
1 
 

A remote sensing-based approach to investigate changes in land use and land 
cover in the lower uMfolozi floodplain system, South Africa 

Mandla Dlamini1,2*, Elhadi Adam1, George Chirima3,4 & Hamisai Hamandawana5  

1 School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, 1 Jan Smuts Avenue 
Johannesburg, 2000,  

2 Institute for Water Studies, Department of Earth Science, University of the Western Cape, Robert Sobukwe Road, 
Bellville, Cape Town, 7535, South Africa,  

3 Agricultural Research Council: Institute for Soil, Climate and Water, Geoinformation Science Division, 600 Belvedere 
Street, Pretoria, 0083, South Africa,  

4 Centre for Geoinformation Science, Department of Geography, Geoinformatics and Meteorology, University of Pretoria, 
Pretoria, South Africa,  

5 Bindura University of Science Education, 741 Chimurenga Road Off Trojan Road, Bindura, Zimbabwe  

*Author for correspondence: E-mail: mdlamini@uwc.ac.za 

 ABSTRACT 

The goal of this study was to understand land use and land cover (LULC) changes within the lower 
uMfolozi floodplain system, South Africa, and relate those changes to wetland loss. Changes in LULC 
were assessed using a geographic object-based image analysis (GEOBIA) algorithm to classify multi-
date Landsat images into eight cover types over a period of 20 years, between 1997 and 2017. Post-
classification accuracy assessment of all map-outputs was conducted by compiling confusion matrixes 
and calculating producer, user, and global accuracies and kappa coefficients (K) for each map-output. 
Levels of accuracy for all map-outputs were within acceptable limits, ranging between 79% and 88% 
(K = 0.76 and 0.86, respectively). Thereafter, paired t-tests were applied to determine whether the 
changes in LULC over the study period were significant. Results of this investigation showed a 
significant (p-value, < 0.01) conversion of wetland to cultivation, by 14%. This finding is important 
because it demonstrates that in this environment, human agency is one of the major drivers of a 
persistent decrease in the wetland ecosystem. The major insight from this observation is that there is 
an urgent need to formulate and implement objectively informed interventions to enhance the 
sustainability of the uMfolozi floodplain system and that of others elsewhere. 
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1. INTRODUCTION 

Wetlands provide a variety of ecosystem services that include water quality improvement, flood 
attenuation and protection, groundwater recharge and agricultural production (Bhatta et al., 2016). 
Despite the provision of these services, wetlands are widely threatened at regional, sub-regional and 
global scales by human activities that include hydrologic modifications, contamination by anthropogenic 
pollutants, eutrophication and conversion to a wide range of uses, notably agriculture and human 
settlement. These adverse effects are aggravated by changes in climate (Winter, 2000) that have far-
reaching implications for the sustainability of these vital ecosystems. Evidence of these changes comes 
in the form of an extensive decrease in the wetland area, and persistent loss of vegetation (Xu et 



2 
 

al., 2018). These adverse effects are a major cause of concern because of their established tendency 
to reinforce each other in inducing irreversible impairment of the natural balance in the functioning of 
these ecosystems (Banadda et al., 2009). This asseveration is supported by the reported decrease in 
the world’s wetlands by 64–71% since 1900, largely because of encroachment by agriculture and other 
human land-use activities (Davidson, 2014). 

Encroachment by human activities is now so widespread that it has come to be recognised not only as 
one of the major drivers of wetland degradation but also as a catalytic agent that amplifies the adverse 
effects of climate change. Human agency and climate change are further reinforced by a lack of routine 
monitoring, meaning the information needed to guide the formulation of environmentally friendly 
interventions is scarce (Driver et al., 2012). Information scarcity has far-reaching implications because it 
entails concomitant inaction. In South Africa, for example, only 15% of the country’s varied wetland 
types remain in their near-natural ecological state, with floodplain wetlands recorded as presently 
having less than 5% of their total area under near-natural conditions (Isimangaliso Wetland Park 
Authority, 2016; Skowno et al., 2018). This situation is bound to deteriorate unless concerted efforts are 
taken to reverse the rate at which wetlands are being degraded by the combined effects of human 
agency and climate change. 

Although wetlands continue to be degraded as a result of a conspicuous lack of interest in their 
sustainability, they still provide vital ecosystem goods and services that are essential for sizeable 
human populations whose livelihoods depend on what these shrinking resource niches provide. The 
range of provisions they offer is so wide that it should be obvious they must be safeguarded at all cost 
and without reservation. They support numerous ecological processes such as nutrient dynamics, 
energy flow, and movement of organisms and materials (Foley et al., 2005; Kareiva et al., 2007). They 
also serve as natural sinks for nutrients from terrestrial sources and provide (1) fresh water for multiple 
uses, (2) a wide variety of plants used for various purposes, (3) fall-back grazing during the dry seasons 
of all years, (4) nesting grounds and habitats for birds, (5) habitats and spawning grounds for multiple 
freshwater fish species and (6) aesthetically appealing environments in which to live and undertake 
non-extractive recreational activities (Hamandawana et al., 2020). The list is endless but, unfortunately, 
wetlands continue to be robbed and degraded by extractive and unsustainable human resource use 
practices. 

