Table S1: Earlier reported associations of microsatellite alleles with low body condition and

 bovine tuberculosis (BTB) infection risk indicative of linkage to male-deleterious alleles

Direct associations with low body condition and BTB		
Neg. corr. between sexes in body-condition-dependent allele	KNP: <i>P</i> = 0.0024, Fig. 3	
freq. difference (sexual antagonism)	[1]	
Largest sex. antagonistic body-condition-dependent difference	KNP: $P = 0.027$, Fig. 4	
in heterozygosity for the three most frequent alleles per locus	[1]	
Low body condition most frequent among homozygotes for the	KNP: $P < 0.033$, Fig. 2	
most frequent allele per locus	[1]	
Genetic associations with body condition and BTB mainly	KNP: $P = 0.010$, Table 1	
among animals born after multi-year wet periods (epigenetic	[2]; HiP: $P = 0.068$,	
effects)	Table 4 [3]	
Indirect associations with low body condition and BTB: signatures of selection		
Allele freq. clines between northern KNP (high body condition	KNP: $P = 0.00044$, Fig.	
and BTB present) and southern KNP (low body condition and	5 [1]	
BTB absent): pos. selection in KNP		
Corr. between KNP-HiP allele freq. difference and strength of	HiP: <i>P</i> = 0.00032, Fig. 2-	
sexual antagonism: neg. selection in HiP	3 [3]	
Indirect associations with low body condition: correlations with multi-year pre-conception		
rainfall (proxy for parental body condition)		
Corr. between microsatellite diversity per year-cohort (KNP:	KNP: <i>P</i> = 0.0015, Fig. S5	
heterozygosity, HiP: allele freq.) and multi-year pre-conception	[1]; HiP: $P = 0.00018$,	
rainfall	Fig. 4 [3]	

HiP: Hluhluwe-iMfolozi Park, KNP: Kruger National Park.

Table S1 cont.:

Other associations with pre-conception rainfall related to the sex-ratio meiotic gene-drive		
system: sex ratio and Y-chromosomal haplotypes		
Female- and male-biased sex ratio among dry- and wet-	KNP: <i>P</i> = 0.025, Table 1, Fig.	
season conceptions, respectively	2 [4]	
Pos. corr. between sex ratio per year-cohort and multi-year	KNP: $P = 0.041$, Fig. 4 [4];	
pre-conception rainfall (female-biased after dry years)	HiP: <i>P</i> = 0.0026, Fig. 6 [3]	
Y-haplotypes associated with dry or wet season conceptions	KNP: <i>P</i> = 0.00089, Fig. 1 [4]	
Y-haplotype frequencies per year-cohort associated with	KNP: <i>P</i> < 0.0001, Fig. 4 [4];	
dry or wet multi-year pre-conception periods	HiP: <i>P</i> = 0.043; Fig. 5 [3]	

HiP: Hluhluwe-iMfolozi Park, KNP: Kruger National Park.

References

1. van Hooft P, Greyling BJ, Getz WM, van Helden PD, Zwaan BJ, Bastos ADS. Positive selection of deleterious alleles through interaction with a sex-ratio suppressor gene in African buffalo: a plausible new mechanism for a high frequency anomaly. PLoS ONE. 2014;9(11):e111778.

2. van Hooft P, Dougherty ER, Getz WM, Greyling BJ, Zwaan BJ, Bastos ADS. Genetic responsiveness of African buffalo to environmental stressors: a role for epigenetics in balancing autosomal and sex chromosome interactions? PLoS ONE. 2018;13(2):e0191481.

3. van Hooft P, Getz WM, Greyling BJ, Bastos ADS. A natural gene drive system influences bovine tuberculosis susceptibility in African buffalo: possible implications for disease management. PLoS ONE. 2019;14(9):e0221168.

4. van Hooft P, Prins HHT, Getz WM, Jolles AE, van Wieren SE, Greyling BJ, et al. Rainfall-driven sex-ratio genes in African buffalo suggested by correlations between Y-chromosomal haplotype frequencies and foetal sex ratio. BMC Evol Biol. 2010;10:10.1186/471-2148-10-106. doi: 10.1186/1471-2148-10-106. PubMed PMID: MEDLINE:20416038.