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Abstract

Whole genome sequencing (WGS) has become the reference standard for bacterial outbreak investigation and pathogen 
typing, providing a resolution unattainable with conventional molecular methods. Data generated with Illumina sequencers can 
however only be analysed after the sequencing run has finished, thereby losing valuable time during emergency situations. We 
evaluated both the effect of decreasing overall run time, and also a protocol to transfer and convert intermediary files gener-
ated by Illumina sequencers enabling real-time data analysis for multiple samples part of the same ongoing sequencing run, 
as soon as the forward reads have been sequenced. To facilitate implementation for laboratories operating under strict quality 
systems, extensive validation of several bioinformatics assays (16S rRNA species confirmation, gene detection against viru-
lence factor and antimicrobial resistance databases, SNP-based antimicrobial resistance detection, serotype determination, 
and core genome multilocus sequence typing) for three bacterial pathogens (Mycobacterium tuberculosis, Neisseria meningitidis, 
and Shiga-toxin producing Escherichia coli) was performed by evaluating performance in function of the two most critical 
sequencing parameters, i.e. read length and coverage. For the majority of evaluated bioinformatics assays, actionable results 
could be obtained between 14 and 22 h of sequencing, decreasing the overall sequencing-to-results time by more than half. 
This study aids in reducing the turn-around time of WGS analysis by facilitating a faster response in time-critical scenarios and 
provides recommendations for time-optimized WGS with respect to required read length and coverage to achieve a minimum 
level of performance for the considered bioinformatics assay(s), which can also be used to maximize the cost-effectiveness of 
routine surveillance sequencing when response time is not essential.

DATA SUMMARY
The datasets supporting the conclusions of this study have 
been previously deposited in the NCBI Sequence Read 
Archive under BioProjects PRJNA633966 and PRJNA574887 
(E. coli), PRJNA448994 (N. meningitidis), and PRJNA681718 
(M. tuberculosis). Individual accession numbers are provided 
in Table S1 (available in the online version of this article). 
FastQC reports for datasets generated with the real-time 
sequencing protocol for run C are available on Figshare: 
https://​doi.​org/​10.​6084/​m9.​figshare.​16691383.​v1.

INTRODUCTION
Whole genome sequencing (WGS) has become the reference 
standard for bacterial outbreak investigation and pathogen 
typing. WGS-based analytical methods offer a resolution 
unattainable with conventional molecular typing methods, 
enabling quick and reliable identification of infections from 
a common source with a much higher level of certainty. 
Information on the presence of genomic features associated 
with antimicrobial resistance (AMR) or virulence of relevance 
for rapid outbreak management or clinical intervention can 
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be extracted directly from WGS data, thereby avoiding the 
need for multiple molecular assays to characterize an isolate. 
Consequently, since it was introduced in public health 
settings, WGS has proven its added value for outbreak inves-
tigation [1–4] and pathogen typing [5, 6].

Time is a crucial factor in the successful implementation of 
infection control measures to contain and combat outbreaks. 
While technological advancements have substantially reduced 
sequencing and analysis times, a typical full-length run on 
the Illumina MiSeq and HiSeq sequencing instruments takes 
approximately three and five days to complete, respectively 
[7]. Only after sequencing has been completed, data becomes 
available for bioinformatics analysis. Shortening the duration 
of sequencing could hence allow an even faster response, but 
is limited by the ‘massively parallel’ setup of the Illumina tech-
nology wherein all reads are being sequenced simultaneously 
so that they become only available at full length at the end 
of the sequencing run. The advent of long-read sequencing 
technologies, such as Oxford Nanopore Technologies (ONT), 
introduced the possibility to analyse data in real-time, i.e. 
while reads are being generated by the sequencing instrument 
[8, 9]. The option to generate and analyse sequencing data 
in real-time, renders ONT sequencing especially interesting 
during outbreaks, but in practice remains difficult because of 
several bottlenecks. First, reads produced by this technology 
are characterized by high read error rates, rendering them less 
suitable for analyses that require highly accurate basecalling, 
such as variant calling for SNP analysis or allele detection 
for cgMLST, which are of critical interest to delineate strains 
during outbreak situations [10, 11]. Second, many public 
health agencies are still actively transitioning to implementing 
short-read sequencing technologies in their routine activities 
and do not always have the necessary resources to invest in 
this novel technology [12, 13]. Third, most national refer-
ence laboratories (NRLs) and centres (NRCs), as well as other 
laboratories working under a quality system, require extensive 
validation to demonstrate that employed methods are ‘fit-for-
purpose’ and provide high-quality results through a process 
of rigorous validation [14–16]. Public health authorities are 
still actively facing the challenge of validating bioinformatics 
workflows for short-read technologies, for which a consensus 
is emerging but many issues still need to be addressed [17]. 
This renders the implementation and validation of the ONT 
technology, which is still constantly evolving resulting in 
quickly changing protocols and data analytical approaches 
[18], not necessarily the highest priority.

Another avenue that has been explored is optimizing the Illu-
mina sequencing platforms for rapid data generation. Quick 
et al. reduced the time for a MiSeq run to about 6 h by opti-
mizing the sequencing and library preparation protocols, and 
limiting read lengths to 75 bp. Despite the highly reduced data 
volume, they could resolve an outbreak of Salmonella enterica 
using a SNP phylogeny-based approach [19]. An alternative 
approach performs analysis on the intermediary files gener-
ated by Illumina sequencers while they are still sequencing. 
Although no vendor support exists, binary intermediate base-
calling (BCL) files generated for every cycle of the Illumina 

sequencing process, can be converted to FASTQ files that 
can be fed into bioinformatics pipelines. This method was 
introduced by Lambert et al. to characterize marker genes 
for toxigenic E. coli, providing results within a single working 
day [20]. Recently, a set of tools based on the same principle 
was developed, such as HiLive that performs k-mer based 
read mapping in real-time [21] and serves as the basis for 
PathoLive that performs metagenomics pathogen detection 
[22]. Other real-time applications developed based on HiLive 
are LiveKraken [23] and PriLive [24]. The advantage of this 
strategy is that reads of increasing size can be periodically 
analysed, progressively providing better results as read lengths 
increase. A major drawback, besides the lack of vendor support 
from Illumina, is that such methods are not exempt from 
requiring validation within applied public health settings. 
Since read length is a key characteristic influencing the quality 
of bioinformatics analysis, shorter read lengths result in more 
fragmented assemblies and are more difficult to reliably map 
against reference genomes [25–27]. A validated workflow 
for full-length read data therefore does not apply when read 
lengths are reduced. Coverage, i.e. the sequencing depth or 
the number of times the genome is sequenced, constitutes a 
second key characteristic, as low-coverage datasets also result 
in more fragmented assemblies and reduce support values 
for read mapping and variant calling [28, 29]. Coverage is 
highly intertwined with read length, and their exact relation-
ship within the same sequencing run is determined by the 
total number of samples that are combined or ‘multiplexed’. 
Adding more samples at the same sequencing read length 
will decrease overall coverage per sample, as will decreasing 
read lengths when keeping the number of samples constant. 
Recommendations and guidelines on minimum coverages 
and read lengths remain limited and vary wildly, with one 

