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ABSTRACT 
 

The paved road network is a critical asset to any economy. South Africa has a paved road 
network that has an estimated value above R2 trillion. This asset is however under threat 
as there was a backlog in maintenance of more than R416.6 billion in 2018. Heavy 
vehicles are primarily responsible for road wear, and overloaded vehicles can cause more 
than 60% of road wear. Most road wear assessments use static axle loads that are 
assumed to be symmetrical on either side to calculate the road wear caused by a heavy 
vehicle. Previous work has shown that the effect of crossfall (CF) cannot be ignored when 
considering the dynamic road wear of heavy vehicles. This paper expands on previous 
work through the development of a novel Gaussian process machine learning (GPML) 
model that can predict the dynamic road wear of a rigid heavy vehicle given 15 input 
parameters. The road wear criteria considered are the first (1st) and fourth (4th) power 
aggregate forces on the left and right sides using the 95th and 99th percentile conditions. 
The results show that the model is very accurate and requires comparatively few inputs to 
train an accurate model. For interpolated results, the average absolute error is less than 
1% and for extrapolated results, the average absolute error is less than 3%. The results 
also include the standard deviation associated with the result which is important for future 
research to minimise training examples. Using machine learning models to predict 
dynamic road wear allows for rapid calculation and testing and also does not require 
expensive multibody dynamics software tools to calculate. This would be very 
advantageous to the industry, especially when developed for the Smart Truck Pilot Project. 
 
1. INTRODUCTION 
 
1.1 Background 

 
Transport logistics in South Africa is the backbone of the economy, representing 11.8% of 
Gross Domestic Product (GDP) in 2016 or approximately R499 billion (Havenga, et al., 
2016). Road freight transport, in particular, is essential to logistics, as approximately 85% 
of general freight is transported via road (Havenga, Simpson, King, De Bod, & Braun, 
2016). The paved road network in South Africa is therefore a key national asset that has 
an estimated value above R2 trillion. As at 2014, South Africa had a road maintenance 
backlog of R200 billion, which has led to a national network where currently 78% of the 
roads are older than their intended design life. The situation has deteriorated since then 
and new estimates of the road maintenance backlog are R416.6 billion in 2018 (Ross & 
Townshend, 2019). It is, therefore, crucial to minimise the road wear caused by heavy 
vehicles which, if overloaded, can account for more than 60% of all road damage 
(Krygsman & Van Rensburg, 2017). Having tools that can accurately calculate or estimate 
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the road wear caused by heavy vehicles is therefore invaluable to the road owners, 
managers and designers. This paper aims to explore the possibility of using machine 
learning to accurately and quickly predict the dynamic road wear of a rigid heavy vehicle. 
This will be beneficial as this method does not require complex and expensive software to 
calculate nor engineering expertise and long computation times as typically required in 
these types of analyses. 
 
The equivalent single axle load (ESAL) or load equivalency factor (LEF) is commonly used 
to quantify road damage due to static loads. The ESAL damage is calculated as shown in 
Equation 1  (van der Walt, et al., 2018). 

 
Where n is an appropriate exponent to quantify the damage on a specific pavement. This 
value is usually taken as 4 but values greater than 7 have been proposed (van der Walt, et 
al., 2018). 
 
The aggregate tyre force is a method that can be used to quantify the dynamic road wear 
of a vehicle. The aggregate tyre force is calculated using Equation 2 (Cebon, 1988; 
Cebon, 1999). 

Where 𝐴𝑘𝑛 is the aggregate nth power force, 𝑃𝑗𝑘 is the force applied by tyre 𝑗 to location or 
station k on the road, 𝑁𝑎 is the number of axles on the vehicle and 𝑁𝑠 is the number of 
points or stations of interest along the road. The power (𝑛) is chosen based on the type of 
road damage that is being considered. For flexible pavements, a value of 𝑛 = 1 is best 
suited for permanent road deformation and 𝑛 = 4 is best suited for fatigue damage 
(Cebon, 1988; Cebon, 1999). It has been found that the ratio of the instantaneous fourth 
power force to the static fourth power force can exceed 3 which indicates how the peak 
dynamic loads can be substantially higher at certain locations and cause more damage at 
specific sections (Cebon, 1988; Cebon, 1999). 
 
