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Abstract: This study is a model of artificial perceptron neural network including three inputs to 

predict the Nusselt number and energy consumption in the processing of tomato paste in a shell-

and-tube heat exchanger with aluminum oxide nanofluid. The Reynolds number in the range of 

150–350, temperature in the range of 70–90 K, and nanoparticle concentration in the range of 2–4% 

were selected as network input variables, while the corresponding Nusselt number and energy con-

sumption were considered as the network target. The network has 3 inputs, 1 hidden layer with 22 
neurons and an output layer. The SOM neural network was also used to determine the number of 

winner neurons. The advanced optimal artificial neural network model shows a reasonable agree-

ment in predicting experimental data with mean square errors of 0.0023357  and 0.00011465 and 

correlation coefficients of 0.9994  and 0.9993 for the Nusselt number and energy consumption data 

set. The obtained values of eMAX for the Nusselt number and energy consumption are 0.1114, and 

0.02, respectively. Desirable results obtained for the two factors of correlation coefficient and mean 

square error indicate the successful prediction by artificial neural network with a topology of 3-22-2. 

Keywords: artificial neural network; Nusselt number; mean square error; SOM 

 

1. Introduction 

Adding nanoparticles to a base fluid affects the thermophysical characteristics of the 

fluid [1–5]. Several studies are conducted on the effects of adding nanoparticles on the 

heat transfer of nanofluids [6–10].Wanatasanapan et al. [11] investigated the influence of 

TiO2-Al2O3 nanoparticle mixing ratio on the thermal conductivity, rheological properties 

and dynamic viscosity of water-based hybrid nanofluid. Li et al. [12] estimated the stabil-

ity and thermal performance of Al2O3-ethylene glycol (EG) nanofluids under ultrasonic 

conditions. Their results showed that Al2O3-EG nanofluids obtained by ultrasonation for 

60 min showed the most encouraging properties. Sekhar et al. [13] prepared cobalt oxide-

water nanofluid and studied its thermal and physical properties. Based on their results, 

relative viscosity values decreased with temperature and increased with the volume frac-

tion of nanoparticles. The thermal conductivity ratio of the nanofluid increased, too. Gu 

et al. [14] evaluated thermal conductivity and viscosity properties of water-based 
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nanofluid containing carbon nanotubes decorated with Ag nanoparticles. Based on their 

findings, thermal conductivity (k) of the nanofluid increased with the thermal filler load-

ing and the decoration quantity of Ag nanoparticles. Bahmani et al. [15] investigated heat 

transfer and turbulent flow of water/alumina nanofluid in a double pipe heat exchanger. 

The results indicated that increasing the nanoparticles volume fraction or Reynolds num-

ber caused enhancement of Nusselt number and convection heat transfer coefficient. Mad-

dah et al. [16] presented a factorial experimental design for the thermal performance of a 

double pipe heat exchanger using Al2O3-TiO2 hybrid nanofluid. They found that using 

nanocomposites and twisted tapes increased the exergy efficiency compared to utilizing 

conventional water as a heat transfer fluid. Goodarzi et al. [17] studied heat transfer and 

pressure drop of a counter flow corrugated plate heat exchanger using MWCNT-based 

nanofluids. It was shown that performance of the plate heat exchanger can be enhanced 

using MWCNT/water as the working fluid. Fares et al. [18] analyzed heat transfer of a 

shell and tube heat exchanger operating with graphene nanofluids. The results indicated 

that using graphene/water nanofluids enhanced the thermal performance of the shell and 

tube heat exchanger. Cox et al. [19] used nanofluids in a shell-and-tube heat exchanger. 