Impact Statement

The unprecedented resolution of whole-genome 
sequencing (WGS) has revolutionized the characteriza-
tion of pathogenic bacteria. However, a WGS run using 
Illumina sequencing typically requires several days 
rendering the technology less suited for emergencies 
such as bacterial outbreaks or the characterization of 
clinical infections. Previous studies proposed a protocol 
to analyse Illumina WGS data in real-time (i.e. during the 
sequencing) to enable a faster response. In this study, we 
have implemented and successfully tested this protocol 
in three independent MiSeq runs. Additionally, we have 
modified previously generated sequencing datasets 
from various species in silico to determine the minimal 
sequencing duration, with and without the real-time 
analysis protocol, to obtain accurate results for several 
bioinformatics assays. This flexible framework provides 
concrete guidelines to set up time-optimized Illumina 
WGS experiments, substantially reducing the turnover 
time.
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estimate stating that 40X coverage and 2×250 bp reads are 
required for high-quality detection of virulence genes [30], 
and another stating that 21 bp reads at 4X coverage are suffi-
cient for target gene detection [20]. A systematic evaluation 
of read lengths and coverages for multiple pathogenic species 
providing recommendations on minimum requirements for 
reliable pathogen typing and characterization is still absent, 

even though this is a prerequisite during outbreaks to know 
how quickly (partially) generated NGS datasets can reliably 
be used for interpretation.

Here, we evaluated both decreasing overall run time by 
reducing read lengths, and analysing isolate WGS data in 
real-time from Illumina instruments while the sequencer 

Fig. 1. Schematic overview of the protocol for real-time data generation and analysis. The grey boxes indicate the different environments 
involved. The three environments are located on separate (virtual) machines or servers. See Methods S1 for a detailed description. 
The ‘MiSeq-sequencer’ environment corresponds to the sequencer itself. The ‘MiSeq-sync’ environment corresponds to a server 
that periodically mounts the MiSeq drive to transfer intermediate BCL files generated by the MiSeq. The ‘MiSeq-agent’ environment 
corresponds to a server that collects BCL files from the ‘MiSeq-sync' environment and converts them to FASTQ files that can be analysed 
with bioinformatics workflows. See Methods S1 for an elaborate description.
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Fig. 2. Schematic representation of the workflow to obtain minimal requirements for sequencing coverage and read lengths. The 
flowchart provides a schematic overview of the different scenarios for which the performance of various bioinformatics assays was 
evaluated. The arrows direct the steps that need to be followed to set up optimized WGS runs on Illumina sequencers. Underlined text 
refers to other figures or tables included in this manuscript. The ‘=’, ‘↑’, and ‘↓’ symbols indicate that the associated metric was kept 
constant, increased, or decreased, respectively. Abbreviations: cov, coverage. Nb., number
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is still running, enabling partially generated datasets to 
be fed into bioinformatics workflows for typing and char-
acterization of pathogenic isolates when response time is 
essential. We performed an exhaustive performance evalua-
tion at decreasing read lengths and coverages in function of 
sequencing run time to provide specific recommendations for 
guaranteeing a minimum required level of performance based 
on a previously described validation strategy [31–33], using 
high-quality reference datasets for three pathogens (Neis-
seria meningitidis, Mycobacterium tuberculosis, and Shiga-
toxin producing Escherichia coli), and evaluating multiple 
bioinformatics assays of public health interest that can also 
be adapted for other time-critical WGS applications. Specific 
recommendations to set up time-optimized experiments 
are provided through the characterization of assay perfor-
mance in function of read lengths, coverage, and estimated 
sequencing duration.

METHODS
Protocol for real-time data generation and analysis
A schematic overview of the complete protocol is presented 
in Fig. 1, a full explanation is provided in the Methods S1. 
Concisely, a background service periodically mounts the hard 
drive of the MiSeq sequencer and transfers newly generated 
BCL files to a different network location. When sufficient 
data is transferred to start one of the pre-defined jobs, base-
calling is performed on the analysis server (MiSeq-agent in 
Fig. 1) using Picard v2.8.3 (http://​broadinstitute.​github.​io/​
picard/), with modified ‘​RunInfo.​xml’ and ‘​SampleInfo.​csv’ 
files based on the originals retrieved from the sequencer. The 
protocol for real-time basecalling and FASTQ data genera-
tion (Fig. 1) was tested during three independent randomly 
selected MiSeq sequencing runs part of the routine activities 
of the NGS sequencing platform at Sciensano, with each 
sequencing run serving as an independent technical repli-
cate. The paired-end (PE) 251 bp protocol was used for the 
first two runs ‘A’ and ‘B’, and the 301 bp PE protocol for the 
third run ‘C’, as illustrated in Fig. S1. Data integrity of real-
time basecalled datasets was verified by running FastQC for 
which reports have been deposited in Figshare for run C (See 
Data Summary). The protocol was designed and tested using 
the Illumina MiSeq, but can be adapted for other Illumina 
sequencing instruments.