These exploitive uses are often aggravated by competing demands for wetlands’ finite resources, which 
are continuously increasing, in tandem with similar changes in human populations. One source of these 
problematic demands is agriculture, which accounts for most of the observed loss in wetland area 
through the conversion of wetlands for crop production. Equally problematic are industrial and urban 
development, which add their share of the pressure by converting what is available to meet their 
requirements (Kingsford et al., 2006, Kingsford, 2015) and degrading most of these natural systems 
due to a lack of proper monitoring and enforcement of conservation regulations. As human-induced 
pressures increase, climate change exacerbates this build-up by imposing externalities that are beyond 
the natural coping capacities of these ecosystems (Bate et al., 2016). 

Although the situation may appear irremediable, there is in fact tremendous room to respond 
appropriately by providing the information mentioned above, which is conspicuously lacking. Obtaining 
this information requires innovative techniques that are not only cost-effective but also capable of 
offering what is required at appropriate temporal and spatial scales. As explained in subsequent 
sections, remote sensing provides a viable means of bridging this information gap in ways that are 
potentially capable of providing lasting solutions to the information scarcity problem. 

An explanation is helpful here in demonstrating why the present study considers information critical in 
attempting to enhance the sustainability of our wetlands. Information is critical because apart from 



3 
 

providing a reliable inventory of how wetland resources are being exploited and replenished, it is also 
the backbone of policy formulation, management decision-making and implementation of informed 
interventions. Inventory assessments are vital because they provide a reliable basis for monitoring what 
is happening and tracking disruptions that require immediate attention. Without this information, it is 
difficult to deploy conservation policies to protect wetlands, hence this example illustrates the 
usefulness of remote sensing because of its demonstrated capabilities to outperform conventional 
techniques by offering spatially explicit information at costs within the reach of many stakeholders. 

Because of the dynamic nature of processes that occur in wetland ecosystems, long-term profiling is 
needed to discriminate periodic reversible changes from those that may end up being irreversible. 
Reversibility is crucial because it determines whether interventions will be successful by imposing limits 
beyond which corrective interventions cannot reverse the undesirable effects of degradation. Although 
wetland monitoring has for a long time relied on traditional methods, that include visual interpretation of 
maps and aerial photographs, and instrumental ground-based measurements, these methods are 
prohibitively costly, time consuming and incapable of providing consistent information that is 
representative of large areas at multiple temporal scales (Hoshino et al., 2012; Melton et al., 2013; 
Gilbertson et al., 2017). Besides the reliance on these methods, unevenly distributed observations 
render most of the information they provide of little use at the operational level; areas for which 
information cannot be provided are often superficially covered by poorly representative averages. 
These challenges can be addressed by fully exploiting what remote sensing offers. 

Over the last few decades, remote sensing has become widely accepted as a viable means to provide 
usable information timeously. Some reasons for this recognition are: (1) the increasing availability of 
freely accessible images from the Landsat archives; (2) the long temporal coverage provided by the 
continuous Landsat data sets (48 years, from 1972 to the present), which makes it ideal for the 
investigation and detection of long-term change; (3) optimised spatial resolutions for reliable 
characterisation of informative land use and land cover (LULC) types (30 m for most bands); (4) 
immediate download access of required images from the United States Geological Surveys USGS data 
portal; and (5) dedicated and planned commitment to continue providing images into the future (Zhu et 
al., 2019). This scenario provides a convincing demonstration of the fact that for LULC monitoring at 
scales required for wetlands monitoring, access to raw data is indeed no longer one of the major 
obstacles confronting the policy–planning interface. What is lacking is an organised and collective effort 
by the scientific community to exploit fully the rich data sets that have become readily accessible. 
Although remote sensing has increasingly been used in many wetland research areas, notably LULC 
monitoring (Schmidt and Skidmore, 2003; Wang et al., 2004; Giri et al., 2011), vegetation quality and 
quantity assessment, and other areas that include hydrological processes (S.-N. Li et al., 2009), its full 
potential remains to be meaningfully exploited. While Landsat images have the above outlined 
potentials to bridge information gaps, radar data products could broaden the scope of investigative 
analysis because of their insensitivity to variable weather conditions and cloud cover. Unfortunately, 
however, their use is constrained by several limitations. 

First, there is a price tag on most of these images, which makes them inaccessible to most potential 
users, with this same limitation affecting other image types provided by most platforms. Second, their 
acquisition involves high energy utilisation on satellite platforms, which makes it difficult to provide 
optimum time series data sets for many regions of the world (Woodhouse, 2006). These limitations 
make Landsat images the mainstay of pixel-based LULC characterisation at multiple temporal and 
spatial scales (Grundling et al., 2013; Jia et al., 2014b; T. Liu and Yang, 2015; Kumar and 
Acharya, 2016). This does not, however, imply that Landsat images do not have their own limitations. It 
is well known that Landsat images are incapable of supporting detailed discrimination of different 
vegetation species because of their coarse spatial resolutions (Gallant, 2015; Gómez et al., 2016). This 
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limitation is noted by Adam et al. (2010), who report that Landsat’s spatial and spectral resolutions are 
too coarse for reliable discrimination of wetland vegetation species. 