They found both augmentation and deterioration of heat transfer coefficient for nanoflu-

ids depending on the flow rate through the heat exchangers. In a study by Shahsavar et 

al. [20], impact of variable fluid properties on forced convection of Fe3O4/CNT/water hy-

brid nanofluid in a double-pipe mini-channel heat exchanger was assessed. The results 

showed that the non-Newtonian hybrid nanofluid always had a higher heat transfer rate, 

overall heat transfer coefficient and effectiveness than those of the Newtonian hybrid 

nanofluid. Maddah et al. [21] investigated viscosity and thermal conductivity of hybrid 

Cu/CNT water-based nanofluids at various concentrations of nanofluid and tempera-

tures. The results demonstrated that although increased concentration resulted in en-

hancement of the thermal conduction coefficient and viscosity, the increase in tempera-

ture followed the expected results of increasing thermal conductivity and decreasing vis-

cosity. Ghasemi et al. [22] predicted and optimized exergetic efficiency of TiO2-Al2O3/wa-

ter nanofluid at different Reynolds numbers, volume fractions and twisted ratios using 

artificial neural networks and experimental data. The findings indicated successful pre-

diction by the network. Kahani et al. [23] developed multilayer perceptron artificial neural 

network (MLP-ANN) and least square support vector machine (LSSVM) models to pre-

dict Nusselt number and pressure drop of TiO2/water nanofluid flows through non-

straight pathways. Based on the output results of developed models, MLP-ANN model 

was able to predict both Nusselt number and pressure drop of nanofluid flow more pre-

cisely compared to the LSSVM model. The present study is aimed at predicting Nusselt 

number and energy consumption using artificial neural network in processing and pre-

paring tomato paste based on the laboratory study by Jafari et al. [24]. Ahmadi et al. [25] 

used artificial neural network to predict thermo-physical properties of TiO2-Al2O3/water 

nanoparticles. Their results showed that the SOM and BP-LM algorithms can be consid-

ered excellent tools for predicting thermal conductivity. Zahir Shah  et al. [26] investigated 

the impact of nanoparticle shape and radiation on the behavior of Al2O3/H2O nanofluid 

under the Lorentz forces. Based on their results, convective thermal energy transportation 

enhances with augmenting buoyancy forces, radiation parameter and nanoparticles shape 

factor. 

Esfe [27] designed a neural network for predicting the thermal conductivity of ZnO-

MWCNT/EG-water hybrid nanofluid for engineering applications. It was found that the 

neural network is able to predict the data. Moreover, the data regression coefficients indi-

cated the high accuracy of the applied method. In their research, Zahir Shah  et al. [28] 

studied heat transfer intensification of nanomaterial with involve of swirl flow device con-

cerning entropy generation. The characteristics of thermal energy transfer of hybrid 

nanofluid were investigated by varying the pitch ratio (P) of the helical turbulator and 

Reynolds number (Re) of the fluid. The obtained results indicated that making the fluid 

more turbulent by increasing Re decreases the temperature of the fluid while increasing 
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the fluid velocity. Numerical modeling on hybrid nanofluid (Fe3O4+MWCNT/H2O) mi-

gration considering MHD effect over a porous cylinder was examined by Zahir Shah  et 

al. [29]. They concluded that the enhancing medium porosity, buoyancy forces and radi-

ation parameter increased the free convective thermal energy flow. Zahir Shah  et al. [30] 

formulated fractional dynamics of HIV with a source term for the supply of new CD4+ T-

cells depending on the viral load via the Caputo–Fabrizio derivative. Their numerical 

study was focused on the path-tracking damped oscillatory behavior of a model for the 

HIV infection of CD4+ T-cells. Other studies are shown in Table 1. 

First, using a self-organizing map (SOM) neural network, the winner neuron is iden-

tified and then this winner neuron will be used in the perceptron artificial neural network 

to predict the data. Input data include temperature, nanofluid concentration and Reyn-

olds number, and output data are Nusselt number and energy consumption. 

Table 1. Several reported experimental works for heat transfer of the various nanofluids in heat exchanger. 

