Interactions of Coated-Gold Engineered Nanoparticles with Aquatic Higher Plant *Salvinia minima* Baker

Ntombikayise Mahaye¹, Melusi Thwala² and Ndeke Musee^{1,*}

- ¹ Emerging Contaminants Ecological and Risk Assessment (ECERA) Research Group, Department of Chemical Engineering, University of Pretoria, Pretoria, 0028, South Africa; mahaye.ntombi@gmail.com
- ² Water Centre, Council for Scientific and Industrial Research, Pretoria, 0184, South Africa; mthwala@csir.co.za
- * Correspondence: ndeke.musee@up.ac.za or museen2012@gmail.com

The ζ potentials were calculated using Smoluchowski equation:

$$vE = 4\pi\varepsilon 0\varepsilon r + \frac{\zeta}{6\pi\mu} + (1+\kappa r) \tag{Eq. S1}$$

where $\varepsilon 0$ and εr are the relative dielectric constant and the electrical permittivity of a vacuum respectively, μ is the solution viscosity, r is the particle radius and $\kappa = (2n0z^2e^2/\varepsilon r\varepsilon 0kBT)^{1/2}$ is the Debye–Hückel parameter, n0 is the bulk ionic concentration, z is the valence of the ion, e is the charge of an electron, kB is the Boltzmann constant, and T is the absolute temperature.

The ionic strength (IS) of the medium was calculated as follows:

$$IS = \frac{1}{2} \sum_{i} C_i Z_i^2 \tag{Eq. S2}$$

where IS is the ionic strength in mM, C_i is the concentration of the *i*th species in mM, and Z_i is the charge of the *i*th species.

Macronutrient	Per litre of nutrient solution	
KNO3	5 ml of 1 M	
Ca(NO3)2 4H2O	5 ml of 1 M	
MgSO4·7(H2O)	2 ml of 1 M	
KH2PO4	2 ml of 1 M	
Micronutrients	Per litre (g)	
H ₃ BO ₃	2.86	
MnCl ₂ ·4(H ₂ O)	1.81	
ZnSO4·7H2O	0.22	
CuSO4·5H2O	0.08	
MoO ₃	0.02	
Fe-EDTA	1-5 ml of 1000 mg/L	
Minus nitrogen	Per litre of nutrient solution	
Ca(NO3)2 4H2O	0.75 ml of 1 M	
Ca(H2PO4)2·H2O	10 ml of 0.05 M	
CaSO ₄ ·2H2O	200 ml of 0.01 M	
K ₂ SO ₄	5 ml of 0.5 M	
MgSO4.7H2O	2 ml of 1 M	

Table S1: Composition of Hoagland's medium

Source: Hoagland and Arnon [1]

Size (nm)	Size (nm)
(Manufacturer)	(Current study)
4.8±0.7	5.6±1.4
20.0±2.5	20.7±2.5
39.9±4.1	41.3±4.0
4.3±0.6	5.0±0.6
18.2±1.6	19.0±2.7
41.3±4.2	41.3±2.8
	Size (nm) (Manufacturer) 4.8±0.7 20.0±2.5 39.9±4.1 4.3±0.6 18.2±1.6 41.3±4.2

Table S2: Mean sizes (nm) of nAu obtained using TEM

Figure S1. TEM images of nAu (**a**) 5 nm-Cit, (**b**) 20 nm-Cit, (**c**) 40 nm-Cit, (**d**) 5 nm-BPEI, (**e**) 20 nm-BPEI, (**f**) and 40 nm-BPEI. Source: Mahaye [2].

Figure S2: Particle size distribution of gold nanoparticles at 1000 μ g/L in 10%

Hoagland's medium measured using Dynamic Light Scattering technique at 0 h (**a**) 5 nm Cit-nAu, (**b**) 20 nm Cit-nAu, (**c**) 40 nm Cit-nAu, (**d**) 5 nm BPEI-nAu, (**e**) 20 nm

BPEI-nAu, and (f) 40 nm BPEI-nAu.

Figure S3: Hydrodynamic diameters of nAu in de-ionized water and 10% Hoagland's medium tracked using Dynamic Light Scattering technique over 48 h. (a) 5 nm Cit-nAu, (b) 20 nm Cit-nAu, (c) 40 nm Cit-nAu, (d) 5 nm BPEI-nAu, (e) 20 nm BPEI-nAu, and (f) 40 nm BPEI-nAu. Bars denote standard deviations, and statistical difference between the two media per time period is denoted by * where n = 3.

Figure S4: Zeta potentials of nAu in de-ionized water and 10% Hoagland's medium obtained using Dynamic Light Scattering technique over 48 h. (**a**) 5 nm Cit-nAu, (**b**) 20 nm Cit-nAu, (**c**) 40 nm Cit-nAu, (**d**) 5 nm BPEI-nAu, (**e**) 20 nm BPEI-nAu, and (**f**) 40 nm BPEI-nAu. Bars denote standard deviations, and statistical difference between the two media per time period is denoted by * where n = 3.

Figure S5: UV-vis spectrum of nAu in de-ionized water as a function of time. (**a**) 5 nm Cit-nAu, (**b**) 20 nm Cit-nAu, (**c**) 40 nm Cit-nAu, (**d**) 5 nm BPEI-nAu, (**e**) 20 nm BPEI-nAu, and (**f**) 40 nm BPEI-nAu. Data are presented as means (n = 3). Arrows show the position of the main peak. Source: Mahaye [2].

Figure S6: *in situ* nAu concentration (particles/mL) examined using Nanoparticle Tracking Analysis (NanoSight NS500, NTA 3.0 Software, Amesbury, UK). Results are represented as mean (n = 3) and bars denote standard deviation. The 5 nm sized-nAu samples were excluded from NTA analysis as the technique cannot measure sizes below 10 nm accurately (NanoSight NS500 operating manual, Version P553S).

Figure S7: TEM-EDX spectra confirming the absence of nAu internalization on plant roots: (**a**) control, (**b**) 5 nm cit-nAu, (**c**) 20 nm-cit nAu, (**d**) 40 nm cit-nAu, (**e**) 5 nm BPEI-nAu, (**f**) 20 nm BPEI-nAu, and (**g**) 40 nm BPEI. Peaks indicate that only iron, cupper, sodium, osmium, chromium, chlorine, and phosphorus were identified. The inserts on Figures indicate percentages of the detected elements.

References

1. Hoagland DR; Arnon DI. The Water-Culture Method for Growing Plants without Soil. *California Agricultural Experiment Station Circular* **1950**, *347*, 1–32.

2. Mahaye, N. Stability of Gold and Cerium Oxide Nanoparticles in Aqueous Environments, and Their Effects on Pseudokirchneriella Subcapitata and Salvinia Minima. PhD, University of Pretoria: Pretoria, **2019**. https://repository.up.ac.za/handle/2263/72778.