In silico modification of datasets
Validation datasets
The effects of coverage and read length on performance of 
various bioinformatics assays were evaluated for three species 
(N. meningitidis, M. tuberculosis, and E. coli) using high-
quality data collected from several previous BioProjects (see 
Data Summary). These datasets were employed as validation 
datasets rather than the data generated during the testing 
of the protocol described in the previous section, because 
demonstrating that the protocol for real-time data genera-
tion and FASTQ generation is operational, and validation of 
minimal read length and coverage requirements, constitute 

two separate problems that do not require the same input 
dataset (see also Discussion). All employed WGS data were 
first harmonized by cropping read lengths to 251 bp with the 
‘CROP’ option of Trimmomatic 0.38 [34], and then down-
sampled to a theoretical coverage of 70X with the ‘sample’ 
function of seqtk 1.2 (https://​github.​com/​lh3/​seqtk). The 
required number of reads for 70-fold coverage was obtained 
by multiplying the desired coverage with the genome size 
divided by the total read length (forward plus reverse read 
length, i.e. 502). The genome sizes for every species were 
taken from their corresponding entries in the NCBI RefSeq 
database (see Table S2) [35]. The resulting dataset is referred 
to as the ‘full dataset’. Performance evaluation of several assays 
required negative control samples, for which samples from 
the two other species were used (e.g. for N. meningitidis, 
E. coli and M. tuberculosis samples were used as negative 
controls). For some analyses, a substantial number of reads 
was required, for which coverage of some samples in the vali-
dation datasets did not suffice. To get the required number of 
reads for such samples, a ‘read-shuffling’ approach was used 
where new reads were derived from reads randomly sampled 
(with replacement) from the full dataset. When the target read 
length was shorter than 151 bp, random subsections of the 
required length were taken from the first 151 bases of the 
read, otherwise reads were sampled from the start of the read 
up to the required length. The subsections were limited to 
the first 151 bases because of the relatively high and constant 
Phred-score in this part of the reads. The starting position 
was varied to avoid biases by generating exactly duplicated 
reads. However, this approach is unusable for reads longer 
than 151 bp, for which the Phred-score varies and typically 
drops substantially at the end of the reads, so that in this case 
realistic error profiles could only be obtained by cropping 
full-length reads.

Decreasing coverage and read length for time-critical 
scenarios
We evaluated first the effect of coverage when full read 
lengths are used for non-time-critical situations to investi-
gate how many samples can be multiplexed in a single full 
sequencing run. The effects of decreasing coverage and read 
length were then investigated by modifying the full dataset in 
silico according to two scenarios for time-critical situations 
(Fig. 2). For scenario 1, we investigated how many samples 
can be multiplexed at lower read lengths when the real-time 
sequencing protocol cannot be used (for instance, when labo-
ratories do not want to implement the protocol because their 
quality system does not allow changing the MiSeq configura-
tion). In this scenario, reductions in sequencing times can 
be obtained by reducing the overall read length of the run. 
To mimic shortened read lengths, the full-length validation 
datasets were cropped in silico using the ‘CROP’ option of 
Trimmomatic while keeping the theoretical coverage constant 
by increasing the number of reads. Although the Illumina 
MiSeq allows read lengths up to 301 bp, we employed 251 bp 
as the full-length dataset because in practice the read quality 
drops considerably after 251 bp [36]. Because Illumina 
sequencers support unequal lengths for the forward and 

http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/
https://github.com/lh3/seqtk
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reverse read, we also evaluated setups with longer forward 
or reverse read lengths to characterize their effect on down-
stream analysis. All combinations of decreasing forward 
and reverse read lengths of 251, 201, 151, 126, 101, 76, and 
51 bp, were evaluated at theoretical coverages of 50, 40, 30, 
25, 20, 15, and 10X. A large number of reads was required to 
obtain high coverage at low read lengths, and therefore the 
‘read-shuffling’ approach detailed above had to be used for 
some samples. For symmetric datasets (i.e. same forward and 
reverse read length), 28 samples of the corresponding species 
and twelve negative control samples were always analysed. For 
asymmetric datasets, fourteen samples of the corresponding 
species and six negative control samples were always analysed. 
Repeatability and reproducibility were always evaluated on 
a limited subset containing two positive and one negative 
control sample(s).

For scenario 2, we investigated how many samples can be 
multiplexed in a single full-length Illumina MiSeq sequencing 
run when the real-time sequencing protocol is used. Several 
adaptations ensure compatibility with the incomplete datasets 
analysed in this study, as described in the Methods S1.3. In 
this scenario, it is necessary to know at which point incom-
plete read lengths provide results of high enough quality for 
interpretation by the end-user. In practice, the same method-
ology from the first scenario was used but without correcting 
for the theoretical coverage by increasing read numbers. This 
effectively entails that the theoretical coverage is lower at 
lower read lengths but then progressively increases as read 
lengths increase to the full theoretical coverage by the end of 
the sequencing run. A complete overview of all samples used 
for both scenarios is provided in Table S3.

Impact of coverage and read length on WGS data quality
For our experimental setup, required read numbers were 
determined based on the theoretical equation for coverage, 

but the resulting ‘real’ effective coverage was expected to be 
lower as it is affected by read trimming, unmapped reads, 
and other factors (see also Discussion). The effective coverage 
was estimated by calculating the median depth per position 
using samtools depth 1.9 [37] after mapping the trimmed 
reads against the H37Rv [38] reference genome for the M. 
tuberculosis workflow, and against the assembled contigs for 
the E. coli and N. meningitidis workflows. The quality of the 
generated assemblies was evaluated using the total assembly 
length and N50 metrics determined with Quast 4.4 using 
default settings [39].

Validation of minimal read length and coverage 
requirements
We built upon our previously described validation strategy 
to evaluate the effect of decreasing read lengths, coverages, 
and their interaction, on the performance of various bioinfor-
matics assays for three different species [31–33]. An overview 
and short descriptions of the evaluated assays are provided 
in Table  1, along with references to their corresponding 
publications describing in detail the employed bioinformatics 
methodology. Additionally, more information on the exact 
tools and commands that were used in this study, as well 
as a detailed description for the pre-processing steps such 
as read trimming and de novo assembly, is available in the 
Supplementary Material (section S1.3). A concise description 
of the validation strategy is provided below and definitions 
for the performance metrics are provided in Table 2. The 
performance metrics repeatability and reproducibility were 
evaluated by running the bioinformatics workflow twice on 
the same dataset in the same and a different computational 
environment, respectively. The two computational environ-
ments were Python 3.7.4 on Ubuntu 18.04.3 LTS (64 bit) and 
Python 3.7.5 on Ubuntu 16.04.6 (64 bit). The performance 
metrics accuracy, precision, sensitivity, and specificity, were 

Table 2. Overview of performance metrics and their corresponding definitions and formulas adopted for our validation strategy

Metric Definition Formula

Repeatability Agreement of assay based on intra-assay replicates* Repeatability=100 %×(# intra-assay replicates in 
agreement) / (total # intra-run replicates)

Reproducibility Agreement of assay based on inter-assay replicates* Reproducibility=100 %×(# inter-assay replicates in 
agreement) / (total # inter-assay replicates)

