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A method to optimize the cost of a quantum channel is developed. The goal is to determine the cheapest
channel that produces prescribed output states for a given set of input states. This is essentially a quantum
version of optimal transport. To attach a clear conceptual meaning to the cost, channels are viewed in terms of
what we call elementary transitions, which are analogous to point-to-point transitions between classical systems.
The role of entanglement in optimization of cost is emphasized. We also show how our approach can be applied
to theoretically search for channels performing a prescribed set of tasks on the states of a system, while otherwise
disturbing the state as little as possible.
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I. INTRODUCTION

Quantum channels are ubiquitous in quantum information
theory. A natural question is: What is the cost incurred when
using a channel and how can it be optimized? It may lead
to conceptual insights regarding quantum channels and can
guide us in using resources most efficiently in applications.

One may want the cheapest channel (or channels) to per-
form a particular task. For example, to produce certain output
states for a given set of input states, which is exactly the
problem we study. Previous literature focused on the cost
of the input states [1–3], for channel capacity per unit cost,
whereas here we assign cost to the channel itself, in line with
Ref. [4].

In outline our approach is as follows: Given two systems
A and B with finite-dimensional Hilbert spaces, we consider
a set of states (density matrices) ρA

1 , . . . , ρA
l of the former, as

well as a set ρB
1 , . . . , ρB

l of the latter, and require a channel E
from A to B to satisfy

E
(
ρA

j

) = ρB
j (1)

for j = 1, . . . , l . Using the Choi-Jamiołkowski duality [5–7]
between channels and states, we represent E as a density
matrix κE , and express its cost as

KC (E ) = Tr(CκE ), (2)

where the cost matrix C is an observable of the composite
system AB. This cost KC (E ) is the expected cost of what will
be referred to as elementary transitions in the channel.

One then finds the optimal channel or channels, by min-
imizing the cost while satisfying the conditions (1). This is
closely related to quantum optimal transport, which corre-
sponds to the case l = 1. The approaches to quantum optimal
transport closest to our outline above, appears in Refs. [4,8].
Other approaches appeared in Refs. [9–27].
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There may be some terminological confusion here:
“Quantum optimal transport” is a quantum version of optimal
transport of probability [28], as opposed to “quantum trans-
port,” which refers to current flow in a quantum context, for
example of electrons [29].

A key difference between this paper and many of the refer-
ences mentioned above, including Ref. [4], is that here we do
not focus on quantum Wasserstein distances. We nevertheless
use a result regarding quadratic Wasserstein distances from
Ref. [8] in Sec. VI.

We note that Ref. [4] does use the correspondence between
states and channels, and expresses the transport cost in the
same way as above. But, in their setup, the cost is in effect
relative to a single input state.

Here we rather set the cost up to be independent of any
particular input state, by using the maximally mixed state as
a reference state. This is more appropriate for our goals, as
the cost matrix then applies to all input states ρA

j and channels
in (1). In addition, we attach a clearer conceptual meaning
to the cost, by introducing the idea of elementary transitions
as a quantum analog of point-to-point transitions in classical
spaces.

We also emphasize the role of entanglement, which seems
to have received limited attention in the literature on quan-
tum optimal transport. See Ref. [24] for a different aspect of
entanglement, namely robustness against perturbations of the
Wasserstein distance. We instead focus on how entanglement
can directly contribute to lowering cost.

Our basic framework is set out in Secs. II and III. This
includes the introduction of elementary transitions. The role
of entanglement is discussed in Sec. IV. This is followed by
two examples in Sec. V, illustrating a number of the ideas
from the preceding sections. In Sec. VI we apply our setup to
obtain channels performing tasks of the form (1), where A and
B are the same system, while causing a minimal disturbance
to other states of A, as indirectly measured by the cost matrix.
Sections V and VI can be read independently of one another.
Our concluding remarks appear in Sec. VII.
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II. CHANNELS, STATES, AND ELEMENTARY
TRANSITIONS

To realize the outline above, we use the Choi-Jamiołkowski
duality (see the review [30]). Fix an orthonormal basis
|1A〉 , . . . , |mA〉 for the Hilbert space HA of the system A, and
define a state κE of AB by

κE = 1

m

∑
i j

|iA〉 〈 jA| ⊗ E (|iA〉 〈 jA|). (3)

This state reduces to the maximally mixed state of A, so the
latter state serves as a reference state in our setup.