Authors Nanoparticles Heat Exchanger Response Method 

Ghasemi et al.[31] magnesium oxide double pipe heat exchanger 

Nusselt number, overall heat 

transfer coefficient and 

pressure drop 

ANN-SOM 

Maddah et al.[32] 
multiwall carbon nanotube/carbon 

(60/40) 
double pipe heat exchanger relative viscosity ANN-SOM 

Hojjat et al.[33] Aluminum oxide 
a shell and tube heat 

exchanger 
Nusselt number, pressure drop ANN 

Aghayari et al.[34] copper oxide helical coil 
Nusselt number, entropy 

generation 
ANN-SOM 

Hemmat Esfe et al. [35] Ag double tube heat exchange Nusselt number, pressure drop RBF-ANN 

Aghayari et al.[36] iron oxide double tube heat exchange Nusselt number ANN 

2. Experimental Data 

The experimental results obtained by Jafari [24], who reported Aluminum oxide nanoparticles in 

shell and tube heat exchanger, were used in the temperature range of 70–90 K, Reynolds number 

range of 150–350, and nanoparticle concentration range of 2–4%. Figure 1 represents the Nusselt 

number of shell and tube heat exchanger with Al2O3–water nanofluid. Red, green and blue colours 

represent the Nusselt number changes in terms of Reynolds number at concentration 0, 2, and 4%, 

respectively. Figure 2 shows energy consumption and processing time for nanofluids and water in 

thermal processing of tomato juices. Red, and green colours represent energy and time, respec-

tively. 

 

Figure 1. The Nusselt number of shell and tube heat exchanger with Al2O3–water nanofluid.  



Sustainability 2021, 13, 8824 4 of 17 
 

 

Figure 2. Energy consumption and processing time for nanofluids and water in thermal processing 

of tomato juices. 

3. Design of Neural Network Structure 

3.1. Multilayer Perceptron (MLP) Neural Network 

One of the best artificial neural networks for solving complex and nonlinear prob-

lems is MLP network with supervised training and error back-propagation algorithm [37]. 

In general, MLP networks have three layers of input, hidden and output, each layer hav-

ing a number of processing units called neurons. Each neuron receives a weighted output 

from the previous neuron and passes it from an activation or threshold function. These 

functions can be of different types such as sigmoid, Gaussian, linear and binary. The train-

ing basis of these networks is to change the weight of the connections in order to achieve 

the desired output. To this end, first a model is presented to the network and then its 

output is calculated. Comparing this output with the actual value, the error rate is calcu-

lated to correct the network weights. The error is then propagated into the network and 

the weights are reset. This cycle continues until the sum of square errors is minimized 

[37]. A network is considered generalized when the amount of prediction error is accepta-

ble using the data already introduced to the network (experimental data). Therefore, in 

modeling with these networks, from the beginning, the data should be divided into two 

categories: experimental and training data. The training model should cover the entire 

data space as much as possible. 

3.2. Radial Base Function Model 

The design of this network is faster than that of the MLP network, and it learns faster. 

These networks perform well when many input vectors are available and can approximate 

any logical function with a sufficient number of neurons. The network consists of three 

layers including an input layer, a hidden layer with a nonlinear active radius function, 

and a linear output layer. The most important nature of RBF networks is that the hidden 

layer neurons in the middle of the base function have reaction only from the location of 

the input function, and for this reason, when the input space falls in only one area, the 

primary function can generate a significant non-zero response; otherwise, the output is 

smaller than the base functions. 
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where M is the number of base functions, X is the input data vector, ��� represents the 

weight connected between the base function and the output layer, and ∅� is the nonlinear 

function of unit j, which is typically a Gaussian function as follows: 

∅�(�) = ��� �− 
�� − ���

�

2��
� �  (2)

3.3. Self-Organizing Map (SOM) Neural Network 

A self-organizing map (SOM) is one of the artificial intelligence methods first devel-

oped by Kohonen [38]. This model displays a regular distribution of large dimensions on 

a small system. Hence, it can reduce complex nonlinear relations in large data sets to a 

simple display. While the structure of the original topology of data is maintained, SOMs 

reduce the size of the data and show similar patterns. This method is done using MATLAB 

software and is considered one of the artificial intelligence methods. Each SOM network 

usually consists of an input layer and an output layer. Weight vectors (synapses) connect 

the input layer to the output layer (called the competitive map or layer). In an iterative 

process, SOM is trained. Each input vector, based on the maximum similarity, activates a 

node called the winner cell in the output layer. The similarity between the two vectors is 

usually based on the Euclidean distance according to Equation (3), which is often meas-

ured as a difference [38]: 

�� =  ����� − ���
�

�

���

  (3)

where �� is the �th input vector, ��� is the weight vector connecting the input � to the 

output neuron �, and �� is the sum of the Euclidean distance between the input sample 

�� and its weight vector connecting to the �th output cell, called the map unit. 