Accuracy The likelihood that results of the assay are correct Accuracy=100 %×(TP+TN)/(TN+FN+TP+FP)

Precision The likelihood that detected results of the assay are truly present Precision=100 %×TP/(TP +FP)

Sensitivity The likelihood that a result will be correctly picked up by the assay when 
present

Sensitivity=100 %×TP/(TP +FN)

Specificity The likelihood that a result will not be falsely picked up by the assay when not 
present

Specificity=100 %×TN/(TN +FP)

Matthews 
correlation 
coefficient (MCC)

Compound performance metric that considers all confusion matrix categories 
(TN, TP, FP, FN) expressed as a value between zero (very low performance) 
and 1 (very high performance)

‍
MCC = TP.TN−FP.FN√(

TP+FP
)
.
(
TP+FN

)
.
(
TN+FP

)
.
(
TN+FN

)
‍

*Intra- and inter-assay replicates were defined as repeated bioinformatics analysis on the same dataset on the same and different computational 
environments, respectively.
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Fig. 3. WGS data quality metrics in function of coverage and read length for E. coli. The x- and y-axes in each panel denote the (symmetric) 
read length and theoretical coverage. For scenario 2, the theoretical coverage is calculated based on full-length reads and the effective 
coverage is therefore lower than indicated on the y-axis. The z-axis and color-scale show the value of the corresponding metric for 
(a) effective coverage, (b) total assembly length, and (c) N50. The evaluated coverage and read length combinations are indicated with 
blue open circles, and the three-dimensional planes were extrapolated based on the observed values. Contour lines on the bottom of 
individual figures are indicated according to the colour legend. Figures for all three species are provided in Figs S2–S7.
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always evaluated by comparing results of the three bioin-
formatics workflows against the ‘ground truth’ for the three 
species, in this case results of the bioinformatics workflows 
obtained on the full datasets. This allows classifying all results 
on in silico modified datasets as either true positives (TP), 
false negatives (FN), true negatives (TN), and false positives 
(FP). Assay-specific definitions for TP, TN, FP, and FN, are 
summarized in Table 1 and explained in the Methods S2. 
Additionally, we employed the Matthews correlation coeffi-
cient (MCC) as an aggregate performance metric. In contrast 
to accuracy, the MCC is a more reliable aggregate metric that 
considers all confusion matrix categories and is better suited 
for unbalanced datasets [40]. When the MCC was undefined 
(i.e. when TP +FP or TN +FN was 0), its value was set to 
zero. For performance evaluation of some assays, negative 
control samples were required, which were always modified 
in the same manner as the positive control samples under 
evaluation. An a priori MCC value of 95 % was enforced as an 
acceptance criterion for considering assays to provide high-
quality results.

Estimation of minimal sequencing time
The performance of various bioinformatics assays was 
systematically evaluated in function of coverage and read 
length. The following equation was then used to estimate 
sequencing duration for each evaluated combination of 
coverage and read length for all datasets: Ts=Tfixed+ Lf . Cf + Lr 
. Cr, where Tfixed represents the duration of the initial setup and 
sequencing of the forward and reverse adapters, Cf and Cr the 
average sequencing duration of a single cycle of the forward 
and reverse read, respectively, and Lf and Lr the forward and 
reverse read length, respectively (see Fig. S1). Parameter 
values were set to the average of the values observed during 
the tests of the protocol. The combination of read lengths 
for each assay and target coverage with the shortest esti-
mated sequencing duration producing high-quality results 
(MCC ≥95 %), was then determined through an exhaustive 
search by considering all possible combinations and selecting 
the one with the shortest time requirement.

RESULTS
Protocol for real-time data generation and analysis
For all three replicate runs (A, B, C), to test the real-time 
analysis protocol, predefined basecalling and FASTQ genera-
tion jobs finished successfully and without any interference 
on the sequencing run itself. A schematic overview of time-
lines for all three replicates is provided in Fig. S1, and exact 
timestamps for all cycles are provided in Tables S4–S6 for 
replicates A, B, and C, respectively. Basecalling jobs took 
around 9 min to complete averaged over the three tests of 
the real-time analysis protocol. The total time required to 
generate all sequencing cycles was 45 h and 29 min (2×251 bp 
PE reads), 46 h and 38 min (2×251 bp PE reads), and 55 h 
and 7 min (2×301 bp PE reads) for replicates A, B and C, 
respectively. The first basecalling jobs (i.e. after adapters had 
been sequenced and forward reads could be demultiplexed) 

were completed after 25 h and 55 min (55.29 % sequencing 
time), 26 h and 8 min (56.04 % sequencing time), and 30 h 
and 39 min (54.72 % sequencing time) for replicates A, B and 
C, respectively.

Impact of coverage and read length on WGS data 
quality
The impact of coverage and read length on WGS data quality 
was evaluated according to two scenarios (Fig. 2). For scenario 
1, the real-time analysis protocol is not used and sequencing 
time is reduced by sequencing shorter read lengths and 
keeping the theoretical coverage fixed by increasing read 
numbers. Scenario 2 represents the application of the real-time 
analysis protocol, where the number of reads is kept constant 
and theoretical coverage increases as read lengths gradually 
increase during the sequencing run. Fig. 3 illustrates the effect 
of read length and coverage, and their interaction, on effective 
coverage, total assembly length, and N50 for E. coli samples 
with symmetrical read lengths for both scenarios, obtained by 
analysing real sequencing datasets that were modified in silico. 
The plots for both scenarios also indirectly contain results 
for the non-time-critical scenario, which corresponds to the 
curves at full read length (i.e. 251 bp). For both time-critical 
scenarios, effective coverage was expectedly lower than the 
theoretical coverage for all combinations of read length and 
coverage. When read lengths increased above 151 bp and 
the theoretical coverage was kept fixed (scenario 1), effec-
tive coverage dropped slightly compared to the theoretical 
coverage (likely due to the decreasing read quality for longer 
reads). This effect was more profound for asymmetric combi-
nations with a longer reverse read length. Total assembly 
length was mostly unaffected by coverage and read length for 
scenario 1, but dropped substantially for combinations with 
low starting coverages and short read lengths for scenario 2. 
For asymmetric read length combinations, longer forward 
read lengths generally had a positive effect on assembly 
quality. Assemblies were less fragmented (i.e. higher N50) 
when the read length and/or coverage increased (with the 
read length having a more pronounced effect), but the N50 
decreased slightly for read lengths above 151 bp for scenario 1, 
likely again due to the decreasing read quality of longer reads, 
resulting in less data after read trimming. Similar trends were 
observed for N. meningitidis and M. tuberculosis, and are illus-
trated for all tested combinations (including asymmetric read 
length combinations) in Figs S2–S25, except for the N50 value 
which was close to the maximum for the shortest read lengths 
for M. tuberculosis in contrast to E. coli and N. meningitidis, 
potentially explained by a lower number of repeat regions in 
the Mycobacterium genome [41].