Diagonalize this state as

κE =
mn∑
α=1

pακα (4)

where n is the dimension of the Hilbert space HB of B, the
κα are pure states and the pα are probabilities. We aim to view
these pure states as representing elementary transitions, which
constitute the channel E .

Invert the duality to define linear maps Eα from the space
L(HA) of linear operators on HA, to the space L(HB):

Eα (|iA〉 〈 jA|) = m(〈 jA| ⊗ IB)κPT
α (|iA〉 ⊗ IB),

where PT denotes the partial transpose with respect to the
basis |1A〉 , . . . , |mA〉 for HA, and IB is the identity operator on
HB. These maps are completely positive by Choi’s method [7],
but they are not necessarily channels.

From (3) we have

E (|iA〉 〈 jA|) = m(〈 jA| ⊗ IB)κPT
E (|iA〉 ⊗ IB),

hence

E =
∑

α

pαEα. (5)

That is, we have decomposed the channel E into the com-
pletely positive maps Eα . Only the Eα with pα > 0 are viewed
as part of the decomposition. This is a variation on a standard
decomposition of a channel (see Ref. [31]), now specifically
having a correspondence between the maps Eα and the pure
states κα . As the diagonalization of κE is in general not unique
(one can choose different orthonormal bases in an eigenspace
of dimension greater than one), this decomposition of a chan-
nel is also not in general unique.

We call any Eα appearing in a decomposition (5) of a
channel, an elementary transition. It is analogous to classical
transport from a point x in one classical probability space, to
a point y in another, as in optimal transport. To clarify this
analogy, we briefly describe what happens in classical opti-
mal transport (refer to Ref. [28] for an overview of classical
optimal transport).

The problem is to find the cheapest way to transport goods
from one set of points to another. For example, from ware-
houses to shops. A cost c(x, y) is incurred when moving one
unit, say a truckload, of the goods from warehouse x to shop
y. The exact route from x to y is not relevant in this setup and
is assumed to be determined by x and y. Only the pair (x, y)
consisting of the initial point x and the end point y is needed.
Therefore, in this picture, one truckload of goods transported

from x to y, is viewed as an elementary transition, denoted
by (x, y). Then c(x, y) is seen as the cost of this elementary
transition.

Mathematically one often models the distributions of
goods over warehouses and shops, respectively, as probability
distributions over each of the two sets, i.e., the total available
goods is normalized to 1. It is this probabilistic viewpoint that
is analogous to the quantum setting.

Note, in particular, that the quantum pure state κα cor-
responding to Eα is analogous to the pure state (x, y) of a
classical composite system. In this way an elementary tran-
sition Eα , via its duality with κα , is analogous to a classical
elementary transition (x, y). The cost associated to an elemen-
tary transition Eα will be discussed in the next section.

The quantum case allows for much more interesting el-
ementary transitions than the classical case when κα is
entangled. The elementary transitions are then essentially
nonclassical. For example, any channel from A to itself given
by a unitary operator U on HA,

E (ρA) = UρAU †,

is an elementary transition dual to the maximally entangled
pure state κE . Classical transport, on the other hand, just
allows point-to-point elementary transitions. There are no
classical elementary transitions involving larger portions (or
the whole) of the probability spaces involved: the pairs (x, y)
are the only pure states of a classical composite system, i.e., of
the Cartesian product of the two classical probability spaces.

One can refine this picture, and view an elementary tran-
sition in effect as a map from a subset of the set of states of
A, to its image as a subset of B’s states. This can be seen by
studying the support of such a transition Eα , i.e., the Hilbert
subspace Hα

A of HA, orthogonal to the set of state vectors
|ψA〉 in HA such that Eα (|ψA〉 〈ψA|) = 0. Unlike a channel E ,
the support of which is always the whole of HA (as channels
preserve the trace), the support of an elementary transition can
be smaller. Let Sα

A be the set of density matrices on HA that are
direct sums of density matrices on Hα

A and zero matrices on
its orthogonal complement (i.e., arranged diagonally as two
blocks). By restricting an elementary transition Eα to Sα

A , so
in effect to density matrices on Hα

A , one has a more refined
representation E ′

α of the elementary transition, mapping from
Sα

A to its image Eα (Sα
A ). Such a restriction is natural exactly

because Eα takes states |ψA〉 〈ψA|, with |ψA〉 orthogonal to
Hα

A , to zero, and can give some insight into the nature of an
elementary transition. But, even rescaling this restricted map
by scalar multiplication, in general still does not make it a
channel, as will be seen by example near the end of Sec. V.
This refined picture will not be used in this paper, though.