While these limitations have been specifically raised as examples, these images are further affected by 
constraints similar to those associated with what other platforms provide. First, their utilisation is 
confounded by reliance on pixel-based classifications that are dependent on feature-based brightness 
values (Blaschke et al., 2014). This brightness dependence entails its own limitations that arise from 
the elimination of effective exploration and utilisation of the robust spatial concepts of a neighbourhood, 
proximity and homogeneity analysis (Burnett and Blaschke, 2003). Added to this is their narrow spectral 
resolutions (McIver and Friedl, 2002) that render them incapable of discriminating heterogeneously 
distributed vegetation species with low inter-class spectral separability (Bourgeau-Chavez et al., 2009; 
Gallant, 2015; Amani et al., 2017). Second, these limitations have substantial implications for 
biodiversity studies where the abundance of different species is considered to be a critical determinant 
of the stability and health of wetland ecosystems (Elliott et al., 2020). This valuation is premised on the 
fact that greater species richness is an uncompromisable characteristic of heathy wetland systems 
(Brose, 2008; Elliott et al., 2020). The implication of this connection is that although high-resolution data 
sets are expensive, they are essential for the species-level characterisation of different vegetation 
types. Hence, the information they can provide is indispensable because it is the backbone of 
conservation-oriented interventions (Tockner et al., 1999). Although difficult to implement due to a lack 
of suitable information, the success of these interventions determines the availability of functional 
wetland systems for present and future generations. To achieve this functionality, there is a need to 
explore innovative techniques of using what is available and readily accessible in order to secure the 
ability of these ecosystems to sustainably provide their valued goods and services (Tscharntke et 
al., 2005). With science at a crossroads because accessible data sets lack the required discrimination 
skills, while those with the requisite skills are not affordable, attempts to improve classification outputs 
from coarse resolution images by adding different vegetation indices have been explored by many 
(Peña-Barragán et al., 2011; Sahebjalal and Dashtekian, 2013). 

The emergence of this new thinking is demonstrated by pioneer initiatives to use the geographic object-
based image analysis (GEOBIA) approach, which has many advantages compared to pixel-based 
classification. This approach is a category of digital remote sensing image analysis that segregates 
geographic entities by discretising image objects as fundamental primitives (Blaschke, 2010). Known 
advantages of this novel technique include its ability to extract sub-pixel information at higher levels of 
classification accuracy by using the spatial, and textural properties of individual objects as additional 
information to their reflectance characteristics (D. Liu and Xia, 2010). Although GEOBIA has been 
largely applied to high-resolution images, the algorithms on which it is based can be adapted to classify 
readily accessible medium-resolution images such as Landsat images. This avenue promises better 
change detection by providing tremendous scope to refine conventional pixel-based classification 
techniques (Lu et al., 2014). The feasibility of the technique is demonstrated by recent studies (Ai et 
al., 2020) that used GEOBIA-based methods and medium-resolution remote sensing data to monitor 
continuous LULC changes in heterogeneous environments. 

What this breakthrough suggests is that GEOBIA can be used in synergy with different spectral indices 
to extract the unused information contained in Landsat’s pixelised images. The spectral indices worth 
exploring include but are not limited to (1) the normalised difference vegetation index (NDVI); (2) the 
green normalised vegetation index (GNDVI); (3) the soil adjusted vegetation index (SAVI); and (4) the 
ratio vegetation index (RVI). It is possible to use these indices because they can deliver improved 
LULC classifications using the red, green and near-infrared bands of the electromagnetic spectrum 
(Dronova, 2015). 
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Their usefulness can be illustrated by SAVI, whose capability to discriminate soil types on the basis of 
differences in brightness has been used to improve classifications of different vegetation types by 
fusing it with other vegetation indices (Xue and Su, 2017; X. Chen et al., 2019). This technique has also 
been found to be capable of improving mapping accuracy in heterogeneous landscapes like wetlands 
(Y. Chen et al., 2018), and improving land cover discrimination in high-density vegetation landscapes 
(Xue and Su, 2017). Although useful, as outlined above, indices like RVI and NDVI have compromised 
capabilities because of their sensitivity to soil brightness in sparsely vegetated areas (Xue and 
Su, 2017). This limitation can, however, be addressed by using various machine learning classification 
algorithms, for example support vector machine (SVM), which so far has been successfully 
implemented in GEOBIA (Mountrakis et al., 2011). SVM functions by using a decision surface (optimal 
hyperplane) that maximises separation margins between different information classes (Cortes and 
Vapnik, 1995; Veenman et al., 2002). This permutation enables it and the other vegetation-based 
indices to produce higher accuracies compared to what is achievable using the pioneer conventional 
classifiers (Lin et al., 2013; Salehi et al., 2015). 

The challenges outlined above argue for tireless efforts to embrace responsible stewardship by 
routinely monitoring the remaining wetlands at our disposal. Given the difficulties confronting broad-
based coverage of all systems, a bottom-up approach, in which the local informs the regional, promises 
to offer a viable compromise approach. This reasoning explains why we decided to focus on the 
uMfolozi floodplain system (UFS). Located in uMkhanyakude District Municipality, the UFS was also 
judged to be suitable for this investigation because it is found in one of the poorest and most 
underdeveloped local authorities in South Africa (Hansen et al., 2015). 

