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Abstract5

Mixture of linear experts (MoE) model is one of the widespread statistical frameworks for modeling, classification,
and clustering of data. Built on the normality assumption of the error terms for mathematical and computational
convenience, the classical MoE model has two challenges: 1) it is sensitive to atypical observations and outliers, and
2) it might produce misleading inferential results for censored data. The aim is then to resolve these two challenges,
simultaneously, by proposing a robust MoE model for model-based clustering and discriminant censored data with
the scale-mixture of normal (SMN) class of distributions for the unobserved error terms. An analytical expectation-
maximization (EM) type algorithm is developed in order to obtain the maximum likelihood parameter estimates.
Simulation studies are carried out to examine the performance, effectiveness, and robustness of the proposed method-
ology. Finally, a real dataset is used to illustrate the superiority of the new model.

Keywords: Mixture of linear experts model, Scale-mixture of normal class of distributions, EM-type algorithm,6

Censored data7

1. Introduction8

Clusterwise or mixture of regression model (MRM) has recently been considered in statistics for model-based9

clustering. When the population is heterogeneous and contains several latent source of heterogeneity, the MRM10

builds several regression models simultaneously, to investigate the relationship between the random phenomena under11

study. The subjects are then clustered based on the estimated posterior classification probabilities. Upon the normality12

or non-normality assumption for the mixing components, various MRMs have recently been introduced for model-13

ing heterogeneous data. The classical G-component MRM (DeSarbo and Cron, 1988; Jones and McLachlan, 1992)14

specifically relies on the assumption that the conditional probability density function (pdf) of the response variable Y15

given the p-dimension explanatory vector x = (1, x1, . . . , xp−1)> ∈ Rp is16

f (y;Θ) =

G∑
j=1

π j φ(y; x>β j,σ
2
j ), (1)

where φ(·; µ, σ2) stands for the pdf of normal distribution with location and scale parameters µ and σ2, N(µ, σ2),17

β j = (β j0, . . . , β j(p−1))> is the jth component regression coefficients vector, and for θ j = (β j, σ
2
j ) the model parameters18

set isΘ =
{
θ1, . . . , θG, π1, . . . , πG−1

}
. Bear in mind that the mixing proportion with the constraint

∑G
j=1 π j = 1, is in fact19

π j = Pr(Z∗ = j), where the hidden categorical random variable Z∗ indicates from which component each subject is20

arisen. Recently, the classical MRM (1) has found appealing applications in many fields, such as business, marketing,21

and biological studies, see Jiang and Tanner (1999); Garcı́a-Escudero et al. (2010) and Mazza and Punzo (2017) to22

name a few. It has also been extended to accommodate heavy-tail and/or skew distributed data. In this regard, Liu23

and Lin (2014) proposed an MRM by replacing φ(·) in (1) with the pdf of skew-normal (SN) distribution and applied24
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it to the physiological data for illustration purposes. Hu et al. (2017) introduced an MRM by assuming that the25

components have log-concave densities and developed two EM-type (Dempster et al., 1977) algorithms to obtain the26

maximum likelihood (ML) parameter estimates. Moreover, Zeller et al. (2016) extended the mixture models based on27

the scale-mixture of SN (SMSN) class of distributions (Basso et al., 2010) into the regression context.28

Built up from the MRM formulation, the MoE model (Jacobs et al., 1991) is perhaps one of the most acknowledged29

approaches in statistics and machine learning fields. Although the MoE model and MRM share similar structure, they30

differ in many aspects. In formulation of the MoE model, it is assumed that both mixing proportions and component31

densities conditionally depend on some input covariates. More precisely, let Y ∈ R be the response variable, x ∈ Rp
32

and r = (1, r1, . . . , rq−1)> ∈ Rq are the vector of explanatory and covariate values corresponding to Y . Instead of con-33

sidering constant mixing component in model (1), the MoE model assumes that π j to be modeled as the multinomial34

logistic function of input r, and is known as a gating function. For instance, extending the MRM (1), the pdf of the35

normal-based MoE (MoE-N) is36

f (y;Θ) =

G∑
j=1

π j(r; τ)φ(y; x>β j, σ
2
j ), (2)

where for the gating parameters τ = (τ>1 , . . . , τ
>
G−1)> with τ j = (τ j0, . . . , τ j(q−1))>,37