We note that every pure state of the composite system AB,
corresponds to an elementary transition, in other words, it
appears in a diagonalization of the form (4) for some channel
E . In fact, the channel given by

E (X ) = 1

n
Tr(X )In,

for any m × m matrix X , leads to

κE = 1

mn
Imn,
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the diagonalization (4) of which can be chosen to include any
pure state of AB.

In particular, we can view an elementary transition ε as an
independent object, without reference to a channel. Such an
ε is defined as the dual of any pure state ρAB

pure of AB, via the
inverse of (3):

ε(|iA〉 〈 jA|) = m(〈 jA| ⊗ IB)
(
ρAB

pure

)PT
(|iA〉 ⊗ IB).

We will correspondingly occasionally refer to a pure state of
AB as an elementary transition.

III. COST MATRIX

The cost associated to a channel will be encoded by a
self-adjoint operator C from HA ⊗ HB to itself, which will be
referred to as the cost matrix. The cost (2) of a channel can be
viewed as the expected value of the costs KC (Eα ) = Tr(Cκα )
of the elementary transitions appearing in a decomposition (5)
of the channel.

The cost matrix is analogous to the cost function c(x, y)
appearing in classical transport, which represents the cost of
an elementary transition from point x to point y. The cost (2)
is analogous to the cost in classical optimal transport, given
by the integral of c(x, y) with respect to a measure (roughly
analogous to κE ) whose marginals are the initial and final
probability measures, respectively. Here our conceptual setup
diverges somewhat from classical optimal transport, as we
allow a set of initial and final states, rather than just one
of each. This is why we set up κE to always reduce to the
maximally mixed state of A, rather than to a specific input
state.

One way of representing or constructing C is

C =
∑

α

kαρAB
α , (6)

for any finite set of pure states ρAB
α of AB, not necessarily

orthogonal on Hilbert space level. This assigns the cost kα

(any real number) to the pure state ρAB
α representing an ele-

mentary transition, in analogy to the classical cost function,
where the cost c(x, y) is assigned to the classical pure state
(x, y) representing the elementary transition from x to y.

Allowing nonorthogonal states, is nonclassical. Indeed,
cost matrices can be constructed by (6) with the states ρAB

α

not orthogonal, allowing the eigenvalues of C and even the
optimal cost KC (E ) to be lower than any of the constitutive
costs kα . This is a straightforward but nevertheless decisive
deviation from the classical case.

When constructing C using (6), we should avoid inadver-
tently assigning zero cost to an elementary transition whose
corresponding Hilbert space state vector is orthogonal to the
states appearing in (6). We need to include at least mn pure
states ρAB

α whose Hilbert space vectors span the whole of
HA ⊗ HB. Including more than mn states is analogous to, but
more involved than, including more than one cost for a single
point (x, y) in the classical case, where such costs would
simply be added together.

Expressions of the form

IA ⊗ OB − OT
A ⊗ IB (7)

are also useful building blocks for C, where OA and OB are
corresponding observables of A and B (say energy), measur-
ing a difference in this observable. The transposition of OA,
with respect to the same basis used in the Choi-Jamiołkowski
duality, is natural due to general mathematical considerations
regarding channel-state duality (see Secs. 3 and 7 of Ref. [32],
as well as Ref. [4]). This essentially reflects a dependence of
the Choi-Jamiołkowski duality on the maximally entangled
state

|�〉 = 1√
m

m∑
i=1

|iA〉 |iA〉 , (8)

which is used in the duality (also see Ref. [30]). Both (6) and
(7) will be illustrated in Secs. V and VI, which then also serve
to motivate (7).

IV. ROLE OF ENTANGLEMENT

Entanglement has an important role in optimizing cost.
In short: An elementary transition is a channel only when
the dual pure state is maximally entangled. Hence we can
expect the optimal cost to be closer to a low eigenvalue of
C, if some eigenvector corresponding to it is entangled. If
no such eigenvector is maximally entangled, then none of
them corresponds to a channel, requiring other elementary
transitions to be included in order to build up a channel. The
cost is consequently an expectation value including possibly
higher eigenvalues, in turn leading to higher optimal cost of
the channel.