This unfavourable positioning is aggravated by persistent degradation induced by the ever-growing 
demands of human populations that have rapidly increased from the recent historical past to the 
present (McCracken, 2008), with approximately 60% of wetland area being converted to unsustainable 
agricultural activities in less than two decades, by the early 1980s (Begg, 1988; Vivier et al., 2010). 
Considering that most people in this area are unemployed standing residents whose livelihoods are 
largely dependent on subsistence crop cultivation (Nustad 2015), it is apparent that there is an urgent 
need to focus attention on how this wetland can be conserved. Although research appears to be only 
distantly interested in this system, this wetland is clearly under siege because of conflicts between local 
communities and policy. While local communities consider free access to the UFS and its resources to 
be their birth right, official policy views subsistence cultivation and other extractive uses as 
unsustainable intrusions. As a result, the concept of a shared landscape is collapsing. 

Given the complex nature of the UFS, an innovative monitoring technique is needed to provide up-to-
date information that can be used to guide the formulation and implementation of effective 
interventions. We attempt to approach the realisation of this objective by using the GEOBIA algorithm 
along with purposefully selected vegetation indices comprising NDVI, GNDVI, SAVI and RVI to quantify 
long-term LULC changes in this system. The goal of this initiative was to better understand the major 
drivers of the aforementioned changes in this environment to provide objectively informed 
recommendations on adoptable interventions that are potentially capable of enhancing the 
sustainability of this threatened ecosystem. 
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2. MATERIALS AND METHODS 

2. 1 Study area 

The UFS is a floodplain wetland (Garden, 2008) situated in the small town of St Lucia (28°22'S, 
32°25E’), in the uMkhanyakude District Municipality of South Africa (Figure 1). This municipality is well 
known for being one of the country’s poorest and most underdeveloped local authorities (Hansen et 
al., 2015). In terms of physiography, the floodplain is bound inland by deeply incised meanders of the 
Mfolozi River, which cuts its way through rhyolite rock formations of the Lebombo Mountains. After 
these mountains, it meanders downstream towards the Indian Ocean, within the confines of elevated 
landscapes in the southern and northern peripheries of Zululand and Maputaland (Garden, 2008). With 
an evolution dating back to ∼18 000 yrs BP, the UFS originated from a dramatic loss of the river’s 
confinement from a marginal width of ∼950 m to > 6 km in less than 1.5 km before it enters the ocean 
(Garden, 2008). The surface geology of Maputaland, in which most of our study sites are situated, 
consists of conglomerates, limestone, calcareous rocks and clayey sands. 

 

Figure 1. Geographical location of the study area. 

Rainfall in this area is predominantly seasonal. Localities distant from the Indian Ocean experience a 
subtropical climate, with large seasonal variations in precipitation, which ranges between 671 mm/a 
and 1002 mm/a (Morgenthal et al., 2006). The coastal floodplain areas receive similar but less variable 



7 
 

amounts, ranging between 645 and 1090 mm/a along a precipitation gradient in which the lowest 
amounts are confined to localities in the upper river’s upper catchment areas. Throughout the entire 
area, however, most of the rainfall is confined to the summer months between October and March, with 
the highest amounts occurring between January and March (Morgenthal et al., 2006). This rainfall 
regime translates into seasonal inundation of the floodplain and evapotranspiration rates approximating 
1805mm/a (Schulze, 1997). 

Surface hydrology is dominated by (1) two main rivers – the Mfolozi River in the north and the 
Msunduze River in the south – that converge into a common mouth that marks their terminal entry into 
the Indian Ocean; and (2) shallow floodplain lakes, the largest of which are Lake Teza and Lake 
Futululu. Flow in these rivers is highly variable (Garden, 2008), and characterised by low base-flows 
and isolated occurrences of short-duration peak floods that mimic the seasonal distribution of rainfall. 
Although they are mostly short-lived, these flash floods have a profound influence on the floodplain’s 
morphological characteristics (Grenfell and Ellery, 2009) that are characterised by repeated landform 
construction and destruction. The major vegetation types in this wetland include Cyperus 
papyrus, Phragmites mauritianus, Phragmites australis and Ficus trichopoda (Garden, 2008). 

About 39% of people in this area are unemployed, depending on subsistence cultivation of Ipomoea 
batatas, Musa acuminata and Colocasia esculenta and small-scale production of vegetables (cabbage, 
spinach, carrots, etc.) that provide supplementary livelihoods. Although the UFS is an extensive 
wetland system covering approximately 19 000 hectares (Ellery et al., 2009), most of it has been 
converted to small-scale commercial sugarcane production and commercial forestry that date back to 
1911 (Keddy, 2010). Since then, conversion has progressively increased, to the extent that by as early 
as 1960, more than 50% of the floodplain had already been modified by sugarcane farming and 
canalisation of the uMfolozi River to supply irrigation water to the sugarcane plantations (Vivier et 
al., 2010, Hansen et al., 2015). These exploitive and extractive uses have imposed severe strain on the 
wetland’s functional capacities. 