π j(r; τ) = Pr(Z∗ = j|r) =
exp{τ>j r}

1 +
∑G−1

l=1 exp{τ>l r}
, (3)

and the model parameters set is Θ =
{
θ1, . . . , θG, τ

}
. It should be emphasized that x and r can be exactly or partially38

identical. Since the introduction of the MoE-N model, considerable amount of contributions have been produced to39

overcome its potential deficiency in analyzing skew and heavy-tail distributed data. See for instance the works by40

Nguyen and McLachlan (2016) and Chamroukhi (2016, 2017) on proposing the Laplace, Student-t and skew-t MoE41

models, respectively.42

In many practical situations, such as economic and clinical studies, medical research and epidemiological cancer43

studies, the data are collected under some imposed detection limits. It might lead to incomplete data with different44

types of interval, left and/or right-censored responses. In this regard, censored regression model with the normality45

assumption for the error terms, known as Tobit model, was constructed by Tobin (1958). Since then, the extensions of46

Tobit model have been introduced by researchers to draw robust inference from censored data. For instance, using the47

SMN class of distributions for the error terms, Garay et al. (2016, 2017) presented the nonlinear and linear censored48

regression models to overcome the problem of atypical observations. Mattos et al. (2018) also proposed censored49

linear regression model with the SMSN class of distributions to accommodate asymmetrically distributed censored50

datasets. Moreover, mixture of censored regression models based on the Student-t model and on the SMN class51

of distributions were proposed by Lachos et al. (2019) and Zeller et al. (2019) as a flexible approach for modeling52

multimodal censored data with fat tails.53

Extending the proven proficiency of the MoE model in statistical applications, the main objective of the current54

paper is to propose an MoE model based on the SMN class of distributions for censored data, hereafter referred as55

“MoE-SMN-CR model”. Due to the computational complexity, we develop an innovative EM-type algorithm to obtain56

the ML parameter estimates. The associated variance-covariance matrix of the ML estimators is also approximated57

by an information-based approach. To illustrate the computational aspects and practical performance of the proposed58

methodology, a real-data analysis and several simulation studies are presented.59

The remainder of the paper is organized as follows. Section 2 briefly reviews the SMN class of distributions.60

Model formulation and parameter estimation procedure of the MoE-SMN-CR model are presented in Section 3. Five61

simulation studies are conducted in Section 4 to verify the asymptotic properties of the ML estimates as well as to62

investigate the performance of the proposed model. The applicability of the proposed method is illustrated in Section63

5 by analyzing wage-rates dataset. Finally, we conclude the paper with a discussion and suggestions for future work64

in Section 6.65
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2. An overview on the scale-mixture of normal class of distributions66

A random variable Y follows an SMN distribution, denoted by SMN(µ, σ2, ν), if it is generated by the represen-67

tation68

Y = µ + U−1/2V, V ⊥ U, (4)

where V ∼ N(0, σ2), U (scale mixture factor) is a positive random variable with the cumulative distribution function69

(cdf) H(·; ν), and the symbol ‘⊥’ indicates independence. Referring to (4), the hierarchical representation of the SMN70

class of distributions can be written as71

Y |U = u ∼ N(µ, u−1σ2), U ∼ H(u; ν). (5)

Accordingly, the pdf of random variable Y is obtained by72

fSMN (y; µ, σ2, ν) =

∫ ∞

0
φ(y; µ, u−1σ2) dH(u; ν), y ∈ R.

In what follows, fSMN (·; ν) and FSMN (·; ν) will be used to denote the pdf and cdf of the standard SMN distribution73

(µ = 0, σ2 = 1). With different specifications of the distribution of U, many special cases of the general SMN class of74

distributions can be obtained. We focus on a few commonly used examples of the SMN class of distributions in this75

paper:76

• Normal (N) distribution: The SMN class of distributions contains the normal model as U = 1 with probability77

one.78

• Student-t (T) distribution: If U ∼ Gamma(ν/2, ν/2), where Gamma(α, β) represents the gamma distribution79

with shape and scale parameters α and β, respectively, the random variable Y then follows the Student-t distri-80

bution, Y ∼ T (µ, σ2, ν). For ν = 1 the Student-t distribution turns into the Cauchy distribution which has no81

defined mean and variance.82

• Slash (SL) distribution: Let U in (4) follows Beta(ν, 1), where Beta(a, b) signifies the beta distribution with83

parameter a and b. Then, Y distributed as a slash model, denoted by Y ∼ SL(µ, σ2, ν), with pdf84

fSL (y; µ, σ2, ν) = ν

∫ 1

0
uν−1φ(y; µ, u−1σ2) du, y ∈ R.