Equation 2 provides the aggregate tyre force raised to some exponent at every point on 
the road profile. The road wear of the vehicle is however typically reported as the 95th or 
99th percentile of the aggregate tyre force. Of this, the 95th is the most common, but the 
99th is also often reported (Cebon, 1988; Cebon, 1999). 

 
The dynamic tyre forces of the vehicles can be obtained through various methods 
including field testing. This is however more difficult and costly, and the data is most often 
obtained through computer simulations. The quarter-car model has been the most widely 
adopted model for simulating dynamic tyre forces. The quarter-car model is not however 
able to capture complex suspension nonlinearities and the complexities of heavy vehicle 
body motion, though the frequency content of the quarter-car model is sufficiently accurate 
(Buhari, et al., 2013). This has been verified by Hardy and Cebon (Hardy & Cebon, 1994). 
In general, researchers keep models realistic but simple to minimise complexity and 
reduce computation time (Buhari, et al., 2013). 
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When higher degree-of-freedom models are developed, researchers often ignore body roll 
motion or conclude that its influence is negligible. As such, dynamic road wear models are 
usually limited to either quarter-car or half-car models that utilise pitch-plane motion 
(Cebon, 1999). Cebon specifically states: “A two-dimensional model (pitch-plane) should 
be satisfactory for predicting the tyre forces of typical leaf-spring articulated vehicles with 
well-damped suspension modes, operating under typical conditions of speed and road 
roughness”. He, however, adds that: “It may therefore be necessary to use a three-
dimensional model when the unsprung mass roll modes contribute significantly to dynamic 
tyre forces”. This would be the case if the crossfall of a road profile is included in the 
model. 
 
Ihs and Magnusson (2000) state that the effect of road crossfall is negligible. Other 
previous research projects and guidelines focus primarily on the effect of road roughness, 
vehicle speeds, loading of the heavy vehicles and suspension characteristics. When 
crossfall (CF)  is referred to, emphasis is placed on its vital importance in preserving road 
infrastructure by ensuring adequate drainage (Bowen, 2017).  
 
Recent work has however shown that excluding road crossfall in road wear studies leads 
to a substantial underestimation of the dynamic road wear produced by heavy vehicles. 
Even crossfall values as low as 1% will produce a notable difference. This study therefore 
also includes the effect of road crossfall (Steenkamp, et al., 2019; Steenkamp, et al., 
2021).  
 
Although the use of computer simulations reduces the cost and time required to obtain 
these dynamic tyre forces of heavy vehicles, it still requires substantial expertise, often 
requires proprietary software that can be expensive, and requires substantial time to 
perform large batch analysis. The need was therefore identified to develop a machine 
learning model that can accurately predict the dynamic road wear of heavy vehicles. 
 
Work by Robert Berman and Joop Pauwelussen has shown that the use of Gaussian 
process machine learning appears to be the most suitable solution for modelling aspects 
related to heavy vehicle dynamics (Berman, et al., 2018; Pauwelussen, 2021). A Gaussian 
process (GP) is a machine learning algorithm that can learn and improve its results by 
introducing more training examples and prior knowledge (Rasmussen & Williams, 2006). 
One of the most common applications of Gaussian processes is in regression, where a 
model is fitted to a dataset and predictions are made by providing input parameters and 
the model then produces a predicted value based on the information that was provided to 
train the model. It takes an unknown space with a potentially infinite number of functions 
and reduces it to a known space by assigning a probability to each of these functions. The 
mean of the probability distribution thus represents the best or most likely representation of 
the characterisation of the data (Rasmussen & Williams, 2006). Additionally, using a 
probabilistic approach allows for the confidence of the predicted value to be determined. 
 
A Gaussian process is a stochastic process that is defined by its mean (μ) and covariance 
functions (σ2), where the mean describes the expected value of the distribution. The mean 
is a vector, where each element describes the mean component in a specific dimension. 
According to Rasmussen & Williams (2006)  a Gaussian Process can be described by a 
dataset 𝒟, which consists of an observation with input x and output y as shown in  
Equation 3. 

