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ABSTRACT 
 

Traffic simulation software packages that attempt to match assigned volumes with traffic 
counts rely on tried and tested demand matrix adjustment techniques. Several different 
methods are commonly used, most of which successively adjust the input demand 
matrices within iterative traffic assignment procedures. This paper follows on from a 
previous 2021 SATC paper wherein the author described an alternative approach based 
on proportional path averages, illustrated by two practical case studies. Since the 
algorithm could be applied independently of the assignment technique, it was implemented 
previously using an Excel spreadsheet containing a set of VBA macros. The algorithm 
requires as input only three data sets: a demand prior matrix, a table of link and/or turn 
traffic counts, and the assignment volumes along all Origin-Destination paths. This paper 
describes the direct integration of the algorithm into Emme/4 using the built-in Python 
scripting tools that access the Emme/4 Application Programming Interface. Three case 
studies illustrate the performance of the algorithm versus the standard Emme/4 demand 
adjustment module. The paper concludes with summary results illustrating proof of 
concept. Three recommendations identifying further research are also included. 
  
1. INTRODUCTION 
 
1.1 Background 
 
Adjustment of Origin Destination (OD) demand matrices using traffic counts is a complex 
topic that has enjoyed the attention of many analysts during the last five decades, as 
summarised concisely by others (Abrahamsson, 1998, Noriega and Florian, 2009 and 
Lindström and Persson, 2018).  
 
The strategic transport software package Emme/4 (INRO, 2020) incorporates its own 
matrix adjustment variant based on the Gradient Method. Originally developed in Emme/2 
for the uncongested, single traffic class assignment (Spiess, 1987) and subsequently 
adapted for equilibrium traffic assignments (Spiess, 1990), the method has been in 
general use for more than three decades. It was extended in Emme/3 to handle multi-class 
equilibrium traffic assignments (Noriega and Florian, 2007) and later enhanced via a 
weight factor to increase the importance of the original demand relative to the flow 
comparison (Noriega and Florian, 2009). The mathematics, however, are quite 
complicated and somewhat daunting for non-mathematicians to decipher. 
 
As explained in the previous paper on this topic (Oberholzer, 2021), matrix adjustment 
based on proportional path averages (PPA) is an easily understood concept that 
incorporates two simple steps applied iteratively to all modelled path volumes passing 
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through a given set of traffic counts. The PPA technique differs from the Emme/4 approach 
in that the matrix adjustment is applied iteratively on a given set of assignment paths within 
an inside loop, rather than singly within the outer assignment loop. Fewer outer 
assignment iterations are required, as the bulk of the demand adjustment is performed 
iteratively within the inner loop using only the input demand matrix, the link and turn 
counts, and the equilibrium assignment paths. 
 
1.2 Objectives of This Paper 
 
This paper describes the development of a custom written Python script to implement the 
PPA algorithm as an Emme/4 Modeller Tool, complete with a simple user interface that is 
commensurate with the standard Emme/4 Modeller Toolbox (INRO, 2020). Given that the 
Emme Standard Toolbox already has a tried and tested module that achieves the same 
aim, the paper also compares the performance of the two methods, using the same input 
data. 
 
The overall objectives are thus to: 
 
• Confirm the PPA proof of concept, when applied within the context of commercial 

transportation software as applied to project case studies. 
• Compare the performance of the PPA algorithm with its Emme/4 counterpart, in 

terms of accuracy and execution speed. 
• Conclude on the viability of incorporating the PPA algorithm into mainstream 

commercial transportation software. 
• Identify the way forward for further research. 
 
As the PPA algorithm is still in its infancy, the comparative analysis is limited to the 
assignment and adjustment of a single traffic demand matrix. 
 
2. PROCESS OUTLINE 
 
2.1 The Proportional Path Averages Algorithm 
 
As described in the previous paper on this topic (Oberholzer, 2021), the PPA algorithm is 
formulated simply as follows: 
 
• Step 1: For each turn or link volume where a count is available, adjust all modelled 

origin to destination (OD) path volumes passing through the count pro rata, to match 
the total modelled volume with the count, as illustrated in Figure 1.  
 

 
Figure 1: Adjusting OD Path Movements through Traffic Count Stations 

 
• Step 2: For each unique OD movement path that passes through one or more count 

locations, adjust the OD path volume to match the average of all partial modelled 
volumes along that path, as illustrated in Figure 2. 