Validation of minimal coverage and read length 
requirements
Results for all evaluated assays are visualized in Fig.  4 
where performance thresholds defined by MCC cutoffs of 
95 and 99 % are also indicated. Results for all combinations 
(including asymmetric read lengths) are provided in Figs 
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Fig. 4. Bioinformatics assay performance in function of coverage and read length. The x- and y-axes in each panel denote the (symmetric) 
read length and theoretical coverage. For Scenario 2, the theoretical coverage is calculated based on full-length reads and effective 
coverage is therefore lower than indicated on the y-axis. The z-axis denotes the Matthews Correlation Coefficient (MCC). The evaluated 
data points are indicated with blue open circles, and the three-dimensional planes were extrapolated based on the observed values. 
The red and cyan planes correspond to MCC thresholds of 95 and 99 %, respectively. Contour lines on the bottom of individual figures 
are indicated according to the colour legend, and the red and cyan lines correspond to the 95 and 99% MCC thresholds, respectively. 
Abbreviations: antimicrobial resistance (AMR).
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S26–S65. The minimal coverage requirements for each assay 
when using full read lengths are provided in Table 3(a). For 
all assays, performance was mainly impacted by coverage, and 
to a lesser degree, read length. For asymmetric read length 
combinations, longer forward read lengths generally resulted 
in better performance, although the effect decreased at higher 
coverages. Results of replicate runs on the same and different 
computational environments were fully consistent, resulting 
in repeatability and reproducibility of 100 % for all assays. 
All results presented below are based on symmetric read 
lengths. For scenario 1, the indicated coverage on Fig. 4 was 
always fixed at all read lengths by increasing read numbers. 
For scenario 2, the indicated coverage corresponds to the 
theoretical coverage at full read lengths so that lower read 
lengths effectuate decreased effective coverages, for which the 
relationship is expressed in Fig. 3(a) for E. coli and Fig. S5 for 
all three species.

The 16S rRNA species confirmation assay was quite resilient 
to decreasing coverage and read length. For scenario 1, the 
MCC dropped <95 % for some combinations of high cover-
ages and short read lengths, such as 51 bp at 50X or 101 bp at 
40X. The drop was caused by contig fragmentation in a single 
sample (on a total of 28 positive observations). For scenario 
2, the MCC was ≥95 % for read lengths increasing from 76 bp 
at 40X to 201 bp at 10X. For both scenarios, all mismatches 
could be traced back to FNs caused by contig fragmentation 
in the assembly breaking up the 16S rRNA gene sequence of 
the sample.

The gene detection assay was relatively resilient to drops in 
coverages and read lengths, but performance was impacted 
differently depending on the species and employed database. 
Performance using the NDARO database (genes associated 
with AMR) was worse compared to the VirulenceFactor core 
database (VFDB, for genes encoding virulence factors), based 
on a MCC cutoff of 95%, and performance for the latter was 
more robust for N. meningitidis compared to E. coli. For the 
NDARO database, for scenario 1, the MCC dropped <95 % 
at 10X for all read lengths. For coverages ≥20X, the MCC 
was ≥95 % for all read lengths, indicating a relatively small 
effect of read length. For scenario 2, the MCC dropped <95 % 
for all read lengths at 10X. For higher coverages, required 
read lengths to obtain a MCC ≥95 % decreased from 251 bp 
at 15X to 76 bp at 50X. For the VFDB database, for scenario 
1, the MCC only dropped <95 % for the combination of the 
shortest read lengths (i.e. 51 bp) and lowest coverage (i.e. 10X) 
for both E. coli and M. tuberculosis. For scenario 2, similar 
trends as for the NDARO database were observed, but the 
MCC was generally slightly higher. The required read lengths 
to obtain a MCC ≥95 % varied between 151 bp at 15X and 
76 bp at 50X for E. coli, and between 201 bp at 10X and 76 bp at 
50X for N. meningitidis. Mismatches for gene detection were 
almost exclusively caused by contig fragmentations leading to 
FN results (i.e. genes not detected in the modified dataset), 
whereas FP results only occurred very rarely.

The SNP-based AMR detection assay for M. tuberculosis 
was the most resilient against decreasing coverages and read 

lengths. For scenario 1, the MCC was ≥95 % for all read lengths 
and coverages. For scenario 2, the MCC only dropped <95 % 
for read lengths shorter than 101 bp with coverages ≤20X. For 
these combinations, the number of FP and FN mismatches 
was approximately the same. For coverages ≥20X and above, 
the MCC was ≥95 % for all read lengths.

The PointFinder assay was generally quite robust to decreasing 
coverage and read length, but was impacted at lower cover-
ages by an algorithmic artefact causing many mismatches, 
resulting in sharp drops of the MCC at the affected data points. 
Performance for E. coli was generally better than for M. tuber-
culosis. For scenario 1, the MCC never dropped <95 % for E. 
coli. For M. tuberculosis, the MCC was ≥95 % for coverages 
≥20X for all read lengths. For scenario 2, performance was 
problematic for coverages <20X and/or read lengths <101 bp 
for both species. For all other combinations, the MCC was 
above the 95 % threshold.

Results of sequence typing varied for the three species but 
were less profound compared to gene detection. Performance 
was slightly worse for M. tuberculosis than E. coli and N. 
meningitidis, for which performance was comparable based 
on a MCC threshold of 95 %. However, at a MCC threshold 
of 99%, a different trend was observed with performance of 
the E. coli dataset being the most robust. For scenario 1, the 
MCC was ≥95 % for coverages ≥20X for all three species at 
all read lengths. For scenario 2, read lengths of 76 bp were 
required at 50X, and had to be increased to 251 bp at 20X 
to obtain a MCC ≥95 % for M. tuberculosis. For E. coli and 
N. meningitidis, a minimal coverage ≥15X was required to 
obtain a MCC ≥95 %, while for M. tuberculosis read lengths 
of ≥201 bp and at least 20X were required.