4. Levenberg–Marquardt and Momentum Algorithm 

4.1. Back Propagation Learning Algorithm 

This algorithm is one of the learning algorithms with observer, which basically con-

sists of two main paths: 

Forward path: where the input vector is applied to the neural network and its effect 

is propagated to the output layer through the middle layers. In this path, for each input, 

a value called output is calculated by the network. Network parameters remain constant 

in this path. 

Backward path: after generating output in the forward path, the difference between 

the desired output (observed) and output calculated by the network is determined. Error 

signals on the backward path are redistributed from the output layer throughout the net-

work and the network parameters are reset. 

The above dual process is repeated many times to bring the network output closer to 

the desired output. When the error obtained from the permissible threshold is small, the 

training process is stopped. Error back propagation method, Levenberg–Marquardt algo-

rithm, due to faster convergence in training medium-sized networks, has been selected 

for use in the present study. The error back propagation algorithm changes the network 

weights and bias values in such a way that the performance function decreases more rap-

idly. 

4.2. Momentum Algorithm 

In this algorithm, the law of weight change can be considered in such a way that the 

weight change in the nth iteration is to some extent dependent on the weight change size 

in the previous repetition. 
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5. Modeling of Artificial Neural Network 

The number of input data to the artificial neural network was 225 data, which in-

cluded Reynolds number, nanoparticle concentration and temperature. Seventy-five data 

obtained for Nusselt number and energy consumption were considered as the objective 

function. The neural network is designed using a multilayer perceptron algorithm. The 

general modeling process for predicting the Nusselt number and energy consumption is 

represented in Figure 3. As seen, this network has three inputs, a hidden layer with 22 

neurons and two outputs. The transfer function is sigmoid and Purelin transfer function 

is used in the output layer. 

 

Figure 3. General program execution algorithm. 

The parameters of temperature, Reynolds number and nanofluid concentration were 

considered as inputs to the SOM neural network to investigate and select the winner neu-

ron with the most data. As shown in figure below, a network with 3 inputs and 28 neurons 

is evaluated (Figure 4). 

 

Figure 4. The schematic of (SOM) neural network used. 
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In this study, a two-layered feedforward neural network using error back propaga-

tion-Levenberg-Marquardt (BP-LM) and momentum algorithms was employed for mod-

elling the Nusselt number and energy consumption. 

Mean square errors (MSE)  and coefficient of determination (R) are used to evaluate 

the results [32]. 

MSE =
1

�
� (��

���
− ��

���)�
�

���
 (4)

�� =
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���

�
���

(� − ��)�
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where N is the number of experimental data, ��
���

is the experimental data assigned to 

Nusselt number or energy consumption and ��
��� is the Nusselt number or energy con-

sumption predicted by neural network. Moreover, �� is the mean value of Nusselt num-

ber or energy consumption and �̅ is the mean value of error. 

6. Results and Discussion 

Figure 5 represents the output of the SOM artificial neural network with primary 

neurons and the number of their members. Yellow colour represents successful neuron 

assigning 15 data to itself and blue colour represents unsuccessful neurons.. Each neuron 

contains a number of data. Each neuron having the most data is the winner neuron [25]. 

In Figure 5, it can be said that the winner neuron is neuron 22 with 22 data. This neuron 

can be used in the perceptron neural network. The distance between the center of each 

neuron relative to the neighboring neuron is shown in Figure 6. The longer the distance 

between the neurons, the darker their neighborhood line is, and the shorter the distance, 

the more similar they are to each other and the brighter the lines are. The neurons 25 and 

26 are farther apart, but the neurons 5 and 6 are closer to each other and more similar 

(Figure 6). 

