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Abstract
We forecast monthly realized volatility (RV) of the oil price based on an extended heterogenous autoregressive (HAR)-
RV model that incorporates the role of the El Niño Southern Oscillation (ENSO), as captured by the Equatorial Southern
Oscillation Index (EQSOI). Based on the period covering 1986 January to 2020 December and studying various rolling-
estimation windows and forecast horizons, we find that the EQSOI has predictive value for oil-price RV particularly at
forecast horizons from 2 to 4 years, and for rolling-estimation windows of length 4 to 6 years. We show that this result holds
not only based on standard tests of out-of-sample predictability, but also under an asymmetric loss function.

1 Introduction

The El Niño Southern Oscillation (ENSO) is an irregularly
periodic variation in winds and sea surface temperatures
over the tropical eastern Pacific Ocean, affecting the climate
of much of the tropics and subtropics (Trenberth et al.
2007). The warming phase of the sea temperature is
known as El Niño and the cooling phase as La Niña. The
two periods last several months each and typically occur
every few years with varying intensity per period. The
ENSO changes the global climate pattern (Martin et al.
2013; Staupe-Delgado et al. 2018; Rojas et al. 2019),
which in turn affects the demand and supply in the oil
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market, resulting in movements in its price (Changnon
1999; Cruz and Krausmann 2013; Cashin et al. 2017; Qin
et al. 2020). Since the ENSO can cause severe natural
disasters (for example, droughts, floods, and hurricanes;
Cane 2004; Alajo et al. 2006; Miyakawa et al. 2017; Hu
and Fedorov 2019), Demirer et al. (2020a) recently show
that the ENSO also affects the volatility of the oil price. As
explained by Demirer et al. (2018) earlier while analyzing
the relationship between the oil market and rare disaster
risks, this is due to disaster risks contributing to jump risk
in oil prices, which in turn impacts oil-price volatility, given
that that jumps account for a large part of the variation in
crude oil prices (Gkillas et al. Forthcoming).1

Against the backdrop of the recent evidence of pre-
dictability (based on k-th order nonparametric causality-in-
quantiles test) of the ENSO for oil-price volatility (besides
returns) provided by Demirer et al. (2020a), in this paper, we
aim to extend this line of research by verifying if this evi-
dence does translate also to out-of-sample forecasting. This
is important from a statistical perspective, since in-sample
predictability does not guarantee out-of-sample forecasting
gains emanating from a specific predictor, besides the fact
that it is out-of-sample forecasting that tends to provide a
more robust test of the appropriateness of an econometric
model and the predictor (Campbell 2008). In light of this,
we forecast monthly realized volatility (RV) of the West

1It must also be pointed out that a number of empirical studies
have highlighted the role of rare disaster risks on second moment
movements of asset (equities, bonds, currencies) prices (see for
example, Gupta et al. 2019a, b; Gkillas et al. 2020a, b), and given the
well-known spillover between variability of assets and oil markets (see
for example, Tiwari et al. 2018), there also exists an indirect channel
through which rare disaster risks can affect oil-price volatility.
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Texas Intermediate (WTI) oil price, using an extended ver-
sion of the heterogeneous autoregressive (HAR)-RV model
of Corsi (2009), which incorporates the role of the ENSO
over the period of 1986 January to 2020 December. Note
that measuring volatility using RV, which in our case is cap-
tured by the sum of squared returns over a month (following
Andersen and Bollerslev 1998), provides an observable and
unconditional metric of volatility, which is otherwise a
latent process.2 At the same time, the benchmark HAR-RV
model can capture long-memory and multi-scaling proper-
ties of oil market volatility (Asai and McAleer 2019, 2020),
despite having a simplistic structure. In this regard, the key
feature of the HAR-RV model is that it uses volatilities from
different time resolutions to forecast the realized oil-price
volatility. The model, thereby, captures the main idea moti-
vating the heterogeneous market hypothesis (Müller et al.
1997), which states that different classes of market partici-
pants populate the oil market and differ in their sensitivity
to information flows at different time horizons.3

One must realize that understanding the factors, which in
our case happens to be the ENSO, in accurately forecasting
oil-price volatility, also has economic implications, being
a pertinent question for both policymakers and investors.
This is because the second-moment movements in crude
oil can predict recessions (Elder and Serletis 2010; van
Eyden et al. 2019; Pierdzioch and Gupta 2020). Moreover,
the oil market’s recent financialization has led to increased
participation of hedge funds, pension funds, and insurance
companies in the market, thus rendering oil a profitable
alternative investment in the portfolio decisions of financial
institutions (Bahloul et al. 2018; Bonato 2019). Given that
volatility, when interpreted as uncertainty, becomes a key
input to investment decisions and portfolio choices (Poon
and Granger 2003), precise forecasts of oil-price volatility
are of vital importance to oil traders.