𝐷 =  {(𝑥𝑖 ,𝑦𝑖)|𝑖 =  1, … , 𝑛} 
 

                         (3) 
 



In the case of this paper, the input variable 𝑥 represents the input parameters of the rigid 
heavy vehicles that are provided and 𝑦 represents the predicted output parameter (road 
wear criteria considered). A model is trained for each of the road wear criteria considered, 
including separate left and right-side models. This led to the creation of 8 models that are 
used for the prediction of the road wear caused by a test vehicle. 
 
To perform the linear regression that was used in the trained models, Gaussian processes 
make use of Bayesian linear regression with Gaussian noise as shown in Equation 4 
(Rasmussen & Williams, 2006). 

𝑓(𝑥) =  𝑥𝑇𝑤 = 𝑦 =  𝑓(𝑥)  +  𝜀  
 

                         (4) 
 

Where 𝑥 is the input vector, 𝑤 is the weight vector of the linear model and 𝑓 is the resulting 
function value and 𝑦 is the target value that is observed. 𝜀 is the Gaussian noise and also 
follows a Gaussian distribution with a mean value of zero and a variance of σ2. This gives 
the distribution as shown in Equation 5 (Rasmussen & Williams, 2006). 

𝜀 ~ 𝑁(0, 𝜎𝑛2 ) 
 

                         (5) 
 

Gaussian processes make use of conditional probability which allows for the use of prior 
probabilities. When the model is first created, the prior probabilities are set to a zero mean 
Gaussian distribution. When a data point or observation is added to the model, a prior 
probability is calculated. This calculated prior probability is used to update the information 
regarding the distribution of the function space, f. The prior probability is then updated with 
the new information and used when a new data point is entered into the model. This is 
done using the Bayes Rule as shown in Equation 6 (Rasmussen & Williams, 2006). 
 

               𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =  
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑥 𝑝𝑟𝑖𝑜𝑟
𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑
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A visual representation of the learning and space reduction process can be seen in  
Figure 1. The first section (a) shows how in an unknown space, there can be any function 
present as there is no known information regarding any known points that the functions 
must pass through. The second section (b) represents how the range of values that 

Figure 1: Visualisation of the Gaussian Process Showing the Prior Space (Fig a) and 
Posterior Space (Fig b)  (Rasmussen & Williams, 2006)  



functions in the space can assume after some known data points have been introduced to 
the model and the model uncertainty has been reduced with the aid of posterior 
knowledge. The four known functions that were entered into the model are denoted by the 
dotted lines in (b). The grey area represents the variance or 95% confidence interval for 
the distribution, f(x), at any given point x. The function mean of the model is represented 
by the solid line in (b). After the model has been trained with a number of samples, f(x) 
provides a mean which is the predicted value at a specific point in the model space and 
the variance which in turn is the model uncertainty. Where there is a lot of known 
information for the model, the uncertainty or variance value is very low, but where there is 
little or no known data, the model has a high level of uncertainty. These areas of high 
uncertainty are regions where more training data points can be used to better train and fit 
the model to the training data and reduce the uncertainty for future predictions. The 
difference between Gaussian Processes and other machine learning techniques such as 
artificial neural networks (ANN) is that GPML provides a variance value describing the 
level of uncertainty associated with a prediction whereas other methodologies do not have 
this capability and simply provide the predicted or mean value as described. 
 
1.2 Aim and Scope 

This paper aims to develop a Gaussian process machine learning model that can predict 
the dynamic road wear produced by a rigid heavy vehicle with selected inputs. An example 
of such a vehicle is shown in Figure 2. The work is exploratory to determine the relative 
amount of training examples to obtain an accurate result and to also determine whether 
the model can accurately interpolate and extrapolate based on unseen data. 
 

 
Only Gaussian process machine learning will be considered during this study. The vehicle 
model will only consist of a rigid heavy vehicle (4x2) with a fixed wheelbase, payload 
mass, height and inertia, a fixed vehicle speed (80 km/h) and one road roughness value  
(2 m/km IRI). A total of fifteen other input parameters that are known to influence dynamic 
road wear when including crossfall are included. These parameters and their ranges are 
discussed in the next section. 
 
