n2l(u0 + 1)pbS

1
2

αn−1rδ
1
2
0

. (27)

Now, we can summarize the proof for our main theorem.
Proof of Theorem 1. For any given compact set U ⊂ Rn

containing the origin, for system (14) on Rn
× Rp, define a

system (15) on Rn
× Rp, we can choose an ε < min{ε1, ε2}

such that for all α ∈ [1 − ε, 1) and θ ≥ max{θ1, θ2}, c2(α, θ)
satisfies c2(α, θ) ≥ θ

2 . By (26) and Lemma 1, ‘‘the domain of
observer attraction’’, by an abuse of terminology (since observer
convergence has not yet been obtained), is given by

Ω =

{
e : Vα(e) < (c2/c3)

1
r2(1−α)

}
. (28)

Due to the properties of c2 (Lemma 4) and the specific form of c3
in (27), we can choose sufficiently large θ ≥ max{θ1, θ2} such

that U ⊂

{
e : S‖e‖2 < (c2/c3)

1
r2(1−α)

}
. Then, by (20) and (28),

U ⊂ Ω . Thus, the system (13) admits semi-global finite-time
observers. �

By incorporating an update law for gain and higher order output
error terms, an extension of the well-known high gain observer
was recently presented by Andrieu, Praly, and Astolfi (2007).
However, our technique in this paper allows us to obtain semi-
global results. It might be possible to obtain a global result instead
of the semi-global ones expressed here by adding a linear term to
the homogeneous gain. We will discuss this issue elsewhere.

4. Conclusion

There are high gain observers for single output nonlinear
systems, that are uniformly observable and globally Lipschitzian.
Under the same conditions, we showed that for these systems
the uniform observability and the global Lipschitzian properties
imply the existence of semi-global and finite-time converging
observers. This was achieved with a derivation of a new sufficient
condition for local finite-time stability, together with applications
of geometric homogeneity and Lyapunov theories. It could
however be noted that non-locally Lipschitzian functions are
employed in the observer dynamics. At a digital implementation
level, discretizing such dynamics and disturbances may introduce
chattering before achieving convergence.
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