 

 
Figure 2: Adjusting OD Trips using Averaged Partial Volumes along OD Paths 

 
Since the path volume should remain constant, the average path volume smooths out any 
differences in partial path count volumes, in a “best-fit” manner. Each step will change the 
partial OD volumes, so steps 1 and 2 should be repeated until no further discernible 
changes occur. Note that the iterative adjustments are applied separately from the 
assignment. 
 
The algorithm is analogous to two-dimensional matrix balancing, where OD path volumes 
represent individual matrix cells, with the link or turn count number as the row index and 
the OD path number as the column index. Table 1 illustrates a fragment of one iteration of 
the analogous balancing operations, using the example values from Figure 1 and Figure 2. 
 

Table 1: Two-Dimensional Matrix Balancing Analogy 

Count 
Number 

Path Number   
1 2 3 4 Total Count 

1 
… 

820 
823 

... 
 
 

... 
 
 

... 
 
 

... 
 
 

... 

2 
… 

600 
823 

... 
 
 

... 
 
 

... 
 
 

... 
 
 

... 

3 
500 
750 
823 

200 
300 

 

300 
450 

 

... 
 
 

1000 
1500 

1500 

Path Average 823 ... ... ...   
Colour coding, as per successive adjustments in yellow shaded cell, row 3, column 1: 
500 = Initial value 
750 = Step 1: Adjust path volumes pro-rata to match count, by row 
823 = Step 2: Adjust path volumes to match the path average, by column 

 
The iterations should continue until the difference between successive root mean square 
errors, calculated by comparing the counts with the modelled values, is negligible, or the 
number of iterations exceed a suitable cut-off threshold, typically 200.  
 
Although the two-dimensional matrix balancing analogy helps to explain the concept, 
processing of such a count/path table using matrix balancing techniques would be 
possible, but not practical. It is more efficient to handle the iterative calculations using 
Python lists, in conjunction with Python add-on data processing libraries such as NumPy 
(NumPy, 2022) and Pandas (Pandas, 2022). 



In addition, to simplify data handling, housekeeping tasks must ensure that: 
 
• The prior trip matrix is imported from the Emme databank. 
• Link and turn traffic counts are imported from Emme attributes into a single list wherein 

each link or turn count is inserted as a new row with a count ID, the node numbers 
identifying the link or turn in the sequence: i-node, j-node, k-node, and the count 
volume. For link counts, the k-node will be zero. 

• Path volumes are imported from Emme output paths, directly after assignment of the 
prior trip matrix onto the road network.  

• The root mean square error (RMSE) is calculated and compared with the RMSE of the 
previous iteration, directly after each iterative adjustment. The RMSE can be 
considered as the simplified objective function which needs to be minimised. 

• On convergence, the adjusted partial OD path volumes are consolidated into the 
adjusted trip matrix with the necessary changes to all affected OD cells (and therefore 
also to the overall OD matrix totals). The adjusted matrix must then be exported back to 
the Emme databank, after termination of the outer assignment iterations. This step 
completes the adjustment of the OD matrix, fulfilling the purpose of the algorithm.  

 
2.2 The Comparative Emme/4 Algorithm 
 
In essence, the Emme/4 algorithm, as encapsulated within the Modeller Module 
“Multiclass Traffic Demand Adjustment” (INRO, 2020), comprises seven steps, 
summarised from the relevant research (Noriega and Florian, 2009) as follows: 
 
1. Multi-class equilibrium assignment of the demand matrices.  
2. Calculation of the link derivatives and the objective function. 
3. Multi-class equilibrium assignment, with path analysis, to calculate the gradient 

matrices, followed by the addition of the demand term into the objective function. 
4. Multi-class equilibrium assignment to obtain the descent direction. 
5. Update the demand matrices. 
6. Update the iteration counter.  If less than the maximum number of iterations, return to 

step 1. 
7. Otherwise terminate.  
 
As can be seen, each iteration requires 3 equilibrium assignments. For large, congested 
networks, module run-times could become excessive. Normally, one would use the fastest 
multi-class traffic assignment tool available within Emme, i.e., either the Standard 
Equilibrium or Second Order Linear Approximation (SOLA) algorithms. 
 