To the best of our knowledge, this is the first paper
that evaluates the out-of-sample forecasting power of
the ENSO for oil-price volatility based on a HAR-RV
model. Our paper, thus, adds to the already existing large
literature on the forecastability of oil-price volatility based
on a wide array of models and macroeconomic, financial,

2Conventionally, the time-varying volatility is modeled, and the
fit assessed, using various generalized autoregressive conditional
heteroscedastic (GARCH) models, under which the conditional
variance is a deterministic function of model parameters and past
data. Alternatively, some recent papers have considered stochastic
volatility models, where the volatility is a latent variable that follows
a stochastic process. Irrespective of whether we use GARCH or SV
models as widely used in the oil-volatility literature (see Chan and
Grant (2016) for a detailed review in this regard), the underlying
estimate of volatility is not model-free as in the case of RV.
3For example, oil traders and speculators are very sensitive to short-
term investment horizons, whereas oil investors are more concerned
with long-term investment horizons.
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Fig. 1 The data

and behavioral predictors (see, for example, Lux et al.
2016; Bonato et al. 2020, Bouri et al. 2020; Demirer
et al. 2020b, Forthcoming; Gkillas et al. 2020a, b: Salisu
et al. Forthcoming; and the references cited therein), by
considering the role of climate patterns.

The remainder of the paper is organized as follows: In
Section 2, we describe our data. In Section 3, we briefly
discuss the HAR-RV model. In Section 4, we present the
results from our forecasting experiment. In Section 5, we
conclude.

2 Data

As far as the crude oil price is concerned, we use the daily
data of the nominal West Texas Intermediate (WTI) oil
price (as used by Demirer et al. 2020a), which is available
from 2nd January, 1986, until 31st December, 2020, at the
time of writing this paper, and is derived from the United
States (US) Energy Information Administration (EIA).4

After computing the daily log-returns, we get the monthly
realized volatility by taking the sum of daily squared returns
over a specific month to cover the period from 1986 January
to 2020 December. The upper panel of Fig. 1 shows the
realized oil-price volatility.

For the metric of the ENSO cycle, again consistent with
Demirer et al. (2020a), we use the Southern Oscillation
Index (SOI), obtained from the Bureau of Meteorology,
Government of Australia.5 The SOI, gives an indication

4https://www.eia.gov/dnav/pet/hist/RWTCD.htm.
5http://www.bom.gov.au/climate/current/soihtm1.shtml.

1174

https://www.eia.gov/dnav/pet/hist/RWTCD.htm
http://www.bom.gov.au/climate/current/soihtm1.shtml


El Niño and forecastability of oil-price realized volatility

of the development and intensity of El Niño or La Niña
events in the Pacific Ocean. The SOI is calculated using the
pressure differences between Tahiti and Darwin. Sustained
negative (positive) values of the SOI below (above) −7(+7)

often indicate El Niño (La Niña) episodes. Low atmospheric
pressure tends to occur over warm water and high pressure
occurs over cold water, in part because of deep convection
over the warm water. El Niño episodes are defined as
sustained warming of the central and eastern tropical Pacific
Ocean, and La Niña episodes are defined as sustained
cooling of the central and eastern tropical Pacific Ocean,
thus resulting in a decrease and an increase in the strength
of the Pacific trade winds respectively.

The reliability of the SOI, however, is considered limited
due to the presence of both Darwin and Tahiti well south
of the equator, resulting in the surface air pressure at both
locations being less directly related to ENSO. To overcome
this issue, a new index named the Equatorial Southern
Oscillation Index (EQSOI) was created.6 To generate the
data for this index, two new regions, centered on the equator,
were delimited, with the western one located over Indonesia
and the eastern one located over equatorial Pacific, close
to the South American coast. The EQSOI is obtained from
the Climate Prediction Center (National Weather Service)
of the National Oceanic and Atmospheric Administration
(US Department of Commerce).7 The lower panel of Fig. 1
shows the EQSOI data.