To expand on this, keep in mind that if c denotes the lowest
eigenvalue of C, and R is the corresponding eigenspace, then
for all states ρAB of AB,

Tr(CρAB) � c,

where Tr(CρAB) = c exactly for states ρAB such that the image
of HA ⊗ HB under ρAB is contained in R, for example for states
given by eigenvectors corresponding to c.

Also recall that (3) gives a one-to-one correspondence
between all channels (from A to B) and the set of states of
AB, which reduce to the maximally mixed state of A. The
maximally entangled pure states of AB are exactly the pure
states reducing to the maximally mixed state of A, implying
that an elementary transition ε is a channel exactly when its
dual

κε = 1

m

∑
i j

|iA〉 〈 jA| ⊗ ε(|iA〉 〈 jA|)

is a maximally entangled state of AB.
One consequence of these facts, for example, is that if

dim(R) = 1 and the eigenvector |c〉 corresponding to c is not
maximally entangled, then

KC (E ) > c

for all channels E from A to B.
More generally, we now argue heuristically that entangle-

ment in low-lying eigenvectors of C (i.e., corresponding to
low eigenvalues), tends to lower the optimal cost. Moreover,
entanglement becomes more essential for low cost, the smaller
the dimension of the low-lying eigenspaces.
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To keep the cost of a channel as low as possible, we would
like to build it in the form (5) from elementary transitions,
which are as close as possible to C’s low-lying eigenvectors
and carrying probabilities pα as large as possible. If a pure
state of AB is far from being maximally entangled, then we
can expect the dual elementary transition to be far from a
channel. Consequently, we expect that in a decomposition
(5) of a channel, such an elementary transition will tend to
carry a small probability. On the other hand, a pure state AB,
which is close to being maximally entangled, is dual to an
elementary transition, which is close to being a channel. Such
an elementary transition has a greater chance to carry a large
probability in a decomposition of a channel.

Hence, the more entangled the low-lying eigenvectors of
C are, the better the chances that we can assign large proba-
bilities to elementary transitions close to these eigenvectors,
and still obtain a channel in the set of channels allowed by
the requirements (1). As a result, the mentioned entanglement
tends to lower the optimal cost.

This argument becomes more relevant the smaller the
dimension of the eigenspaces of C corresponding to lower
eigenvalues. The larger the dimension of an eigenspace, the
higher the chances of also being able to build a channel with
the same cost, using nonentangled states in that eigenspace.

As will be seen in the next section, there are certainly
limits to this heuristic argument, in particular with respect to
how the size of the probabilities pα are limited by the lack of
entanglement of the associated pure states κα . Nevertheless, it
gives a strong indication that low optimal cost will tend to go
hand in hand with high levels of entanglement in the low-lying
eigenvectors of C. A general class of cost matrices, which
in absence of restrictions (1) leads to a unique maximally
entangled state associated to optimal cost, with the identity
channel as uniquely optimal, is discussed in Sec. VI.

V. EXAMPLES IN TWO-DIMENSIONAL HILBERT SPACE

We consider two examples where the costs are, respec-
tively, energy and time, to illustrate our setup in a simple
context. In the process, elementary transitions are seen in
action. Special attention is paid to the role of entanglement.

Assume that HA = HB is two dimensional. We consider
channels E from A to itself. In terms of the notation

ρ = ρA,

the general form of E is then

E (ρ) =
4∑

j=1

VjρV †
j

where

Vj =
[

a j b j

c j d j

]

are complex matrices satisfying
∑

j V †
j Vj = I4 in the or-

thonormal basis we use for HA. In terms of vectors a, b, c,
and d given by

a = (a1, a2, a3, a4)

etc., and the usual complex dot product, we have

E (|1〉 〈1|) =
[

a · a c · a
a · c c · c

]
, E (|1〉 〈2|) =

[
b · a d · a
b · c d · c

]
,

E (|2〉 〈1|) =
[

a · b c · b
a · d c · d

]
, E (|2〉 〈2|) =

[
b · b d · b
b · d d · d

]
.

Then κE is the 4 × 4 matrix given by:

κE = 1

2

[
E (|1〉 〈1|) E (|1〉 〈2|)
E (|2〉 〈1|) E (|2〉 〈2|)

]
.