3. IMPLEMENTATION OF THE PPA ALGORITM AS AN EMME/4 MODELLER TOOL 
 
3.1 Flow Chart and User Interface 
 
The PPA algorithm is dependent on all OD paths and volumes being readily available 
directly after the traffic assignment. Emme’s path-based assignment is the only feasible 
equilibrium assignment technique where all assignment paths are stored in separate path 
files per assignment class, for later path-based analysis. Although Emme/4’s SOLA traffic 
assignment tool also allows path analyses, it does not explicitly generate external path 
files that can be interrogated separately. Consequently, the PPA technique is currently 
limited to using the Emme path-based assignment technique. 
 



Figure 3 illustrates the overall data flow within the PPA algorithm, when converted into an 
Emme/4 Modeller Tool, inclusive of required housekeeping tasks. The colour coding 
indicates the three separate stages. 
 

 
Figure 3: PPA Flow Chart Implemented as Emme Modeller Tool 

 
In addition, the standard Emme demand adjustment module does not allow path-based 
assignment to be used as the assignment specification, which complicates, but does not 
negate, one-on-one comparison between the two techniques. 
 
To assist with extracting data from the path files, the Emme Application Programming 
Interface (API) reference documentation provides example python coding. 
 
The PPA user interface is commensurate with the comparative Emme/4 Multiclass 
Demand Adjustment Tool in appearance, with the complexity of the algorithm hidden by 
the user interface, as illustrated in Figure 4. 
 



 
Figure 4: PPA Emme Modeller Tool User Interface 

 
As is the case for the standard Emme Demand Adjustment, the number of assignment 
iterations is specified externally. The value selected will be based on a judgement decision 
relating to the overall accuracy of the demand adjustment, after assessment of 
convergence charts and model versus count scatterplots. 
 
3.2 Emme/4 Modeller and Python 
 
Python, the primary Emme/4 Modeller development tool, is a cross-platform, open-source 
programming language that handles both object-oriented and function-based procedural 
coding in a hybrid interpretive/compiled manner. It was originally devised in 1991 by Guido 
van Rossum (Van Rossum, 1993), a Dutch programmer. Ongoing Python development is 
managed by the Python Software Foundation, a non-profit organisation. Python 
distributions, source code, documentation, help-files, and examples are freely available as 
downloads from the official Python website (Python, 2022). Third-party modules, 
numbering in their thousands, are also available from a separate website (Python Package 
Index, 2022). 
 
To standardise development of custom-built Modeller Tools, Emme/4 relies on Python 2.7, 
installed by default into the folder EMMEPATH/Python27. The usual approach for 
developing Emme/4 Modeller Tools consists of creating a new module in the Project 
Toolbox by specifying the Python text file containing the Python source code. From the 



Emme/4 desktop, one can also access the Modeller Shell, an integrated Python 
environment for quick ad hoc scripting that allows direct access to the Emme Modeller 
API. The Modeller Shell operates within either standard Python or the interactive iPython 
programming environment (iPython, 2022). 
 
The Emme APIs are grouped into five main categories: Database API, Network API, Matrix 
API, Desktop API and Data Table API which collectively provide access to all the Emme 
Standard Toolbox modules, as well as all built-in and customised Emme Desktop 
worksheets, tables and views. 
 
3.3 Emme Optimisation 
 
In computer science, time complexity (Sipser, M, 2006, p. 247) is defined as a measure of 
the computer time taken to run a process or algorithm. OD demand datasets are stored in 
2-dimensional square matrices with dimensions n x n, where n = number of zones. 
Repetitive processes that involve OD matrices exhibit quadratic time complexity, i.e., 
computer runtimes are approximately proportional to n2.  
 
Network size also influences program execution times, but the dominant contributor is the 
number of zones. In congested networks, multiple paths between OD pairs are possible, 
increasing the runtimes for matrix-based operations. Table 2 compares Emme/4 traffic 
assignment runtimes for the three case studies described in Chapter 4. 
 

Table 2: Emme Traffic Assignments – Computer Runtime Comparison 

Description Computer Runtimes (seconds) 
Umhlathuze Winnipeg eThekwini 

Number of zones 80 154 646 
Path-based traffic assignment: 
Cold start 
Warm start, using existing paths 

 
<1 
<1 

 
2 

<1 

 
46 

10 to 20 
SOLA traffic assignment <1 <1 10 
Standard equilibrium traffic assignment <1 <1 10 

   
Clearly, most of the excessive computer runtime for the Emme/4 path-based assignment 
can be ascribed to the generation of valid OD paths stored in the path file during a cold 
start. Since this standard Emme/4 Modeller Tool is an integral component of the PPA 
algorithm, specifying a warm start for the second and subsequent path-based assignments 
contained in the outer loop will reduce the overall runtime somewhat, a feature that will be 
evident only when dealing with large transport networks. 
 