The performance of the serotype determination assays was 
substantially affected by decreases in coverages and read 
lengths. This was most apparent for E. coli, where the MCC 
dropped <95 % for all coverages <40X for both scenarios, 
almost exclusively due to mismatches in the detection of 
the O-type determining genes. For scenario 1, the MCC was 
only ≥95 % for the highest coverages and read lengths ≥151 bp. 
For scenario 2, the MCC was only  ≥95 % for the highest 
evaluated coverages and read lengths, indicating that high 
coverage was required to obtain accurate results for this assay. 
Serotype determination for N. meningitidis was however 
more resilient. For scenario 1, the MCC dropped <95 % for 
coverages ≤20X for read lengths at the outer extremities 
(i.e. ≤126 bp or ≥201 bp). For scenario 2, similar trends as for 
gene detection were observed, although a coverage ≥25X and 
read-lengths ≥101 bp were required to obtain a MCC ≥95 %. 
For all coverages ≥25X, all read lengths >101 bp resulted in 
MCC values ≥95 %.

Estimation of minimal sequencing time duration
On average, based on observations during replicate runs A, 
B, and C (Fig. S1), the fixed time for each sequencing run 
was 344 min, consisting of 214, 79, and 51 min for the initial 
setup, forward adapter and reverse adapter sequencing, 
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respectively. A single cycle took 4.49 and 5.32 min on average 
for the forward and reverse read, respectively. This resulted 
in the following equation to estimate sequencing time: 
Ts=344 min+Lf . 4.49 min+Lr . 5.32 min. The selected read 
lengths (i.e. Lf and Lr) for the shortest estimated sequencing 
time with MCC values ≥95 % for each assay and targeted 
coverage are provided in Table 3(b, c) for scenarios 1 and 
2, respectively. For the large majority of cases, the minimal 
sequencing time was achieved by selecting a longer forward 
read length followed by a shorter reverse read length, in 
contrast to using a shorter forward read length followed 
by a longer reverse read length that would allow quicker 
de-multiplexing because the MCC value was negatively 
impacted by the lower quality of the reverse read.

DISCUSSION
We report here an extensive validation to provide guidelines 
for minimal coverages and read lengths to ensure suitable 
performance when setting up regular, and real-time analysis, 
Illumina sequencing runs, to provide a quick response in 
time-critical situations. The first scenario considers decreasing 
sequencing time by reducing read lengths so that sequencing 
runs complete quicker, while the second scenario considers 
analysing data in real-time as the sequencing run is ongoing. 
The word ‘real-time’ can be used differently depending on 
context. Some studies use ‘real-time’ to refer to analyses 
performed while an outbreak is actively ongoing, in contrast 
to retrospective studies conducted after an outbreak has 
been resolved. We employ ‘real-time’ here to refer to analyses 
performed while the sequencing process is still ongoing. This 
concept gained acclaim with the advent of ONT sequencers 
offering this functionality. Although no vendor support exists 
for the Illumina technology, raw data can be transferred 
during the sequencing process and analysed in real-time 
[20, 21, 42]. This can provide actionable results after ~one day 
of sequencing when multiple isolates are multiplexed (Fig. 
S1), saving 1–1.5 days of sequencing time. The main bottle-
neck is the requirement of a de-multiplexing step, for which 
adapters ligated to the end of the forward and beginning of 
the reverse read first need to be sequenced. To the best of 
our knowledge, a protocol to ligate adapters to the beginning 
of the forward read allowing even quicker de-multiplexing 
has not been reported. Since sequencing a single bacterial 
isolate on a MiSeq is rarely an economically viable solution 
and de-multiplexing is consequently required for isolate 
applications, we considered reducing sequencing time by not 
using the maximum 2×301 bp paired-end MiSeq sequencing 
protocol, but rather employing a sequencing set-up with 
shorter read lengths so that the barcodes are sequenced sooner 
and the response time can be further reduced. An approach 
where the forward read length is reduced and the reverse read 
is sequenced completely, appears particularly interesting for 
real-time sequencing. This allows de-multiplexing samples 
quickly (as soon as the forward read and both adapters are 
sequenced) so that real-time data can be generated, which 
is then periodically repeated with increasing reverse read 
lengths. We observed however that the lower quality of the 

reverse reads had a pronounced negative impact on assay 
performance, rendering it more interesting to sequence a 
substantial part of the forward read before switching to the 
reverse read (Table 3). Strategies to minimize the duration 
of pre-sequencing steps, such as DNA extraction and library 
preparation, could aid in further reducing the total turnover 
time.

Validated bioinformatics workflows are generally based 
on full-length and high-coverage read datasets. It is hence 
relevant to characterize bioinformatics performance of 
incomplete sequencing datasets because this allows to (i) 
obtain a better understanding of minimum coverage and read 
length requirements to optimize capacity of full sequencing 
runs to minimize the cost per sample; (ii) provide guidelines 
for minimum requirements of Illumina sequencing datasets; 
and (iii) reduce read lengths of whole sequencing runs to 
ensure data becomes available faster while maintaining high 
quality. Lambert et al. previously evaluated the effect of read 
lengths and coverage on the performance of target gene 
identification using simulated read datasets [20]. A similar 
evaluation was performed here, but employing a much 
more extensive approach with the following differences: (i) 
instead of simulated reads, our approach uses real Illumina 
MiSeq sequencing data where read lengths and coverages 
were in silico reduced, eliminating potential bias from the 
underlying read generation simulation model; (ii) the evalu-
ation included multiple bioinformatics assays besides gene 
detection; (iii) performance described by Lambert et al. was 
expressed in terms of percent identity to target sequences, 
whereas our approach builds on a previously described vali-
dation framework with assay-specific definitions for routinely 
used performance metrics, taking into account positive and 
negative results classes for a complete characterization of 
assay performance; (iv) Lambert et al. evaluated a limited set 
of coverages (n=4) and read lengths (18 bp to 50 bp), whereas 
our approach covers a much larger range of sequencing depths 
and read lengths; and (v) our approach was evaluated using 
three different species whereas Lambert et al. only included 
E. coli data. In total, 62 640 datasets were constructed and 
analysed to provide this in-depth characterization.