A. Energy

As our first example, assume that A has the Hamiltonian

H =
[
ε/2 0
0 −ε/2

]

with ε > 0. Consider

C = I2 ⊗ H − H ⊗ I2 + Jσ1 ⊗ σ1,

where σ1 is the x Pauli matrix. The first two terms in C will
tend to force A to its lowest-energy state (z spin down), while
the last term tends to preserve x spin, with

J < 0.

Then

KC (E ) = ε

2
(b · b − c · c) + J

2
(a · d + d · a + b · c + c · b),

optimization of which requires a to be proportional to d and b
to c.

The two negative eigenvalues of C are J and −√
J2 + ε2

with eigenvectors

|ψ1〉 = 1√
2

(|1〉 |1〉 + |2〉 |2〉)

and

|ψ0〉 = 1√
L2 + J2

(L |1〉 |2〉 − J |2〉 |1〉),

respectively, where L = √
J2 + ε2 + ε. Note that as |ψ0〉 is

not maximally entangled, thus not dual to a channel, the
lowest cost −√

J2 + ε2 can not be reached by any channel.
As an example of a task the channel has to perform, we

enforce the condition that the channel takes the lowest-energy
eigenstate to the highest, i.e.,

E
[

0 0
0 1

]
=

[
1 0
0 0

]
. (9)

This leads to the optimal cost

KC (E ) = J,

with the unique optimal channel E given by the unitary
operator

U =
[

0 1
1 0

]
.

This corresponds approximately to the entangled eigenvector
|ψ0〉. Even though the latter is not maximally entangled, it is

032604-4



OPTIMAL QUANTUM CHANNELS PHYSICAL REVIEW A 104, 032604 (2021)

close enough to the maximally entangled state vector

|ψ ′
0〉 = 1√

2
(|1〉 |2〉 + |2〉 |1〉)

(obtained when J → −∞) dual to U , that the latter channel is
obtained as optimal. This would not have been possible with-
out entanglement of the eigenvector |ψ0〉, which, combined
with the fact that a maximally entangled elementary transition
is a channel, lead to the optimal channel.

Now drop (9). Writing |b| = sin θ and |c| = sin ϕ, we find
the minimum of

ε

2
(sin2 θ − sin2 ϕ) + J cos(θ − ϕ)

over θ, ϕ ∈ [0, π/2], giving the optimal cost

KC (E ) = −
√

J2 + ε2/4,

with the optimal channels described by

|a|2 = |b|2 = 1 − |c|2 = 1 − |d|2 = 1

2

(
1 − ε√

4J2 + ε2

)

for a · b + c · d = 0, with a proportional to d and b to c. For
J → 0, the channel takes all states to the minimum energy
eigenstate of H , as one would physically expect.

To clarify entanglement’s role in this case, we study the
limit

J → −∞.

The optimal cost then asymptotically approaches both the
negative eigenvalues of C, the optimal channels being

E
[
ρ11 ρ12

ρ21 ρ22

]
= 1

2

[
1 − iγ (ρ12 − ρ21) ρ12 + ρ21 − iγ (ρ11 − ρ22)

ρ12 + ρ21 + iγ (ρ11 − ρ22) 1 + iγ (ρ12 − ρ21)

]

for any −1 � γ � 1. The decomposition of such an E in
elementary transitions, expressed in terms of states, is

κE = 1 + γ

2
|φ1〉 〈φ1| + 1 − γ

2
|φ2〉 〈φ2| ,

where the elementary transitions

|φ1〉 = 1√
2

|ψ1〉 + i√
2

|ψ ′
0〉

and

|φ2〉 = i√
2

|ψ1〉 + 1√
2

|ψ ′
0〉 .

are both maximally entangled.
The decomposition into the elementary transitions (ex-

pressed as state vectors) |φ1〉 and |φ2〉 above, is unique for
γ 
= 0, exactly because the two probabilities (1 + γ )/2 and
(1 − γ )/2 differ. Hence, for γ 
= 0, entangled elementary
transitions are necessarily present in the corresponding opti-
mal channels.

For γ = 0, on the other hand, the eigenspace of the sin-
gle nonzero eigenvalue 1/2 of κE becomes two dimensional.
Consequently, nonentangled elementary transitions can also
be obtained in the decomposition of the optimal channel given
by γ = 0.