 

Figure 5. Statistical chart of winner neurons of SOM neural network.  

  

0 2 4 6
-1

0

1

2

3

15 0 10 5 5 0 5

0 0 0 5 0 0 5

5 5 0 0 0 5 0

0 5 0 0 0 0 5



Sustainability 2021, 13, 8824 8 of 17 
 

 

Figure 6. SOM neighbor weight distances 

In Figure 7a, the range of input temperature data is 70, 80 and 90 K and contains 75 

data. As seen, black neurons 1, 2, 8, 9, 21, 26, 27 and 28 have the least excitability, and the 

neurons 24 and 25, which are yellow, have a higher excitability. The same analysis can be 

done for Figure 7b,c. The target and simulated data in the program can be plotted and 

matched so that the simulation error can be clearly seen. This is shown in Figure 8a,b. In 

these diagrams, the horizontal axis is the number of data and the vertical axis is the net-

work output values (modeling results) and the target input data (the experimental results 

for Nusselt number and energy consumption). As seen, the network prediction is very 

close to the experimental data, indicating the high accuracy and success of the program 

with the topology of 3-22-2. The discrepancy between the model data and the actual data 

may be due to measurement error or other errors during testing. 
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Figure 7. Influence of the input. (a) temperature, (b) Reynolds number, and (c) nanofluid concen-

tration variable weights on neural network neurons for clustering definition. Different colours rep-

resent different neurons.  

 

Figure 8. The results of the predicted (a) Nusselt number, and (b) energy consumption versus experimental data with 

number of samples. 
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values predicted by the artificial neural network with 22 neurons. The values of correla-

tion coefficient, mean square error and maximum error (emax) for Nusselt number and en-

ergy consumption are 0.9994, 0.0023357, 0.11114, 0.9993, 0.00011465 and 0.02, respectively. 

One of the major problems related to artificial neural network instruction is over-fitting 

or over-training, in which the generated artificial neural network system can only produce 

a good forecast for a known data set and is unable to provide a reasonable forecast for the 

new data set. To avoid over-fitting and improve the generalization capacity of the net-

work, the early-stopping technique is used. In this method, all data is randomly divided 

into three sub-sections, namely instruction, validation and test. The instruction or training 

is for network training, and the validation or evaluation set is used to ensure the accuracy 

and generalization of the network developed during the training process. The network 

training process stops when the evaluation or validation set error increases, even if train-

ing continues until the training set error is minimized. When network training is stopped, 

the test phase is used to check the final performance of the network. 

 

 

Figure 9. The obtained values of the correlation coefficient (R) and mean square errors (MSE)  for (a) 

Nusselt number and (b) energy consumption using the artificial neural network. 
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Figures 10 and 11 represent the obtained values of correlation coefficient and mean 

square error for Nusselt number and energy consumption data. These values are shown 

for the training, validation, testing and total data. As seen, running a network with 22 

neurons, the values of the correlation coefficient obtained for the Nusselt number and the 

energy consumption for the training, validation, testing and total data are equal to 0.99938, 

0.99876, 0.99971, 0.99935–0.99928, 0.999, 0.99903 and 0.99918. 

Using the same procedure, the mean square errors are also 0.002335, 0.00338548, 

0.0014088, 0.0024226–0.00011405, 0.00021978, 0.00015764 and 0.0001363. The closer the cor-

relations are to 1 and the mean square errors to 0, the better the results of predicting the 

Nusselt number and energy consumption are. 

 

Figure 10. Optimal values of (a) mean square error and (b) correlation coefficient (linear regression) for the training, vali-

dation, test and total data for Nusselt number. 

 

Figure 11. Optimal values of (a) mean square error and (b) correlation coefficient (linear regression) for the training, vali-

dation, test and total data for energy consumption. 