2. METHODOLOGY 

It should be noted that the number of variables used in training the model was determined 
through an iterative process based on the number of examples required to achieve a 
certain level of accuracy and the time required to train the model. From several iterations, 
it was found that adding the vehicle speed, vehicle inertia properties (mass, height, inertia, 
etc), different road roughness values and wheelbase, increases the number of required 
examples too much. The results did show promise with average absolute errors on the 
order of 1-5%, but produced extremely high maximum errors (on the order of 100%). Fixed 

Figure 2: Schematic of a 4x2 rigid heavy vehicle (Find Blueprints, 2022) 



values were used for these inputs as shown in Table 1 and are based on various sources 
and practical experience. The road profiles used were developed using the ISO 8608 (ISO, 
2016) standard and was created for 1 km. 
 

 
This iterative process led to the selection of 15 parameters that affect dynamic road wear 
of heavy vehicles when including crossfall. The range of the 14 heavy vehicle parameters 
is shown in Table 2. This is based on experience with heavy vehicle assessments and a 
collation of various sources. Given the input range of the various variables, the number of 
possible random combinations would exceed several billion. Therefore, the variables were 
simulated using fixed steps as a first attempt to determine if they sufficiently characterise 
the vehicle performance over the entire range. This is also shown in Table 2. 
 

  
To test the ability of the machine learning model to interpolate and extrapolate based on 
the input data provided, the model was only trained on road crossfall values of 0%  
and 2%.  

Table 2: Range of variable input parameters of a rigid heavy vehicle 

Variable Unit Min value Max Value Step Size
Trackwidth front mm 1600 2200 50
Trackwidth rear mm 1600 2200 50
Vertical tyre stiffness front N/mm 700 1300 50
Vertical tyre stiffness rear N/mm 700 1300 50
Spring stiffness front N/mm 150 1000 50
Spring stiffness rear N/mm 150 1500 50
Spring trackwidth front mm 500 1500 50
Spring trackwidth rear mm 500 1500 50
Auxilliary roll stiffness front Nm/deg 0 5000 500
Auxilliary roll stiffness rear Nm/deg 0 10000 500
Damper value front Ns/m 5 50 5
Damper value rear Ns/m 5 50 5
Roll Centre Height Front mm -300 300 50
Roll Centre height Rear mm -300 300 50

Table 1: Fixed values used in the heavy vehicle model 

Variable Unit Value used
Road roughness m/km 2
Sprung mass kg 15000
Sprung mass height mm 2000
Sprung mass longitudinal position mm 2400
Roll inertia kg.m2 25000
Pitch and Yaw inertia kg.m2 35000
Wheelbase mm 4500
Tyre radius mm 500
Steer axle mass kg 700
Steer axle road and yaw inertia kg.m2 700
Drive axle mass kg 1000
Drive axle road and yaw inertia kg.m2 810
Vehicle speed km/hr 80



 
The vehicles are simulated in TruckSim®2021.0 (Mechanical Simulation Corporation, 
2022) and the variables and automation are completed using Matlab® (MathWorks, 2022). 
 
The total number of vehicles simulated per crossfall is 10 500. This is to allow for 8 000 
training examples per crossfall and approximately 2 500 test cases. 
 
After all of the simulations were completed in TruckSim®, the data was post-processed to 
remove any outliers. The more symmetric the data is, the more accurate the trained 
model. The skewness for the left side 95th percentile 4th power aggregate force was found 
to be 46.4 which is extremely high due to some outliers. The data were filtered by 
removing values that have a standard deviation of more than 3 (based on the left side 95th 
percentile 4th power aggregate force which is the most important parameter), until the 
skewness was less than 1, which indicates a minor skewness. This was achieved after  
2 iterations for both the 0% and 2% crossfall (CF) and approximately 1.5% of the data was 
removed over the two filters. Crossfall is the transverse sloping of a roadway toward the 
shoulder on either side of the road. It should be noted that the majority of vehicles 
removed are highly unrealistic with very high stiffnesses and track widths on the steer 
axles and low stiffnesses and track widths on the drive axle. 
 
After the data has been processed, it was sent to Python® (Python, 2022). The data is 
normalised using built-in functions in “sklearn”, a machine learning library in Python®. The 
data is split into training and testing data (8 000 examples per crossfall are used for 
training and the remaining data is used for testing). 
 
The built-in Gaussian process machine learning model in sklearn (Gaussian Process 
Regressor) was used to train the model. A random seed value of zero was used and the 
optimisation function was allowed to attempt 10 iterations. The kernel used is the radial 
basis function with white noise. A model is trained for each of the road wear criteria and for 
each side of the vehicle (a total of 8 models). 
 