For finite, but large enough |J|, the results above will still
hold approximately. This means that highly entangled elemen-
tary transitions will necessarily carry large weight in most of
the optimal channels.

In line with Sec. IV, we also see the following: Both the
maximally entangled state vectors |ψ1〉 and |ψ ′

0〉, respectively
an eigenvector and approximate eigenvector of C with lowest
eigenvalues, appear as uniquely determined (when γ 
= 0)
components of the elementary transitions constituting the op-
timal channels, confirming that entanglement of the lower cost
eigenvectors, aids in lowering optimal cost.

B. Time

In our second example, we construct a cost matrix from
four unitary channels given by

U1 =
[

1 0
0 1

]
,U2 =

[
0 1
1 0

]
,U3 =

[
1 0
0 −1

]
,U4 = U3U2

calling the dual pure states κ1, . . . , κ4, respectively, and using
(6):

C = k1κ1 + . . . + k4κ4, (10)

with k j the cost of the elementary transition Uj . Note that
k1, . . . , k4 are the eigenvalues of C, with the maximally en-
tangled state vectors corresponding to κ1, . . . , κ4, being the
eigenvectors.

Interpreting the cost as the time taken for an elementary
transition to take place, we can use k1 = 0 (no time is taken to
do nothing) and k4 = k2 + k3 (the total time for U2 followed
by U3), with k2, k3 > 0. For convenience, we scale this to

k2 = k and k3 = 2,

with C then having eigenvalues 0, k, 2 and k + 2. Without any
constraints we indeed find that the optimal channel is given by
U1, with cost 0.

Let us require the channel to satisfy

E
[

1 0
0 0

]
=

[
0 0
0 1

]
.

For k � 1 the optimal channel E is given by U2, with cost

KC (E ) = k,

corresponding to the maximally entangled eigenstate κ2 of C.
The fact that it is maximally entangled, thus representing a
channel by duality, is exactly what allows the corresponding
cost to be reached. The same is true for U1 in the un-
constrained case above. This is compatible with Sec. IV’s
expectation that entanglement in the lower cost eigenvectors
of C, tends to lower the optimal cost.
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However, U4 also satisfies the constraint, so U3 may enter
the mix if U2’s cost becomes high enough. Indeed, for k � 1,
the optimal channel is

E
[
ρ11 ρ12

ρ21 ρ22

]
=

[ 1
k2 ρ22

1
k ρ21

1
k ρ12 ρ11 + (1 − 1

k2 )ρ22

]
(11)

with cost

KC (E ) = 1 + k

2
− 1

2k
.

Note that for k 
= 1 this cost is indeed lower than U2’s cost
k. But, for k < 1, the map E in (11) is no longer a channel,
explaining the need for another map, namely the channel
given by U2.

Decomposing the optimal channel (11) into elementary
transitions, one obtains

E = 1

2

(
1 − 1

k2

)
E1 + 1

2

(
1 + 1

k2

)
E2, (12)

where E1, given by

E1

[
ρ11 ρ12

ρ21 ρ22

]
=

[
0 0
0 2ρ22

]
,

is dual to the separable vector state |2〉 |2〉, and E2, given by

E2

[
ρ11 ρ12

ρ21 ρ22

]
= 2

1 + k2

[
ρ22 kρ21

kρ12 k2ρ11

]
,

is dual to the entangled vector state |1〉 |2〉 + 1
k |2〉 |1〉, not

displayed normalized here.
The cost of E1 is 1, whereas E2 costs (k + 1 − 1/k +

1/k2)/(1 + 1/k2) > 1. So E1, while having no entanglement,
lowers the cost in the weighted average KC (E ) of these two
costs given by the probability weights appearing in (12).

On the other hand, the more expensive elementary transi-
tion E2, being dual to an entangled state, indeed carries the
larger weight, as expected in Sec. IV. This state becomes
maximally entangled for k = 1, in which case E2 is given by
U2 and the weight of E1 in E becomes zero, in line with the
case k � 1 above.

As for the general nature of the elementary transitions E1

and E2: For k > 1, the optimal channel is not unitary, and
neither are E1 or E2. The support of E1 is spanned by |2〉.
Restricting E1 to this space and dividing by 2, gives a trivial
channel. The support of E2 is HA, but no scalar multiple makes
it a channel, unless k = 1, in which case E2 itself is a unitary
channel given by U2.