2.2 Landsat data and field data collection 

The data sets that were used include like-season Landsat 5 Thematic Mapper (TM) images from 1997, 
2001, 2004 and 2008; a Landsat Enhanced Thematic Mapper (ETM) image from 2012; and a Landsat 
Operational Land Imager (OLI) image from 2017. Table 1 describes the temporal sequencing and 
characteristics of these images. These images were purposefully selected to provide cloud-free 
footprint coverage of the study area. Landsat images were preferred for this investigation because of 
(1) the demonstrated capability of their 30 m spatial resolution for land-cover characterisation, (2) their 
accessibility and the fact that they are free of charge, and (3) their long-term temporal coverage. Table 
1 describes the temporal sequencing and characteristics of the Landsat images that were used. 
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Table 1. Temporal sequencing and characteristics of the images that were used in the study. 

 

Fieldwork was conducted during the wet-season months of February and March 2017, after a pilot 
survey in the same months of the previous year. The compilation of ground truth was guided by a 
thematic map that was prepared from the unsupervised classification of a footprint coverage of the 
study area, obtained by clipping the 2017 Landsat image. The number of thematic classes in this map 
was purposefully set at 18, with this upper limit being preferred because, it was reasoned, this number 
was large enough to be capable of accommodating most of the different vegetation and non-vegetation 
cover types in the area due to limited heterogeneity in their distributions. Three sample sites were 
systematically selected for each of the 18 thematic classes, whose exact locations were identified with 
a Garmin geographical positioning system (GPS) with a rated absolute positional accuracy of ± 4 m. 

Ground truth was compiled by characterising different cover types on the basis of spatial distributions in 
(1) different vegetation, (2) land use types and (3) natural features that were observed. Thereafter, this 
information was summarised to produce eight land-cover types: (1) bare land and harvested fields, (2) 
forest, (3) grassland, (4) plantations, (5) subsistence farms, (6) sugarcane plantations, (7) water and (8) 
wetland. Although different woody and herbaceous species were present in different areas of the 
floodplain, species-level classification was not possible because of heterogeneous distributions and the 
inability of Landsat imagery’s coarse 30-m spatial resolution (C-res) to discriminate sub-pixel-sized 
cover types. C-res misclassification occurs when a single pixel represents an integration of many 
smaller image objects that do not correspond to their real-world appearance. To overcome this 
limitation, broad information classes were created by merging field-observed features with close 
resemblance into contiguous cover types. For example, tree-size specimens of Ficus 
sycomorus (sycamore fig), Hibiscus tilliaceus (lagoon hibiscus), and other woody species that are 
common in floodplain wetland areas (Van Deventer et al., 2017) were combined into a forest. This 
information was then segregated into two classes with 2/3 of the information compiled for each thematic 
class being reserved for supervised classification and the remaining 1/3 being reserved for 
classification accuracy assessment. 

2.3 Image compilation and pre-processing 

Pre-processing of the Landsat images in our database was performed in ENVI 5.4. The images were 
first clipped to provide footprint coverage of the study area. This was followed by using the layer-stack 
tool to select bands 1, 2, 3, 4, 5 and 6 from the TM and ETM images and bands 2, 3, 4, 5, 6 and 7 from 
the Landsat OLI image. Because the Landsat scenes were obtained in digital number (DN) format, they 
had to be converted to top-of-atmosphere (TOA) spectral radiances, which was accomplished using 
FLAASH (Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes), which is provided as a 
plug-in to ENVI 5.4. Thereafter, the same software’s projection and transformation toolset was used to 
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re-project all images to Universal Transverse Mercator zone 36 S. Since the Landsat scenes acquired 
after May 2003 have scan-line errors (stripes), the 2004 and 2008 images were corrected using the 
Landsat Two band gap-fill method provided in ENVI. Specific details on how the method works are 
provided elsewhere (Yin et al., 2017). 

2.4 Segmentation and image classification 

We employed a multiresolution GEOBIA approach to segment images, which were then classified using 
a supervised SVM technique. Segmentation is the partitioning of an image into discrete non-
overlapping units based on specific criteria (Hay et al., 2005). It is a bottom-up technique in which 
individual pixels are iteratively merged into larger objects (Baatz and Schape, 2000). This grouping 
increases the discrimination of spectrally similar land-cover types by using texture, shape and context 
features to determine the creation of objects from individual pixels (Burnett and Blaschke, 2003). There 
is no single perfect algorithm that is appropriate for all images (Muñoz et al., 2003). In this study, multi-
resolution segmentation (MRS) in eCognition was preferred following recommendations provided by 
Marpu et al. (2010). The MRS is a widely recommended technique for image segmentation, in which 
the size of segmented objects is controlled by user-defined scale parameters (Anders et al., 2011) 
whose selection is based on iterative screening and thresholding (Belgiu and Draˇgut¸, 2014). This 
segmentation was performed by weighting all bands 1 except the red and near-infrared, which were 
weighted 2 in order to discriminate vegetated surfaces. The scale parameter was kept at 50. The shape 
and compactness parameters were both set at 0.5 (G. Chen et al., 2012) because the relationships of 
the spectrum versus the shape and compactness versus smoothness were unknown. The images that 
were produced from these segmentation procedures were then subjected to supervised classification 
by using the 60% of ground truth that was reserved for this purpose during field investigation. 