Figure 12a,b show the effect of the number of training cycles on neural network per-

formance. As seen in this figures, the mean square error of the network starts from a large 

value and gradually decreases [34]. This means that the network learning process is pro-

gressive. The evaluation set is used to maintain the network. The network training process 

continues until the network error about the evaluation network is reduced. According to 

Figure 12a,b, with increasing the number of cycles to about 2 and 3 cycles, the amount of 

network training and test error decreases. After that, as the number of cycles increases, 

the error rate does not change much and remains almost constant. Therefore, in this study, 

AllTestValidationTraining
0

1

2

3
x 10

-4

ANN Model

Mean Square Error (Mse)

AllTestValidationTraining

0.9985

0.999

0.9995

1
Linear regression (R)

ANN  Model

b)a)

AllTestValidationTraining
0

1

2

3

4
x 10

-3

ANN Model

Mean Square Error (Mse)

AllTestValidationTraining

0.998

0.9985

0.999

0.9995

1

ANN  Model

Linear regression (R)

a) b)



Sustainability 2021, 13, 8824 12 of 17 
 

the number of 2 and 3 cycles is considered as the desired number of cycles for the Nusselt 

number and energy consumption, respectively. According to Figure 12a,b, the values of 

the best performance for the network with the mean square error for the Nusselt number 

and energy consumption are 0.0038548 and 0.00021976, respectively. 

 

 

Figure 12. Mean square error (MSE) variations during training steps for training, validation and 

testing for a neural network: (a) Nusselt number, (b) energy consumption. 
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complex and trained, and the small number of neurons will cause the neural network not 

to be trained and the data to be stored. As shown, the values of R and MSE are only pre-

sented for the overall data. It is seen that a structure with 22 neurons in each hidden layer 

is the best structure to model the mixture conduction (Tables 2 and 3).The radial and per-

ceptron artificial neural network with the algorithms mentioned in Tables 2 and 3, by 

learning a number of recorded data, has been able to predict the Nusselt number and the 

amount of energy consumed in the whole training range. The reason for the good perfor-

mance of the neural network of the present study can be attributed to the intelligent data 

analysis process, appropriate measurements, use of scattered data, generalizability, hav-

ing the features of the ability to learn, parallel processing, robustness and selection of ef-

fective characteristics in the shell-tube heat exchanger (so that the neural network during 

the training process, by creating logical relationships between input and output map-

pings, uses it to calculate data not used in network training). The results of the Levenberg–

Marquat algorithm for the radial and perceptron neural network are also much more suc-

cessful than the momentum algorithm. 

Table 2. Obtained values for the MSE and R-squared various structures (MLP). 

Levenberg-Marquardt Algorithm  Momentum Algorithm 

Nusselt Number Consumption Energy Nusselt Number Consumption Energy 

Number 

of 

Hidden 

Layers 

Number of 

Neurons in 

Each Hidden 

Layer 

R MSE R MSE R MSE R MSE 

1 2 0.97935 0.01402 0.98868 0.00265 0.9832 0.008365 0.9752 0.000131 

1 4 0.99875 0.008475 0.99925 0.001165 0.9838 0.009472 0.9781 0.000153 

1 6 0.99912 0.005541 0.99945 0.000841 0.9758 0.006047 0.9745 0.000159 

1 8 0.99951 0.007460 0.99869 0.000195 0.9806 0.006814 0.9814 0.000137 

1 10 0.98912 0.005511 0.99865 0.006512 0.9824 0.003764 0.9736 0.000146 

1 12 0.99966 0.003298 0.9954 0.005514 0.9840 0.005381 0.9746 0.000137 

1 14 0.9976 0.004157 0.99875 0.000635 0.9847 0.004375 0.9840 0.000148 

1 16 0.99865 0.002639 0.99868 0.000351 0.9853 0.005592 0.9824 0.000129 

1 18 0.9984 0.003554 0.9925 0.0001515 0.9858 0.005241 0.9779 0.000136 

1 20 0.9969 0.0060239 0.9899 0.000412 0.9860 0.003930 0.9804 0.000154 

1 22 0.9994 0.0023357 0.9993 0.00011465 0.9869 0.003254 0.9874 0.000123 

1 24 0.9989 0.002714 0.9923 0.00012365 0.9861 0.004725 0.9796 0.000134 

1 26 0.9991 0.003046 0.9965 0.0006315 0.9855 0.005695 0.9813 0.000147 

1 28 0.9981 0.002398 0.9994 0.0001936 0.9859 0.003628 0.9857 0.000149 
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Table 3. Obtained values for the MSE and R-squared various structures (RBF). 