3.4 Python Code Optimisation  
 
For PPA adjustment in its simplest form, the creation of a master database table as quickly 
as possible is essential. The master table cross-references the OD adjusted fractional path 
volumes to both path IDs and count IDs, emulating the count/path matrix analogy 
described earlier. To facilitate the associated housekeeping tasks, additional columns 
containing the turn definition (nodes I-J-K), the total count volume, and the fractional path 
volume from the previous iteration, also need to be included in the master table. 
 
Table 3 illustrates a data fragment of the PPA master table, as generated during the final 
PPA adjustment iteration in the eThekwini case study described in Chapter 4.  
  



Table 3: PPA Master Table – Data Fragment 

Orig 
Zone  

Dest 
Zone 

Path 
ID 

Count 
ID Nodes I-J-K Total 

Count 
Previous 
Volume  

Adjusted 
Volume  

… … … … … … … … 
… … … … … … … … 

303 49 100558 131 2085-5361-0 2070 0.90 0.90 
303 49 100558 170 5398-5396-0 2106 0.90 0.90 
303 49 100558 199 7107-7103-0 1659 0.90 0.90 
303 50 100559 131 2085-5361-0 2070 1.35 1.35 
303 50 100559 170 5398-5396-0 2106 1.35 1.35 
303 50 100559 199 7107-7103-0 1659 1.35 1.35 
… … … … … … … … 
… … … … … … … … 

 
Since only link counts were considered for this case study, all K-nodes are zero. The full 
table contains 982 938 rows, each representing a unique combination of a valid OD path 
with a link count, i.e., all non-zero OD path volumes passing through the specified link 
counts. This type of structure allows adjustment of fractional volumes in aggregated 
groups by either the count ID or the path ID. 
 
The multiple occurrences of individual OD paths, as well as the multiple paths going 
through individual count IDs in the data fragment shown in Table 3, reflect only a very 
small portion of the related path/count data. In the full table, 12 734 OD paths pass 
through Count ID 131, each contributing a fraction to the total modelled volume at the 
count location. The previous volume and the adjusted volume total 2 054 and 2 062 
respectively, when aggregated by Count ID 131. 
 
Inclusion of the previously adjusted fractional volume allows quick calculation of the 
adjustment factors to be applied to all fractional paths passing through each count, as well 
as the averaging of factional OD path volumes passing through multiple counts. 
 
In addition to minimising the effects of quadratic time complexity, optimal Python coding is 
essential for reducing computer runtimes as far as possible. To this end, Python is very 
efficient when dealing with loops in iterable lists. 
 
For example, the Emme API documentation recommends using the following code snippet 
to import path data from the binary path file generated by a path-based assignment: 
 

 
 
Since the code snippet processes iterable Python nested lists, it executes very quickly, 
when running in the Modeller Shell or the custom PPA Modeller Tool. For the eThekwini 
case study, adding a timer and a counter to the code snippet resulted in a runtime of 3.6 
seconds to iterate through 17.93 million OD/path/link combinations, illustrating Python 
efficiency when processing nested lists using loops.  



 
However, an immediate timing problem emerges when going one step further to check 
whether a link is present in the counts table. The typical Python list statement: “if link in 
countlist” creates a significant delay when the count list is long. In the eThekwini case 
study, building the new list containing the 982 938 valid path ID / count ID combinations 
increased the runtime from 3,6 to 90 seconds.  
 
This is quite understandable, considering that Python is being asked to execute 17,93 
million tests to ascertain whether the link is also a count by scanning through 260 count 
IDs. Optimisation of Python coding in this critical section of the PPA algorithm is 
earmarked for future research. However, since the primary objective of this paper is proof 
of concept, the results are acceptable for now, even with the identified timing issue. 
  