Coverage and read lengths had a substantial effect on WGS 
data quality and genome assembly as illustrated in Figs 2, 
S2–S25. Due to unmapped reads, quality trimming and other 
factors, the effective coverage was slightly lower than the 
theoretical value, especially for longer read lengths (Fig. 3a). 
Chen et al. previously showed using real sequencing data that 
the N50 for de novo E. coli assemblies plateaus for coverages 
between 12–20X for various read lengths combinations (i.e. 
2×200 bp, 2×250 bp, 2×300 bp) [43]. Additionally, they found 
that longer read lengths did not increase the N50 when this 
plateau was reached. We observed similar trends for M. 
tuberculosis (Fig. S3), however, for both E. coli and N. menin-
gitidis we observed a substantial increase in contiguity (i.e. 
higher N50) when read lengths were increased from 201 bp to 
251 bp for coverages ≥20X. However, at low theoretical cover-
ages (<20X), an opposite trend was observed, with the N50 
decreasing when read lengths were increased above 151 bp as 
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the beneficial effect of longer reads was outweighed by their 
lower quality towards the end. Our results hence indicate that 
assembly contiguity can be improved by increasing coverage 
and/or read length, but the added value of longer read lengths 
only becomes noteworthy when coverage is sufficiently high 
(≥20X).

The performance impact of coverage and read length was 
different depending on the bioinformatics assay, targeted 
species, and underlying database (Figs 4, S27–S66). The 
effect of coverage on performance has been extensively 
evaluated before, but comparisons are challenging due 
to differences in methodology, bioinformatics tools, and 
validation datasets [28, 29]. In contrast, the effect of read 
length remains largely unexplored. For gene detection, 
Lambert et al. found that a coverage of 4X for short 21 bp 
reads is sufficient to cover over 95 % of the genome without 
significant gaps, enabling accurate target gene identification 
[20]. Recently, Cooper et al. evaluated the performance of 
several bioinformatics methods to detect AMR genes and 
serotypes for Salmonella using downsampled Illumina 
datasets [44]. Performance was impacted by the targeted 
genes, coverage, and employed methodology, but high 
accuracy was observed for coverages ≥15X, regardless of 
the employed bioinformatics method. We observed similar 
results for this assay, as the MCC only dropped <95 % for 
short reads at low coverages (Fig. 4), and our results suggest 
a minimum coverage of 10–15X when using full reads, 
depending on the database (Table 3a). Performance for the 
NDARO database was generally lower compared to VFDB, 
for which the exact causes are unknown, but the size of 
the positive and negative classes (i.e. genes that are present 
and not present, respectively), length and sequence of the 
targeted genes, and genomic location can all affect perfor-
mance. For example, copy numbers of plasmid-encoded 
genes or %GC-content can affect the local sequencing 
depth [45]. Our in silico modification approach accounts 
for these effects by starting from real sequencing runs, 
ensuring that the downsampled datasets exhibit the same 
uneven coverage pattern as the original runs. However, at 
low coverages, this might be distorted due to stochasticity, 
but we assume this approach still provides more realistic 
coverage profiles than other strategies such as in silico data 
generation. Additionally, we found that longer reads can 
improve accuracy even when coverage is kept constant, for 
instance by reducing assembly fragmentation since this was 
the main source of mismatches for gene detection. Other 
assays depending on gene detection were impacted differ-
ently by decreasing coverage and read lengths. The 16S 
rRNA species confirmation of M. tuberculosis was very resil-
ient against decreasing coverage and read lengths, possibly 
due to the conserved genomic location and relatively short 
target length. In contrast, serotype determination for 
E. coli was heavily impacted and only produced reliable 
results for the highest coverages and read lengths (i.e. 50X 
and 2×251 bp reads). This performance drop was almost 
exclusively caused by mismatches in identifying O-type 
determining genes located in low %GC-content regions 

associated with lower sequencing depth [45, 46]. Our find-
ings suggest a minimum sequencing coverage of 50X with 
2×251 bp read lengths to produce reliable results, slightly 
higher than the 40X previously recommended by Lindsey 
et al. for Nextera XT sequencing [30]. For N. meningitidis, 
serotype determination performance was more robust, and 
a minimum threshold of 25X coverage with full read lengths 
was recommended. To the best of our knowledge, the effect 
of coverage and read lengths on the performance of this 
assay has not been characterized, but studies have employed 
similar coverages as a QC threshold for the analysis of N. 
meningitidis WGS data [47]. The sequence typing assay was 
more markedly affected by decreasing read lengths and 
coverages because, in contrast to gene detection, only perfect 
matches with the reference allele are considered correct, 
and a single SNP or indel consequently results in a different 
allele call. Similar to gene detection, substantial differences 
were observed between species. SNP-based AMR detec-
tion for M. tuberculosis was remarkably resilient against 
decreasing read length and/or coverage. Performance of 
variant detection has been described extensively [28], and 
recently Bush et al. found high precision for various SNP 
detection tools even at 5X coverage on simulated error-
free Illumina reads of 150 and 300 bp for various bacterial 
species [48]. However, as they applied depth filtering, the 
sensitivity drastically decreased at lower coverage. We 
similarly observe high precision at low coverage. Since we 
did not apply depth filtering, the sensitivity was still high, 
but both FP and FN increased drastically when coverage 
was lowered below a minimum coverage of 10X. The litera-
ture suggests a minimum threshold of 30X for identifying 
SNPs associated with AMR in M. tuberculosis [49], and our 
recommendation of 10X can be slightly increased to 20X to 
reduce the number of mismatches, especially in light of the 
clinical implications of detected mutations. However, we 
did not observe a decrease in mismatches when coverage 
was further increased from 20 to 30X. A small effect of read 
length was observed for long read lengths at low coverage, 
but even for datasets with low coverage, read lengths could 
be drastically reduced before the MCC dropped below 95 %. 
In comparison, the Pointfinder assay was less resilient. 
While both assays identify point mutations, PointFinder 
was executed using the alignment of de novo assembled 
contigs rather than read mapping, which was only added 
as a feature in a recent update [50], and not evaluated in 
this study. At very low effective coverages, the assay failed 
to detect the targeted loci, increasing the number of FN 
results. Additionally, the assay was impacted at slightly 
higher coverages by an algorithmic artefact (see Results S1). 
In the absence of both issues, performance was robust and 
slightly higher for E. coli compared to M. tuberculosis. We 
did not find previous coverage and/or read length recom-
mendations in the literature for this assay. Lastly, for all 
evaluated assays, repeatability and reproducibility were 
always 100 %, demonstrating that results of bioinformatics 
workflows were unaffected by repeated runs, regardless of 
input data quality.
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By extensively characterizing the performance of different 
bioinformatics assays at varying read lengths and coverages, 
we have provided recommendations for minimal coverage 
and read length requirements to maintain adequate perfor-
mance for various scenarios (Fig. 2), including regular runs 
with full-length reads (Table  3a) and two time-critical 
scenarios. In the first scenario, we investigated how many 
samples can be multiplexed at lower read lengths when the 
real-time sequencing protocol cannot be used, by keeping 
the theoretical coverage fixed and adapting read lengths. 
In the second scenario, we investigated how many samples 
can be multiplexed in a single full-length Illumina MiSeq 
sequencing run, and in particular, when using the real-
time sequencing protocol, at which point incomplete read 
lengths result in high-quality results that can be used for 
interpretation. For all assays, performance was primarily 
impacted by effective coverage and to a lesser extent also 
by read lengths. Consequently, by reducing the number 
of samples sequenced per run, sequencing depth can be 
increased to achieve higher quality results with shorter read 
lengths, since a 100 bp read length reduction corresponds 
to approximately 8 h of sequencing. Concrete recommenda-
tions were then determined for each assay by estimating 
sequencing duration in function of read length (Table 3). 
Since coverage has the largest performance effect, the 
number of samples multiplexed in a single run should 
first be derived using the Lander/Waterman equation or 
tools such as the Illumina Sequencing Coverage calcu-
lator [51]. Then for each assay, the combination of read 
lengths with the shortest estimated sequencing time to 
obtain high-quality results (MCC ≥95 %) at the envisaged 
coverage can be determined (Table 3). Although minimum 
sequencing duration varied widely between assays, for the 
majority, total sequencing time can be drastically reduced 
compared to a full-length run (~46.38 h). For all assays 
and databases, except serotype determination for E. coli, 
a MCC value ≥95 % was obtained after less than 14 h of 
sequencing by optimizing the sequencing set-up (Scenario 
1, Table 3b) and 22 h with the real-time sequencing protocol 
(Scenario 2, Table 3c) when coverage is sufficiently high. 
Specific guidelines for the evaluated assays can be derived 
by navigating Table 3. The guidelines are based on median 
coverages, because this information is required to deter-
mine how many samples can be multiplexed in the same 
sequencing run, while taking into account coverage fluctua-
tions. For example, the requirement with respect to median 
coverage for serotype determination of E. coli is very high 
due to the reduced local coverage in the region containing 
the O-type determining genes [45]. The required median 
coverage for other assays for this species not subject to this 
effect, is consequently lower.