In the limit where k → ∞, both elementary transitions
E1 and E2 are dual to separable states, namely |2〉 |2〉 and
|1〉 |2〉, respectively. In this case both have relatively large
weights of 1/2 each, indicating that our heuristic arguments
in Sec. IV are not quite the full story. A more detailed study
of how large the weight of separable state can be in a channel
decomposition, would be required to fill the holes. We do not
pursue that here.

VI. MINIMAL DISTURBANCE

Here our goal is to outline a method to theoretically design
or search for a channel from a system A to itself, which

performs a specified set of tasks,

E
(
ρ in

j

) = ρout
j for j = 1, . . . , l, (13)

while otherwise disturbing the state of A as little as possible.
We formulate this more precisely, by casting it as an opti-

mal channel problem: Consider any set

g1, . . . , gv

of self-adjoint m × m matrices, which generate Mm as an
algebra, again in terms of the orthonormal basis |1〉 , . . . , |m〉
for the Hilbert space HA. Set up the cost matrix

C =
v∑

j=1

∣∣Im ⊗ g j − gT
j ⊗ Im

∣∣2

in terms of them. (Here |O|2 = O†O.) One then searches for
an optimal channel satisfying (13), in terms of this cost matrix.

A. Motivating C

This cost is an analog of distance squared in Rv , with
the generators in place of the coordinate functions. However,
we do not require the set of generators to be a minimal set
generating Mm. We allow for the possibility that some strict
subset of the generators g1, . . . , gv , generate the whole of
Mm. The relevance of different choices of generators will be
discussed in Sec. VI B.

Note that in absence of (13), the optimal cost is zero. To
see this, note that

(Im ⊗ g − gT ⊗ Im) |�〉 = 0

for any m × m matrix g, as is easily checked from the
definition (8) of the maximally entangled state vector |�〉.
Consequently, |�〉 is an eigenvector of C with eigenvalue 0,
which is necessarily the smallest eigenvalue of C, as the latter
is a positive operator.

In particular, for the identity channel E , for which κE =
|�〉 〈�|, we have

KC (E ) = 〈�|C |�〉 = 0.

Conversely, using the theory of the quadratic Wasserstein
metric associated to the generators, one finds that the iden-
tity channel is the unique optimal channel. This is given by
Corollary 6.4 of Ref. [8], as the unique zero cost transport plan
from the maximally mixed state 1

m Trm of A, to itself. Recall
from Sec. II that 1

m Trm is our reference state. (In Ref. [8],
the transposition in C appears in a more general form via an
operator S, associated in this case to 1

m Trm and specializing to
the transposition.)

This shows that the cost matrix C above tends to force
the channel towards the identity channel, i.e., towards causing
minimal disturbance in the state of A.

B. Significance of the generator sets

Different choices of generator sets can in effect weigh the
cost of elementary transitions differently. We illustrate this for
a system A consisting of r spins, giving m = 2r .
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Take the orthonormal basis used in the Choi-Jamiołkowski
duality as

|0〉 = |−〉 . . . |−〉 ,

|1〉 = |−〉 . . . |−〉 |+〉 ,

|2〉 = |−〉 . . . |−〉 |+〉 |−〉 ,

...

|m − 1〉 = |+〉 . . . |+〉 ,

with |±〉 the up or down z-spin states.
One set of generators for Mm in this case, is given by the

spin observables

gi j = I (1)
2 ⊗ . . . ⊗ I (i−1)

2 ⊗ σ
(i)
j ⊗ I (i+1)

2 . . . ⊗ I (r)
2 ,

with σ j in the ith position, for the x, y, and z Pauli matri-
ces σ1, σ2, and σ3, where i = 1, . . . , r and j = 1, 2, 3. (The
superscripts in brackets simply indicate the position in the
elementary tensor.)