In our main analysis, we use the EQSOI as measure of the
ENSO, while the SOI is used as a robustness check. Results
for SOI corroborate the results that we obtain for EQSOI.8

3 The HAR-RVModel

We use a variant of the popular HAR-RV model developed
by Corsi (2009) to model the RV of oil-price movements.
The benchmark HAR-RV model is given by

RVt+h = β0 + β1RVt + β2RVq,t + β3RVy,t + εt , (1)

where h denotes the forecast horizon, RVt+h denotes the
average realized volatility as observed during the forecast
horizon, RVq,t denotes the quarterly realized volatility (that
is, the average from month t −3 to t −1), and RVy,t denotes
the yearly realized volatility (the average from month t −12
to t − 1). The coefficients to be estimated are βj , j =
0, 1, 2, 3 and εt denotes a disturbance term.

6See the discussion of Anthony Barnston of the National Oceanic and
Atmospheric Administration here: https://www.climate.gov/news-
features/blogs/enso/why-are-there-so-many-enso-indexes-instead-just-
one for further details.
7https://www.cpc.ncep.noaa.gov/data/indices/.
8See the end of the paper (Appendix) for results using the SOI data.

We compare the predictive accuracy of the benchmark
HAR-RV model with the predictive accuracy of the
following HAR-RV model extended to include EQSOI :

RVt+h =β0+β1RVt+β2RVq,t+β3RVy,t+β4EQSOIt+εt ,

(2)

We are interested in the out-of-sample predictive accuracy
of the HAR-RV models given in Eqs. 1 and 2. In order to
generate out-of-sample forecasts, we estimate the models
using rolling-estimation windows of different lengths, and
then use the estimation results to forecast the average
realized volatility over the forecast horizon being studied.

4 Empirical results

In order to account for a potentially time-varying predictive
value of ESQOI for the realized oil-price volatility, we use
rolling-estimation windows of different lengths to compute
out-of-sample forecasts, where the sample period starts in 1986
January. We use the R language for statistical computing (R
Core Team 2019) to carry out our forecasting experiments.

Table 1 summarizes basic forecasting statistics. Specif-
ically, we report the root-mean-squared forecasting error
(RMSFE) and the mean absolute forecasting error (MAFE)
for different forecast horizons (h = 1, 3, 12, 24, 36, 48) and
different lengths of the rolling-estimation window (48, 60,
72, 96, and 120 months). We scale the forecasting statistics
using the corresponding forecasting statistics of the base-
line HAR-RV model, that is, we divide the RMSFE (MAFE)
statistic for the HAR-RV model extended to include EQSOI
by the RMSFE (MAFE) statistic that we obtain for the base-
line HAR-RV model. As a result, the forecasting statistic
that exceeds unity indicates a superior forecasting perfor-
mance of the extended model. The forecasting statistics
mainly exceed unity and, thus, including EQSOI in the
HAR-RV model gives more accurate forecasts in terms of
the RMSFE and MAFE statistics, for the longer forecast
horizons (h = 24, 36, 48) and the short and intermediate
rolling-estimation windows (48 to 72 months).

We report results (p-values, computed using robust
standard errors) of the Clark and West (2007) test for an
equal mean-squared prediction (MSPE) error in Table 2. We
use the classic HAR-RV model as the benchmark model,
and the HAR-RV that features ESQOI as the rival model.
The alternative hypothesis is that the rival model has a
smaller MSPE than the benchmark model. The test results
corroborate the results for the RMSFE and MAFE statistics.
The test results are significant for the three shortest rolling-
estimation windows and the three longest forecast horizons.