We acknowledge the following constraints of our work. 
Firstly, full-length and high-coverage read datasets were 
considered as the ‘ground truth’, i.e. performance was 
always compared to the full isolate sequencing datasets. 
This decision was motivated by our principal question how 
performance is affected by reducing sequencing lengths and 

coverages compared to full datasets, but also necessitated 
because for many bioinformatics assays (e.g. sequence 
typing) no gold standard reference data are available. 
This effectively entails that high performance at reduced 
sequencing depths and/or coverages can be potentially 
misleading if performance of the bioinformatics assay for 
the full dataset is poor to begin with. Notwithstanding, 
this effect is expected to be minimal in our study because 
we specifically used bioinformatics workflows already 
rigorously validated previously to be of very high perfor-
mance [31–33]. While we employed 95 % as a threshold 
to consider results as high-quality, higher cut-offs can be 
enforced when quality needs to be as close to that of the 
full dataset as possible. Results of Fig.  4 therefore also 
indicate requirements using a MCC threshold of 99 %. 
For some assays, this heavily affects minimum coverage 
and read-length requirements (e.g. sequence typing for 
N. meningitidis), while for others the effect was minimal 
(e.g. 16S rRNA species confirmation). Thirdly, performance 
evaluation of bioinformatics assays was limited to a single 
method, whereas multiple alternative tools and algorithms 
are available but evaluating all of them would be impossible. 
Other laboratories can adopt our approach to characterize 
performance of their own bioinformatics workflows on 
incomplete datasets, regardless of the underlying bioinfor-
matics methods and targeted species. Fourthly, validation 
focused on characterization at the isolate level, which 
showed that read length and coverage requirements can be 
substantially reduced whilst maintaining high performance 
for certain assays such as sequence typing or SNP-based 
AMR detection. However, limited mismatches at the isolate 
level can have a cumulative effect on interpretation of 
multi-isolate relationships. Notwithstanding, although the 
performance of cgMLST and SNP-based AMR detection 
cannot be directly extrapolated to phylogenomics inference 
methods based on cgMLST or SNPs, our results do suggest 
that such methods can also attain high levels of perfor-
mance for use during outbreaks. Studying the exact impact 
of read length and coverage on phylogenomics inference 
would however require an entire study on its own based on 
datasets with known epidemiological links [52]. Fifthly, this 
study employed the MiSeq, while other laboratories might 
rely upon different Illumina sequencers. In the context of 
time optimization, sequencers such as the iSeq or MiniSeq 
with a shorter setup time and duration per cycle could be 
particularly suited. Alternatively, laboratories processing 
large number of samples will typically use the NovaSeq 
and NextSeq sequencers due to their higher throughput. 
Notwithstanding, these alternative sequencers rely on the 
same sequencing chemistry, and despite being quantitatively 
different (i.e. different number of reads per run, shorter 
read lengths), they do provide qualitatively the same output 
(i.e. similar error profiles of the reads, subject to same biases 
such as GC% etc.). The minimal requirements for coverage 
and read length described in Table 3 therefore also apply 
for these other Illumina sequencers, but the time estimates 
should be adapted according to the time-specific durations 
per sequencing cycle for the different sequencers. Sixthly, 
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the employed ‘read-shuffling’ approach to obtain enough 
short-length reads at high coverages could potentially 
overestimate certain biases also present in real sequencing 
datasets, such as e.g. GC-bias with a higher number of short 
reads showing a more uniform distribution compared to a 
lower number of long reads, which remain impossible to 
account for.

In conclusion, our work provides specific recommenda-
tions to set up sequencing experiments that facilitate rapid 
analysis in time-critical scenarios. We present a general 
framework to validate the impact of coverage and read 
length on the performance of various bioinformatics assays 
across different species, which can be extended to other 
use-cases. Our implementation of a real-time sequencing 
protocol can also be used by other labs that employ the 
Illumina technology. Our work facilitates the integration 
of WGS into routine settings by labs operating under strict 
quality requirements that need to provide a rapid response 
in emergency situations.
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