In performing the classifications, the number of training pixels was determined by reference to 
guidelines provided in the literature. Some authors suggest a minimum of 50 training pixels/class if the 
area covered is <500 km2 and the number of classes is ≤12, or 75–100 training pixels/class if the area 
covered is >500 km2 and the number of classes is >12 (Bharatkar and Patel, 2013), while others 
suggest 30 pixels/class without providing limits on the number of classes or the size of the area 
covered (Mui et al., 2015). 

Sample selection: Because the total number of classes in our study was eight and the area covered 
was <500 km2 (19 000 hectares = 190 km2), we decided to use the intermediate 30 pixels/class 
suggested by Mui et al. (2015). This translates into a recommended window of 6 × 5 pixels at Landsat’s 
30-m resolution (Lu and Weng, 2007; Mather and Koch, 2011; Myburgh and Van Niekerk, 2013). 
However, there were exceptions with classes that covered small proportions of the scenes (i.e. 
wetlands and grassland) because of MRS’s ability to sample classes with spatial coverages below the 
specified window of 6 × 5 pixels. 

Sample objects were trained by supplementing field-compiled information with collateral ground truth 
from Google Earth images and contextual information that was obtained from (1) prior knowledge of the 
tone, shape and texture appearance of features like water and cultivated land-holdings; and (2) habitat 
preferences of individual vegetation species. From these examples, water is known to be irregularly 
shaped while cultivated plots usually have rectangular uniform appearances, and herbaceous species 
like Cyperus papyrus, Phragmites mauritianus and Phragmites australis were expected in the 
permanently flooded wetland areas. This additional information boosted the reliability of signature 
extraction because of the established usefulness of contextual information in aiding the minimisation of 
classification errors (Kalra et al., 2013). Table 2 summarises the training pixel statistics for each of the 
eight LULC types that were mapped from Landsat images. 
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Table 2. Overall accuracy for each satellite image. 

 

To enhance the accuracy of our classifications, SVM was selected to classify the images because of its 
superiority over conventional classification approaches (Oommen et al., 2008). SVM is a non-
parametric algorithmic machine learning classification technique that is trained to find the optimal 
classification hyperplane by minimising the upper bounds of classification errors (Cortes and 
Vapnik, 1995; Mashao, 2003). In this study, SVM implementation was performed using the radial basis 
function (RBF) kernel as recommended by Hsu et al. (2003), without altering its default parameters on 
kernel function (0.143), penalty (100), pyramid levels (0) or classification probability threshold (0). 

2.5 Classification accuracy assessment of the LULC classes 

Classification accuracy assessment (CLACASS) is a common quantitative method that applies an error 
matrix derived from independent reference data sets (Stehman, 2000; Foody, 2002) to assess the 
quality of classified map outputs (Congalton and Green, 2008; Mui et al., 2015). In this study, 
CLACASS was accomplished by calculating overall accuracies and kappa coefficients (K) following 
procedures suggested by Campbell (2002) and by Congalton and Green (2008). Hamandawana (2012) 
provides an illustrated explanation of how these statistics can be calculated. Table 3 shows the overall 
percentage of accuracies and K coefficients that were obtained for each of the six map outputs. 
In Table 3, kappa values are interpreted as follows: (1) values ≥0.75 indicate excellent agreement 
beyond chance, (2) values ranging from ≥0.4 to <0.75 indicate fair to good agreement beyond chance, 
and (3) values <0.4 indicate poor agreement beyond chance (Tana et al., 2013). 

Table 3. Percentage compositions and percentage changes in land use land cover change (LULC) cover types that were 

mapped from Landsat images in the uMfolozi floodplain: 1997–2017. 

 

2.6 Object-based change detection analysis 

After determining the accuracies of our map outputs, object-based change detection (OBCD) 
(Blaschke, 2005) was performed to quantify the changes in LULC in order to investigate observed 
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patterns in spatial distributions of wetlands for the five time slices (1997–2001, 2001–2004, 2004–2008, 
2008–2012 and 2012–2017) between 1997 and 2017. The change detection analysis revealed and 
quantified expansion, contraction or no change in specific land cover classes relative to each other. 
This characterisation was preferred because apart from being one of the most commonly used, it allows 
the detection of transitional “from–to” changes in individual cover types (Yang and LO, 2002; Yuan et 
al., 2005). We used this procedure to produce the initial map for 1997 and five change-detection maps 
for the above-listed time slices by performing post-classification comparisons in ArcGIS 10.6. 
Thereafter, these maps were overlain to produce a matrix table that summarised all time-series in the 
20 years between 1997 to 2017. Paired t-tests were then performed to determine whether there were 
significant differences in changes among agriculture, bare land and harvested fields, plantations, forest, 
sugarcane farms, wetlands, and subsistence farms. 

3. Results 

Results of this investigation are presented in the form of (1) a table that summarises percentage 
compositions and percentage changes in the LULC types that were mapped from Landsat images 
(Table 3); (2) maps that show spatial distributions of these cover types (Figure 2); and (3) a graph that 
shows their percentage compositions from 1997 to 2017 (Figure 3). 

 

Figure 2. Spatial distribution of land cover types from Landsat images (1997–2017). 
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Figure 3. Percentage compositions of land cover types that were mapped from Landsat images (1997–2017). 