As an alternative test of the contribution of ESQOI to
forecast accuracy, we report in Table 3 the results of the
Diebold and Mariano (1995) test. The results are obtained

1175

https://www.climate.gov/news-features/blogs/enso/why-are-there-so-many-enso-indexes-instead-just-one
https://www.climate.gov/news-features/blogs/enso/why-are-there-so-many-enso-indexes-instead-just-one
https://www.climate.gov/news-features/blogs/enso/why-are-there-so-many-enso-indexes-instead-just-one
https://www.cpc.ncep.noaa.gov/data/indices/


E. Bouri et al.

Table 1 Baseline forecasting
statistics Window h = 1 h = 3 h = 12 h = 24 h = 36 h = 48

Panel A: RMSFE ratios

48 0.9127 0.8868 0.9772 1.0415 1.0814 1.1874

60 0.9556 0.9469 1.0013 1.0530 1.0921 1.0811

72 0.9658 0.9578 0.9979 1.0111 1.0213 1.0042

96 0.9679 0.9665 0.9963 0.9863 0.9653 0.9674

120 0.9783 0.9788 1.0016 0.9895 0.9664 0.9695

Panel B: MAFE ratios

48 0.9618 0.9584 0.9741 1.0801 1.0824 1.1726

60 0.9867 0.9774 0.9893 1.0904 1.1131 1.1305

72 0.9847 0.9739 0.9723 1.0260 1.0765 1.0745

96 0.9832 0.9850 0.9534 0.9434 0.9492 0.9611

120 0.9957 1.0066 0.9808 0.9755 0.9865 0.9897

This table reports results of RMSFE and the MAFE ratio obtained by dividing the RMSFE of a model
that does not feature ESQOI as a predictor by the RMSFE of a model that uses ESQOI as a predictor. The
parameter h denotes the forecast horizon (in months)

Table 2 Clark-West test results
Window h = 1 h = 3 h = 12 h = 24 h = 36 h = 48

48 0.8328 0.8301 0.3377 0.0073 0.0315 0.1617

60 0.8226 0.8164 0.1462 0.0047 0.0014 0.0088

72 0.8264 0.8277 0.2343 0.0430 0.0225 0.1876

96 0.8199 0.8042 0.4075 0.3343 0.4929 0.5505

120 0.8094 0.7469 0.3143 0.3580 0.4401 0.5315

This table reports results (p-values) of the Clark-West test for an equal mean-squared prediction error
(MSPE) for alternative forecast horizons and alternative lengths of the rolling-estimation window used to
compute forecasts. The HAR-RV model without ESQOI is the benchmark model, and the HAR-RV extended
to include ESQOI is the rival model. The alternative hypothesis is that the rival model has a smaller MSPE
than the benchmark model. The parameter h denotes the forecast horizon (in months). The p-values are
based on robust standard errors

Table 3 Results for the
modified Diebold-Mariano test Window h=1 h=3 h=12 h=24 h=36 h=48

Panel A: Squared-error loss

48 0.8514 0.8471 0.8140 0.0458 0.0697 0.0730

60 0.8438 0.8433 0.4548 0.0596 0.0187 0.0414

72 0.8477 0.8490 0.5644 0.3258 0.1541 0.4532

96 0.8171 0.8081 0.6276 0.6426 0.8615 0.9071

120 0.7764 0.7648 0.4379 0.6298 0.8136 0.9175

Panel B: Absolute-error loss

48 0.8688 0.8168 0.7089 0.0001 0.0624 0.0355

60 0.7158 0.7569 0.6414 0.0058 0.0067 0.0382

72 0.7628 0.8181 0.7451 0.2438 0.0110 0.0327

96 0.7194 0.6760 0.9206 0.8155 0.7458 0.7484

120 0.5627 0.4178 0.7593 0.6774 0.5854 0.5795

This table reports results (p-values) of modified Diebold-Mariano (M-DM) tests for alternative loss
functions. The null hypothesis is that the accuracy of forecasts extracted from of a model that does not feature
ESQOI as a predictor is equal to the accuracy of forecast computed by means a model that uses ESQOI
as a predictor. The alternative hypothesis is that the latter forecasts are more accurate than the former. The
parameter h denotes the forecast horizon (in months). The p-values are based on robust standard errors
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using the modified Diebold-Mariano (M-DM) test proposed
by Harvey et al. (1997). The p-values are computed using
the R package “forecast” (Hyndman 2017; Hyndman and
Khandakar 2008). Again, the baseline HAR-RV model
forms the benchmark model. We report test results (p-values
based on robust standard errors) for the case that a forecast
has a loss function that depends on the squared forecast error
and, as a robustness check, the case that the loss function
depends on the absolute forecast error. On balance, the
results corroborate the results of the Clark-West test. When
the squared forecast error is relevant for a forecaster, the test
results are significant for the two shortest rolling-estimation
windows and the three longest forecast horizons. When the
absolute forecast error is relevant for a forecaster, in turn,
the test results are also significant for a rolling-estimation
window of 72 months and h = 36, 48.