After the model has been trained, the accuracy of the model was tested against the test 
data. Additional test examples were also created in TruckSim® (2500 examples of each): 
namely: 
 
• 1% CF using the same input parameter steps used to train the model. 
• 3%CF using the same input parameter steps used to train the model. 
• 2% CF using a step size of one for all input parameters over each test range. 
 
The simulations were conducted on a laptop with 16 GB of RAM and an Intel(R) Core(TM) 
i7-10850H CPU @ 2.70GHz processor. 
 
3. RESULTS AND DISCUSSION 

The first result of importance for future work is the time required to perform the simulations 
and the time to train the model. The typical simulation time for each input combination is 
15 to 20 seconds.  
 
The training time for each of the machine learning models using 16 000 input examples is 
approximately 1 to 2 days.  
 



For the two CF values of 0% and 2%, the predicted vs actual values for the left 95th 
percentile 4th power aggregate tyre force (N4) is shown in Figure 3. The figure shows that 
the model can accurately predict the dynamic road wear, especially for lower 4th power 
aggregate tyre forces values for both of the crossfall values used. 
 

Table 3 summarises the results for the test data for the 8 models developed during this 
study. The results show that the average absolute errors and maximum errors tend to 
increase slightly for the 95th vs 99th percentile for all the road wear criteria considered. The 
results also show that the 1st power errors are lower than the 4th power errors as expected. 
All of the average absolute errors are however still below 1% which indicates that the 
models can accurately predict all of the road wear criteria over most of the test values 
used here. The maximum errors for the 1st power road wear are lower than 5% and the 
maximum errors for the 4th power road wear are less than 20% for all criteria considered. 

 

 
An important parameter of consideration is to understand the difference between the left 
and right road wear when including road crossfall. The results regarding the percentage 
difference between the left and right road wear for all the criteria considered is shown in 
Table 4. The results show that the average absolute errors only increase slightly compared 
to the individual left and right models shown in Table 3. The maximum errors also increase 
slightly, for all of the criteria considered but are still reasonable, especially for the 4th power 
results where small differences in tyre forces can produce relatively large  differences in 
results due to raising it to the 4th power. The errors in Table 3 and Table 4 are of the same 
approximate value and this shows that the model is able to accurately capture the 

Table 3: Summary of results using the original test data 

Road wear criteria
Average absolute 

error (%)
Maximum error          

(%)
Left 95th Percentile 1st Power 0.12 3.18
Right 95th Percentile 1stPower 0.12 4.13
Left 99th Percentile 1st Power 0.16 3.78
Right 99th Percentile 1st Power 0.17 4.31
Left 95th Percentile 4th Power 0.53 11.81
Right 95th Percentile 4th Power 0.50 17.59
Left 99th Percentile 4th Power 0.73 14.79
Right 99th Percentile 4th Power 0.71 17.55

Figure 3: Results comparison for trained model  

 



difference in the left and right dynamic road wear of a rigid heavy vehicle. There are only a 
small number of outlier values that produce relatively high errors, but the average absolute 
errors are very low and confirm that the model is able to accurately capture the underlying 
phenomena. The results however illustrate that the need exists to include more training 
examples of vehicles that produce high dynamic road wear values if the maximum 
absolute errors are to be decreased. 
 

 
These models represent the first attempt documented in literature at building GPML 
models for dynamic road wear. One of the objectives of this research was to determine 
whether the model can interpolate and extrapolate for different input data regarding the 
road crossfall. The three scenarios are discussed in Section 2 and the results are 
summarised in Table 5 for the left 95th percentile 4th power aggregate force (the most 
important criteria). The results show that the average absolute and maximum errors for the 
1% CF remain more or less the same when still using the stepwise inputs (average 
absolute error of 0.69% and maximum error of 9.69%). The results, therefore, show that 
the model can accurately interpolate over road crossfall values and this limits the number 
of training examples required when considering crossfall as a parameter. 

 
Table 5 also shows the results when extrapolating to a road crossfall of 3% CF. The 
results show that the average absolute error increases but is still at a reasonable value of 
2.69%. The maximum error has not increased substantially and is only 14%. This also 
illustrates that the model will be able to extrapolate for unseen crossfall data, but that the 
accuracy does decrease slightly. 
 