 

The major long term changes that were observed include (1) a substantial decrease in wetland, by 
13.68% (p-value, < 0.01), and a marginal decrease in plantations and forest, by 5.42% and 3.81%, 
respectively; (2) a substantial increase in subsistence farms and sugar cane farms, by 11.8% (p-value < 
0.0001) and 18.11% (p-value, <0.01), respectively, and a near-equal marginal increase in bare-land 
and harvested fields and grassland, by 2.55% and 2.15%, respectively; and (3) a negligible increase in 
water, by 0.11%. The most striking observations include an abrupt emergence of subsistence farms in 
2012 and a corresponding decrease in wetland areas. All cover types except subsistence farms 
exhibited periodic variations. The greatest long-term decrease (1997–2017) was in wetland aerial 
extent (Figure 3), which persistently decreased after 2008 as subsistence farms emerged and 
expanded rapidly (Figure 2). 

4. Discussion 

The main goals of this study were to (1) provide a remote sensing-based approach to quantify long-
term changes in LULC in the lower uMfolozi floodplain over a period of 20 years between 1997 and 
2017, (2) ascertain the major drivers of these changes, and (3) provide suggestions on what needs to 
be done to enhance the sustainability of this ecosystem. Eight LULC types were investigated, mapped 
and assessed, with subsistence farming only emerging after 2012 (Figure 2). Sugarcane farms, bare 
land and harvested fields, plantations and wetlands were distributed evenly over the whole study area. 
The observed contraction of wetland between 1997 and 2017 was investigated based on the “from–to” 
map-output that was obtained from the SVM classification (Figure 2). The post-classification 
comparison revealed an expansion of subsistence farms in the final period between 2012 and 2017 and 
a corresponding decrease in the wetland, with wetland areas that were present in the uMfolozi 
floodplain system between 1997 and 2008 gradually disappearing after 2012 as subsistence farmland 
increased. This observation suggests that the long-term contraction of wetland was largely the result of 
an inversely related expansion of subsistence farms. 

The major insight from this finding is that GEOBIA is capable of teasing out time-series variations in 
different LULC types at high levels of detail that surpass what is commonly achievable using traditional 
supervised classification algorithms. This is because of the technique’s ability to use spatial information 
on shape and texture to improve classification accuracy (Lu and Weng, 2007) in complex and 
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heterogeneous landscapes. An additional strength of this algorithm arises from its inherent capability to 
reduce errors caused by spatial misregistration, which pixel-based methods are incapable of handling 
(McDermid et al., 2008). This assertion is supported by findings in which GEOBIA was successfully 
used to classify Landsat images in several studies that investigated long-term changes in different 
wetland ecosystems (Ramsey III and Laine, 1997; Munyati, 2000; Baker et al., 2007; Kiage et al., 2007; 
Tağil, 2007; Carreño et al., 2008; Frohn et al., 2011; Kassawmar et al., 2011; Thomas et al., 2011; 
Jia et al., 2014a). In our investigation, the high average overall accuracy of 82.83%, K = 0.81 achieved 
by SVM (Table 3) demonstrates the ability of our methodology to accurately quantify long-term time-
series LULC changes in heterogeneous floodplain ecosystems. This information is crucial for sensitive 
wetland ecosystems, where accurate maps are required for national biodiversity assessments (NBA), 
the more so because of their widely reported deteriorating ecological conditions (Driver et al., 2012; 
Skowno et al., 2018). In South Africa, accurate characterisation of wetlands is more important than ever 
because they are ecologically vulnerable to climate change (Driver et al., 2012). Apart from providing 
ecosystem goods and services especially for rural livelihoods (Baker et al., 2006; Adekola and 
Mitchell, 2011; McCartney et al., 2011), wetlands also play an important role in moderating local 
weather conditions. 

Although the average overall accuracy was 82.83%, an overall accuracy of 88%, K = 0.86 was 
observed for 2017, further demonstrating the ability of our proposed methodology to produce higher 
levels of accuracy than the standard 85% recommended by other researchers for Landsat-based 
classifications (Anderson, 1976). Comparative studies have also demonstrated that SVM produces 
superior, or at least comparable, results for multispectral and hyperspectral image classifications 
relative to more commonly used maximum and minimum likelihood classification techniques (Pal and 
Mather, 2003; Foody and Mathur, 2004; Oommen et al., 2008; Szuster et al., 2011). Uncertainties and 
errors in change detection results are always present and often attributed to spectral characteristics 
and artefacts that affect classification overall accuracies. In this study, for example, forests, sugarcane 
farms and plantations are often easily confused due to similarities in their spectral characteristics. This 
limitation was adequately addressed by the object-oriented approach, which has demonstrated the 
ability to reduce most misclassification errors (Immitzer et al., 2012). However, our CRes Landsat data 
sets failed to detect subsistence farms in the period 1997 and 2008. This was not unexpected because 
similar findings were obtained elsewhere by A.J. Rebelo et al. (2017), exhibiting difficulties using 
historical Landsat images to produce accurate classifications of heterogeneous wetland cover types. 