In Fig. 2, we generalize the M-DM test for a forecaster
who has an asymmetric loss function. Specifically, we

consider a forecaster who has a loss function of the
following format (Elliott et al. 2005, 2008): L(FEt+h, α) =
[α + (1 − 2α)I[FEt+h<0]]|FEt+h|s , where we denote the
forecast error (that is, actual value of RV minus forecast of
RV ) by FEt+h. This loss function is of the so-called lin-lin
type when we set s = 1, and of the so-called quad-quad type
when we set s = 2, and the parameter α ∈ (0, 1) governs its
shape. We obtain a symmetric loss function when α = 0.5.
When we assume α = 0.5 and s = 1, then the symmetric
loss function depends on the absolute forecast error, while it
depends on the squared forecast error when we set α = 0.5
and s = 2 (see Table 3). When we assume α > 0.5
(α < 0.5), the loss of an underprediction (overprediction)
of realized volatility outweighs the loss of an overprediction
(underprediction) of the same seize.

The results that we summarize in Fig. 2 show that the
results given in Table 3 for the special case of a symmetric
loss function in general extend to an asymmetric loss
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Fig. 2 Test results under asymmetric loss. This figure reports results
(p-values) of Diebold-Mariano tests for alternative shapes of the loss
function. The null hypothesis is that the accuracy of forecasts extracted
from of a model that does not feature ESQOI as a predictor is equal to

the accuracy of forecast computed by means a model that uses ESQOI
as a predictor. The alternative hypothesis is that the latter forecasts
are more accurate than the former. The p-values are based on robust
standard errors
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Table 4 Test Results for RV 0.5

Window h=1 h=3 h=12 h=24 h=36 h=48

Panel A: Clark-West test

48 0.3764 0.1268 0.0948 0.0446 0.1085 0.0598

60 0.3407 0.0390 0.0704 0.0123 0.0132 0.0461

72 0.2836 0.0806 0.1596 0.0577 0.0670 0.1602

96 0.1073 0.0774 0.4264 0.3526 0.3845 0.4630

120 0.0678 0.0751 0.4002 0.3951 0.4676 0.4899

Panel B: Modified Diebold-Mariano test

48 0.7656 0.6943 0.5514 0.0514 0.0507 0.0648

60 0.7148 0.6438 0.4359 0.0375 0.0079 0.0175

72 0.6892 0.8281 0.6232 0.3505 0.0583 0.2986

96 0.4101 0.0015 0.7473 0.7366 0.8593 0.9079

120 0.2210 0.0437 0.6221 0.6163 0.7808 0.8961

Panel A reports results (p-values) of the Clark-West test for an equal mean-squared prediction error (MSPE)
for alternative forecast horizons and alternative lengths of the rolling-estimation window used to compute
forecasts. The HAR-RV model without ESQOI is the benchmark model, and the HAR-RV extended to
include ESQOI is the rival model. The alternative hypothesis is that the rival model has a smaller MSPE than
the benchmark model. Panel B reports results (p-values) of the modified Diebold-Mariano test (M-DM test;
squared error loss). The null hypothesis is that the accuracy of forecasts extracted from of a model that does
not feature ESQOI as a predictor is equal to the accuracy of forecast computed by means a model that uses
ESQOI as a predictor. The alternative hypothesis is that the latter forecasts are more accurate than the former.
The parameter h denotes the forecast horizon (in months). The p-values are based on robust standard errors

function. We observe significant test results mainly for
the short rolling-estimation windows and the three longer
forecast horizons. Exceptions arise in some cases when the
asymmetry parameter approaches the lower and/or upper
boundary of its domain.

As a robustness check, we summarize in Table 4 results
for the Clark-West and M-DM tests (squared error loss)
that we obtain when we forecast the square root of realized
volatility. Such a nonlinear transformation mitigates the
effect of the large outburst of realized volatility at the
end of the sample period. The results of this robustness
check corroborate that EQSOI significantly contributes to
predictive accuracy in case of the three longest forecast
horizons and the two and three shortest rolling-estimation
windows. For the Clark-West test, we further observe that
the test results are also significant for a forecast horizon of
3 months, further strengthening the claim that EQSOI has
predictive value for the realized oil-price volatility.