A second set, h1, h2, is given by

h1 =

⎡
⎢⎢⎢⎢⎣

0
1

2
. . .

m − 1

⎤
⎥⎥⎥⎥⎦,

(expressed in the basis |0〉 , . . . , |m − 1〉) together with its
Fourier transform

h2 = F †h1F

where F is the Fourier transform on Zm, also called
the quantum Fourier transform, namely the m × m uni-
tary matrix Fjk = e−2π jk/m/m1/2 for j, k = 0, 1, . . . , m − 1.
Heuristically, we can think of h1 and h2 as discrete position
and momentum, respectively, since they are analogous to posi-
tion and momentum in one dimension in the usual continuous
case (also see the old paper by Schwinger [33] for the unitary
representation of this, as well as Refs. [34–36]). This analogy
should make physical sense in the large m limit.

Changing one spin value in the basis, can change the state
from |0〉 to |1〉, but it can also change the state from |0〉 to
|2r−1〉, for example. The difference in the jumps in the state
labels is simply an artifact of our choice of representation of
the basis states.

When using the cost matrix

Ch = |Im ⊗ h1 − h1 ⊗ Im|2 + |Im ⊗ h2 − h2 ⊗ Im|2,
we can correspondingly expect that the cost is not balanced
between the spins, with changes at the left of our representa-
tion of the spins in the basis states, being suppressed compared
to those at the right, due to higher cost coming from the term
|Im ⊗ h1 − h1 ⊗ Im|2.

To spread the cost evenly between the spins, making it
independent of our specific mathematical representation in the
basis states, and physically more sensible, one should rather
use the cost matrix

Cg =
∑

i j

|Im ⊗ gi j − gi j ⊗ Im|2.

The cost matrix Ch would be more suitable if we interpret the
states |0〉 , . . . , |m − 1〉 as being physically further removed
in some sense, when the difference in their labels is large. For
example, if the labels 0, . . . , m − 1, being the values of the
observable h1, form a discrete set of positions in a straight line,
while the corresponding labels for the second observable, h2,
is thought of as a discrete set of momenta. The cost Ch then
reflects the size of the difference between the labels.

VII. CONCLUDING REMARKS

We have presented a framework to optimize quantum chan-
nels. It uses the Choi-Jamiołkowski duality to decompose a
channel into elementary transitions, which are analogous to
point-to-point transitions in classical optimal transport. This
is a conceptually satisfying setup for optimization.

Our main conclusion regarding the general setup, is that
entanglement in the lower-lying cost eigenvectors, aids in
lowering the cost, i.e., tends to allow for cheaper channels.
We saw this through mostly heuristic arguments in Sec. IV, as
well as by example in Sec. V. This point was also illustrated
in Sec. VI, for a specific class of cost matrices, in arbitrary
dimensions. The second example in Sec. V, however, also
showed the quantitative limitations of the general heuristic
arguments.

As an application, we considered how one can obtain chan-
nels that perform a prescribed set of tasks, while otherwise
disturbing the state as little as possible in terms if the chosen
cost matrix. We expect that this should be of value in quantum
information processing.

In this application, we used self-adjoint operators as gener-
ators, but this can be generalized at least to the case where
the set of generators g1, . . . , gv collectively is self-adjoint,
meaning that {g†

1, . . . , g†
v} = {g1, . . . , gv}. Then the identity

channel is still the unique optimal channel, as can be seen in
Ref. [8].

Technical work that remains, includes making the heuris-
tic arguments in Sec. IV more precise and quantitative. One
could also explore more quantitatively how much the states,
other than the specified input states in (13), are changed by
optimal channels obtained in Sec. VI’s setup, including how
this depends on the distance of the state in question from those
input states, and on the set of generators.

If in Sec. VI one can check from C’s definition that |�〉 is
its only eigenvector (up to scalar multiple) with eigenvalue
0, then it would provide a second method, independent of
the Wasserstein metric, to show that the identity channel is
the unique optimal channel in absence of (13). This may
provide a way to generalize the allowed generator sets beyond
the condition {g†

1, . . . , g†
v} = {g1, . . . , gv} mentioned above,

while still ensuring a unique optimal channel.
Furthermore, investigating computational techniques to de-

termine the optimal cost and channels, for example in Sec. VI,
would also be of much value. As the dimension of the Hilbert
spaces increase, this can be expected to become challenging.
Further examples, or classes, of cost matrices, should be ex-
plored, as this paper only looked at a limited selection, for two
copies of the same system.

A more general aspect of our approach that appears worth
developing further, is the refined picture of an elementary
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transition in Sec. II, in terms of its support. This may give
deeper insight into the structure of a channel via a decompo-
sition into elementary transitions, in particular for an optimal
channel.
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