Although these limitations have far-reaching implications, our goal was to quantify LULC and changes 
thereof to ascertain the major drivers of temporal variations in these cover types. The findings of our 
investigation point to a substantial 17% expansion of subsistence farms in the 5years between the 2012 
and 2017 periods and an inversely related long-term (1997-2017) decrease in the wetland area by 14% 
(Table 3); thus, it is not unreasonable to conclude that human agency has been one the major drivers 
of long-term LULC changes in this environment. 

These observations are in agreement with Nustad (2015) who reported that smallholder farmers are 
destroying unique biodiversity in this area, and other studies elsewhere that report wetlands are 
decreasing because of encroachment by various human resource-use practices, especially crop 
farming (Davidson, 2014; Gardner et al., 2015; L. Li et al., 2015). Wetlands in the study area are 
regarded as the main-stay of local people’s livelihoods, with cultivable land being one of the most 
important resources (L.-M. Rebelo et al., 2010). Their importance is not only confined to South Africa. 
They are widely acknowledged for their life-supporting services in Kenya, where their sustainability is 
being threatened by inappropriate human practices of resource use (Ajwang'Ondiek et al. 2020). This is 
a major cause of concern; approximately 62% of all wetland vegetation was lost in Uganda between 
2002 and 2014 through the conversion of wetlands to farmland (Isunju, 2016), and as much as 52% of 
South Africa’s Ga-Mampa wetland was lost to farmland between 1996 and 2004 (Troy et al., 2007). 
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Significant differences (p-value < 0.01) were observed between wetland and non-natural human-
introduced cover types including harvested fields, plantations and sugarcane. This suggests that 
sizeable proportions of wetland in the uMfolozi floodplain system are being converted extensively for 
agricultural activities. As mentioned, the area’s population has increased over the past century, with this 
increase being accompanying by a high unemployment rate (39%). By implication, the wetland aerial 
extent in the lower uMfolozi floodplain system is expected to decrease as more land is converted to 
agriculture in order to increase food production (Wood et al., 2013; Feyissa et al., 2019). The 
conversion of wetlands to cultivated land can destroy their ecological integrity by disrupting the 
hydrological cycle and other functional processes (Galbraith et al., 2005). 

Preservation of wetland ecosystems is vital for the continued provision of ecosystem services, including 
habitat for aquatic life, mitigation of floods, providing freshwater during prolonged droughts, supporting 
groundwater recharge, purifying water from different terrestrial sources, and supporting agriculture by 
providing fertile soils. However, wetlands continue to be threatened by wide-ranging anthropogenic 
activities and the adverse effects of climate change. Conserving floodplain wetlands in South Africa and 
in other areas worldwide is a formidable challenge that requires collective efforts. The challenges 
confronting their sustainability include resource over-extraction by unemployed populations and the 
negative attitude of farmers towards wetland conservation (Keys and McConnell, 2005, Millennium 
Ecosystem Assessment, 2005). 

Despite these problems, the sustainability of wetlands should be safeguarded by embracing sound 
resource-use practices. However, it is not easy to strike a balance between the conservation of 
biodiversity and the pressing needs of socio-economic development. Policies, too, aggravate this 
situation by prescribing regulation without involving local communities. This explains why in this 
wetland, there is a conflict between state-led conservation agencies and local communities, with the 
former tending to perpetuate historical tenure insecurities that deprived local communities of access to 
cultivable land. This has compelled local communities to rely on over-exploitation of the limited 
resources at their disposal. Similarly, Pimbert and Pretty (1997) and Timmer (2004) reported that the 
degradation of wetlands tends to be pronounced when the local communities have not been granted 
secure usufruct rights over the natural resources. Moreover, when few local community members hold 
legal titles to land, they show little inclination to participate in natural resource conservation initiatives 
(Pagdee et al., 2006; Rudel, 2006; Le Bel et al., 2011). Community-based wetland management is 
therefore recommended. Community involvement in such matters confers a sense of ownership and 
accountability. This is because local communities develop responsible stewardship if they are included 
in making decisions that affect their daily operations (Springer and Almeida, 2015). 

5. Conclusion and recommendations 

From the overall research findings, the following conclusions can be drawn. Land-use information for 
the lower uMfolozi from 1997 to 2017 using Landsat data could be extracted with high accuracy by 
combining the GEOBIA method and SVM. GEOBIA demonstrated its ability to yield reliable estimates 
by providing outputs with overall accuracy levels approximating 83%. The dominant change that took 
place in the study area involved the conversion of wetlands to small-scale farms. In view of this 
observation, it recommended that community-based natural resource management (CBNRM) needs to 
be carefully reconsidered and prioritised as one of the potentially viable sustainable management 
strategies. This approach would (1) give the local communities opportunities to acquire rights to natural 
resources within their environment, (2) empower them to willingly embrace sustainable resource 
practices and (3) create viable income-generating opportunities that would go a long way to enhance 
sustainability by creating employment. Overall, CBNRM would promote wetland conservation by 
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involving local communities in managing their own resources. We conclude by inviting those interested 
in the sustainability of these ecosystems to build on our initiative by making concerted efforts to fine-
tune methodologies that can be used to cost-effectively provide reliable information on the nature, 
causes and extent of long-term changes in LULC affecting these ecosystems. 
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