The last test conducted was to use a crossfall of 2% but to specify any input parameter 
over its test range with a step value of 1 unit for all parameters selected. The results show 
that the accuracy has essentially not changed when comparing it to the stepwise trained 

Table 4: Summary of results comparing percentage difference between left and right 
dynamic road wear values 

Road wear criteria
Average absolute 

error (%)
Maximum error          

(%)
Difference left and right 95th 1st Power 0.17 7.21
Difference left and right 99th 1st Power 0.21 7.31
Difference left and right 95th 4th Power 0.69 24.87
Difference left and right 99th 4th Power 0.85 24.82

Table 5: Summary of results for additional test cases using different crossfall (CF) values  
last row  

Road wear criteria
Average absolute 

error (%)
Maximum error          

(%)

% Error Left 95th Percentile 4th Power interpolated 
for 1 CF 0.69 9.69
% Error Left 95th Percentile 4th Power extrapolated 
for 3 CF 2.69 14.09
% Error Left 95th Percentile 4th Power interpolated 
for 2 CF and any input value for parameters (not step 
wise) 0.50 7.53



function as seen in Table 5 vs Table 3. This is once again extremely advantageous as this 
limits the number of training examples needed, without necessarily affecting the accuracy 
of the model 
  
GPML has the advantage of providing the posterior probability of a result. This can be 
used to reduce the number of examples required to train the model to a satisfactory level 
of accuracy. Because this was the first iteration of the model, the order of magnitude 
normalised standard deviation (also referred to as the “sigma”) required to achieve a 
certain level of accuracy was not yet known. Figure 4 summarises the results for the left 
95th percentile 4th power aggregate tyre forces. The results show that the normalised 
sigma values vary between approximately 0.045 and 0.14 with the maximum absolute 
error being less than 12%. The results also show that the model seems to be very 
accurate for lower road wear values (represented by the positive error) and the accuracy 
decreases for larger road wear values (shown by the negative error). Therefore, it would 
be more advantageous to train the model over relatively higher expected road wear values 
than relatively low road wear values. 

 
4. CONCLUSION 

This paper presents the results of the development of the first documented Gaussian 
process machine learning (GPML) model for the prediction of the dynamic road wear 
resulted from a rigid heavy vehicle. The accuracy of the models for the different dynamic 
road wear criteria are all very high (average absolute errors less than 1%) for any 
interpolated road crossfall value of 0% CF to 2% CF. The accuracy decreases slightly for 
extrapolated road crossfall values, but remains very accurate (less than 5% average 
absolute error for all road wear criteria). 
 
This paper proves that the use of GPML appears to be a viable and effective method to 
develop a model to accurately predict the dynamic road wear expected from a  rigid 
vehicle. It is therefore a viable option to consider for future research when including more 
input parameters and more complex vehicle designs. The accuracy of the models can also 
be improved by increasing the number of training examples, especially for vehicle 
configurations that produce large dynamic tyre forces. Using machine learning models will 
offer several advantages to users to obtain quick and accurate predictions of values 

Figure 4: Relationship between the percentage error and normalized standard deviation 
(sigma) of the left 95th percentile 4th power aggregate tyre (N4)  



instead of having to perform a detailed study, which often requires substantial expertise 
and also complex and expensive software. If this methodology is expanded to include 
more complex vehicle designs, it will be very useful to the Smart Truck Pilot Project. 
 
5. RECOMMENDATIONS 

This work represents the first attempt at developing a Gaussian process machine learning 
(GPML) model for dynamic road wear and as such there are still various improvements 
and updates that can be done in future work. 
 
The first recommendation is to include more input parameters, especially the mass and 
inertial properties of the vehicles as this will significantly influence the road wear produced. 
The second recommendation is to optimise the learning model by including the desired 
level of standard deviation (sigma) and to sample over the test space while training in such 
a way as to minimise the standard deviation as quickly as possible (i.e. relatively quick 
optimisation). A third recommendation is to expand on this model by incorporating more 
complex heavy vehicle designs such as the B-double combination which is very common 
in South Africa. This would be of special value to the Smart Truck Pilot Project where a 
road impact assessment is required. Having tools that can predict dynamic road wear will 
allow for rapid testing and development and reduce development time and costs.  
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