Levenberg-Marquardt Algorithm  Momentum Algorithm 

Nusselt Number Consumption Energy Nusselt Number 
Consumption 

Energy 

Number 

of 

Hidden 

Layers 

Number of 

Neurons in 

Each Hidden 

Layer 

R MSE R MSE R MSE R MSE 

1 2 0.9836 0.0654 0.9725 0.007461 0.9614 0.004256 0.9756 0.007112 

1 4 0.9940 0.0084 0.9934 0.004629 0.9687 0.004875 0.9732 0.006148 

1 6 0.9894 0.00749 0.9654 0.003324 0.9754 0.005298 0.9785 0.008322 

1 8 0.9774 0.00254 0.9870 0.001782 0.9801 0.006489 0.9821 0.008156 

1 10 0.9568 0.00612 0.9813 0.006514 0.9736 0.006234 0.9713 0.008417 

1 12 0.9740 0.00532 0.9765 0.001487 0.9801 0.006128 0.9724 0.006612 

1 14 0.9900 0.003541 0.9841 0.003621 0.9733 0.004736 0.9776 0.006954 

1 16 0.9811 0.00423 0.9770 0.002140 0.9758 0.006512 0.9637 0.007532 

1 18 0.9638 0.006988 0.9855 0.005541 0.9763 0.005127 0.9635 0.007713 

1 20 0.9891 0.05547 0.9894 0.002342 0.9804 0.005914 0.9646 0.003849 

1 22 0.9898 0.003154 0.9902 0.001411 0.9811 0.003941 0.9878 0.003745 

1 24 0.9768 0.003180 0.9876 0.002514 0.9788 0.004824 0.9744 0.004185 

1 26 0.9735 0.00425 0.9725 0.004156 0.9768 0.006718 0.9785 0.004732 

1 28 0.9888 0.00648 0.9741 0.007416 0.9725 0.006284 0.9796 00003924 

Figure 13a,b represent the error distribution for the Nusselt number and energy con-

sumption in terms of the number of samples. As shown, the uniform distribution is ob-

served around zero, with the highest error values for the Nusselt number data in the range 

of ±0.1 and for the energy consumption data in the range of ±0.02. 

 

 

Figure 13. The values obtained for error rate with the number of samples: (a) Nusselt number, (b) 

energy consumption. 
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Examining the performance diagrams for the Nusselt number and energy consump-

tion, the results are desirable for the following reasons: 

1. The mean square error values are low. 

2. The mean square errors of the training, validation and testing set have similar be-

havior and characteristics. 

7. Conclusions 

In this study, predicting the parameters of Nusselt number and energy consumption 

in the processing of tomato paste using perceptron artificial neural network was evalu-

ated. The input parameters included Reynolds number, temperature and concentration of 

aluminum oxide nanofluid, and Nusselt number and energy consumption were output or 

target data. The hidden layer had 22 neurons with sigmoid transfer function and output 

layer had Purelin function. According to the results, the neural network with a topology 

of 3-22-2 had high accuracy, so that the network evaluation indicators such as correlation 

coefficient and mean square error indicated desirable values and the predicted values for 

Nusselt number and energy consumption were in good agreement with the experimental 

results. 
Statistical analysis of regression through correlation coefficients and mean squared 

error showed that the multilayer perceptron network with Levenberg–Marquardt algo-

rithm had better conditions for Nusselt number and energy consumption modeling than 

the neural network with radial function and momentum algorithm. 

The smaller the discrepancy between the output data from the modeling and the la-

boratory data, the higher the efficiency of the algorithm used in predicting the output. 

Validation data show the ability to appropriately and favorably predict and general-

ize the neural network. 

Validation against new data causing increased network error resists and stops the 

training process. 
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