5 Conclusion

In recent literature, researchers have reported evidence that
ENSO has in-sample predictive value for oil-price volatility.
Because in-sample predictability does not necessarily
translate into out-of-sample gains, we have extended this
line of research by forecasting monthly realized oil-price
volatility based on an extended HAR-RV model that

incorporates the role of the ENSO, as captured by the
Equatorial Southern Oscillation Index (EQSOI). Based on
the period covering 1986 January to 2020 December and
studying various rolling-estimation windows and forecast
horizons, we find that the EQSOI has predictive value for
subsequent realized oil-price volatility. The predictive value
of the EQSOI data is concentrated at forecast horizons
from 2 to 4 years and for rolling-estimation windows of
length 4 to 6 years. We have shown that this result holds
not only when we consider standard tests of out-of-sample
predictability, but also when we study an asymmetric loss
function.

Our results can be used by policymakers to obtain
information on the future path of oil-price volatility due
to changes in climate patterns. This knowledge, in turn,
may be useful to anticipate economic activity, given that
oil-price movements are known to lead business cycles.
Our results, therefore, may help policymakers to make
appropriate policy choices in the wake of changing climate
patterns and the resulting oil-price movements. Moreover,
with volatility being a key input in portfolio decisions, the
forecastability of oil-price volatility due to ENSO may be of
vital importance to oil investors.

Future research can build on the results we have
documented in this research to consider the volatility of
non-energy commodities (such as agricultural commodities)
given previous evidence on their price sensitivity to weather
variability.
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Appendix

Table 5 Test Results for SOI
Window h=1 h=3 h=12 h=24 h=36 h=48

Panel A: Clark-West test

48 0.8372 0.8282 0.1216 0.0239 0.0115 0.0074

60 0.8224 0.7926 0.0224 0.0033 0.0009 0.0030

72 0.8268 0.8105 0.0517 0.0403 0.0079 0.0249

96 0.8350 0.8297 0.1550 0.3899 0.3751 0.3112

120 0.8190 0.7874 0.1909 0.2443 0.1939 0.2882

Panel B: Modified Diebold-Mariano test

48 0.8355 0.8432 0.4085 0.1055 0.0647 0.0436

60 0.8255 0.8293 0.1594 0.0865 0.0394 0.0262

72 0.8314 0.8509 0.2184 0.3000 0.1487 0.2400

96 0.8081 0.8489 0.2943 0.7325 0.8788 0.8271

120 0.7606 0.7813 0.2509 0.6565 0.7589 0.7766

Panel A reports results (p-values) of the Clark-West test for an equal mean-squared prediction error (MSPE)
for alternative forecast horizons and alternative lengths of the rolling-estimation window used to compute
forecasts. The HAR-RV model without ESQOI is the benchmark model, and the HAR-RV extended to
include ESQOI is the rival model. The alternative hypothesis is that the rival model has a smaller MSPE than
the benchmark model. Panel B reports results (p-values) of the modified Diebold-Mariano test (M-DM test;
squared error loss). The null hypothesis is that the accuracy of forecasts extracted from of a model that does
not feature ESQOI as a predictor is equal to the accuracy of forecast computed by means a model that uses
ESQOI as a predictor. The alternative hypothesis is that the latter forecasts are more accurate than the former.
The parameter h denotes the forecast horizon (in months). The p-values are based on robust standard errors
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Müller UA, Dacorogna MM, Davé RD, Olsen RB, Pictet OV (1997)
Volatilities of different time resolutions – analyzing the dynamics
of market components. J Empir Finance 4:213–239

Pierdzioch C, Gupta R (2020) Uncertainty and forecasts of U.S.
recessions. Stud Nonlinear Dyn Econ 24(4):1–20

Poon S-H, Granger CWJ (2003) Forecasting volatility in financial
markets: a review. J Econ Lit 41(2):478–539

Qin M, Qiu L-H, Tao R, Umar M, Su C-W, Jiao W (2020) The
inevitable role of El Niño: a fresh insight into the oil mar-
ket. Economic Research-Ekonomska Istraž,ivanja 33(1):1943–
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