Add-on libraries such as Numpy and Pandas are best for managing operations that involve 
arrays or relational databases. The Pandas library in particular offers capabilities that are 
highly optimised for processing databases by column. When using a Pandas DataFrame, 
one should also, as far as possible, avoid code that executes database procedures in a 
“Row by Agonising Row” (RBAR) manner, as first described by Jeff Moden (Microsoft, 
2021) in the SQLServerCentral online forums (Moden, 2014). The efficiency of the Pandas 
library is optimised when processing by column, as is the case for any relational database 
management system (RDBMS) that uses Structured Query Language (SQL) syntax.  
 
The code snippet below illustrates the adjustments done in only a few lines of code within 
the PPA inner loop, using both Pandas DataFrame and Numpy methods: 
 

 
 
The code snippet above illustrates:  
 
• Execution of SQL-type queries operating on the Pandas DataFrame by column, 

inclusive of group summation, path averaging and left joins.  
• Numpy numerical processing, applied to Pandas DataFrame columns to calculate the 

adjustment factors. 
 
These column-based operations avoid RBAR and run extremely quickly, with very little 
impact on the overall computer run-time. 
 
  



4. EMME/4 MODEL RESULTS AND ANALYSIS 
 
4.1 Case Studies 
 
Three case studies with network sizes ranging from small to large, were used to test the 
conversion of the PPA algorithm into a custom Emme/4 Modeller Tool: 
 
• The Umhlathuze model used for the preparation of a Traffic Impact Assessment in 

support of a proposed wastewater reuse facility. This model, used previously 
(Oberholzer, 2021), was also included in this paper to illustrate application of the PPA 
algorithm in a small network.  

• The Winnipeg model supplied with Emme/4 and used throughout the help files and API 
documentation to explain Emme/4’s capabilities using appropriate examples drawn 
from this model. 

• The eThekwini Macro Model 2008 Base Year, as expanded and calibrated by Goba, on 
behalf of the eThekwini Transport Authority (eThekwini Municipality, 2013). 

 
Table 4 illustrates the main Emme/4 model features, for each of the selected case studies.  
 

Table 4: Case Studies – Model Features 

Description Umhlathuze Winnipeg eThekwini 
Network Map 

   
Size Small Medium Large 
Zones 80 154 646 
Nodes 182 893 4 617 
Links 596 3 027 13 054 
Link Counts 15 70 260 
Turn Counts 130 - - 
Prior Demand 20 398 56 219 114 373 
 
4.2 Model Runs and Results 
 
The Emme/4 models were already calibrated and contained suitable prior demand 
matrices and link and/or turn counts stored in attributes. Model runs were thus 
straightforward for all three case studies, comprising: 
 
• Matrix Adjustment, using the custom-developed PPA Modeller Tool. 
• Standard Multi-class traffic demand adjustment, using SOLA. 
• Extraction of module run-times timings from the Emme/4 logbook. 
• Display of Emme/4 standard link and turn scatterplot worksheets.  
 
Table 5 illustrates the case study modelling results. 
  



Table 5: Case Studies - Results and Analysis 

Description Umhlathuze Winnipeg eThekwini 
PPA runtime 04 iterations: 09 s 20 iterations: 1 m 07 s 10 iterations: 21 m 42 s 
Std Runtime 30 iterations: 64 s 30 iterations: 2 m 41 s 24 iterations: 11 m 56 s 
PPA 
Scatterplots 

   
Standard 
Emme matrix 
adjustment 
Scatterplots 

   
 
5. CONCLUSION 
 
The matrix estimation algorithm based on proportional path averages, implemented as a 
custom-built Emme/4 Modeller Tool, is a viable alternative to Emme/4’s Multiclass traffic 
demand adjustment. For the small- and medium-sized case studies, the PPA tool 
performed faster than its Emme/4 counterpart, with equally accurate results, as indicated 
by the scatterplots.  
 
For the large case study, the PPA tool was also as accurate, but the computer runtime 
was almost double that of the built-in Emme/4 module. The inner loop that checks whether 
any links in an OD path are in the list of counts, was identified as the primary cause of the 
lengthy runtime, adding 86 seconds to each outer loop that re-creates the master 
fractional path table, after a path-based traffic assignment. 
 
This paper confirms proof of concept. Further research will be required to: 
 
• Expand the algorithm to include multi-class assignments. 
• Optimise the Python coding to reduce the timing delays during master table creation. 
• Delve deeper into the underlying path-building within the Emme/4 core, i.e., methods 

and procedures currently not exposed by the Emme/4 APIs, to explore further 
optimisation. 
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