• Contaminated-normal (CN) distribution: Let U be a discrete random variable with pdf85

h(u; ν, γ) = νIγ(u) + (1 − ν)I1(u), ν, γ ∈ (0, 1),

where IA(·) represents the indicator function of the set A. The random variable Y in (4) then follows the86

contaminated-normal distribution, Y ∼ CN(µ, σ2, ν, γ), which has the pdf87

fCN (y; µ, σ2, ν, γ) = νφ(y; µ, γ−1σ2) + (1 − ν)φ(y; µ, σ2), y ∈ R.

Note that in the pdf of CN distribution, the parameter ν denotes the proportion of outliers (bad points) and γ is88

the contamination factor.89

More technical details and information of the SMN class of distributions, used for the calculation of some condi-90

tional expectations involved in the proposed EM-type algorithm, are provided in the Appendix A with proof in Garay91

et al. (2017). We will refer to the MoE model of censored data based on the special cases of the SMN class of distribu-92

tions as MoE-N-CR, MoE-T-CR, MoE-SL-CR and MoE-CN-CR for the normal, Student-t, slash and contaminated-93

normal cases, respectively.94
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3. The scale-mixture of normal censored mixture of linear experts model95

3.1. Model specification96

Extending the classical MoE model with normal distribution in (2), we consider the expert components formulated97

by the SMN class of distributions. Therefore, the resulting pdf of the response random vector Y = (Y1, . . . ,Yn)>, in98

which the polynomial regression and multinomial logistic model are used for the components and mixing proportions,99

can be defined as100

f (yi;Θ) =

G∑
j=1

π j(ri; τ) fSMN (yi; x>i β j, σ
2
j , ν j), i = 1, . . . , n, (6)

where xi and ri are the vector of explanatory and covariate variables corresponding to Yi, π j(·; τ) is defined in (3), and101

for θ j = (β j, σ
2
j , ν j) the model parameters set is Θ =

{
θ1, . . . , θG, τ

}
.102

In the MoE-SMN-CR model, we assume that the response vector Y is partially observed. In other words, we103

suppose some of the response variables are suffering from a type of censoring, that could be interval-, left- or right-104

censoring. Thus, let the available response variable Yi be presented as the joint variables (Wi, ρi) where Wi represents105

the uncensored reading (Wi = YOi) or interval-censoring (Wi = (ci1, ci2) for some fixed threshold points ci1, ci2) and106

ρi is the censoring indicator: ρi = 1 if ci1 ≤ Yi ≤ ci2 and ρi = 0 if Yi = YOi. Note that in this setting if ci1 = −∞ (or107

ci2 = +∞) the left-censoring (or right-censoring) is occurred and in case −∞ , ci1 < ci2 , +∞ the interval-censored108

realization is observed. We establish our methodology based on the interval-censoring scheme, however, the left- and109

right-censoring schemes are also investigated in the simulation and real-data analyses.110

The aforementioned setting leads to divide Y to the sets of observed responses and censored cases. Hence, Y can111

be viewed as the latent variable since it is partially unobserved. Under these assumptions, the log-likelihood function112

of the MoE-SMN-CR model can be written as113

`(Θ|w, ρ) =

n∑
i=1

log
G∑
j=1

π j(ri; τ)
[
σ j
−1 fSMN

(
yOi − x>i β j

σ j
; ν j

)]1−ρi [
FSMN

(
ci2 − x>i β j

σ j
; ν j

)
− FSMN

(
ci1 − x>i β j

σ j
; ν j

)]ρi

, (7)

where yOi denotes the realization of YOi.114

Due to complexity of the log-likelihood (7), there is no analytical solution to obtain the ML estimate of parameters115

and therefore a numerical search algorithm should be developed. With the embedded hierarchical representation (5),116

an innovative EM-type algorithm is developed to obtain the ML estimate for the MoE-SMN-CR model.117

3.2. EM-based maximum likelihood parameter estimation118

Starting from (6) and defining the component label vector Zi = (Zi1, . . . ,ZiG)> in such a way that the binary latent119

component-indicators Zi j = 1 if and only if Z∗i = j, we have120

Yi|Zi j = 1 ∼ SMN(x>i β j, σ
2
j , ν j), i = 1, . . . , n, j = 1, . . . ,G.

Now using (5), the hierarchical representation of the MoE-SMN-CR model is

Yi|(xi,U = ui,Zi j = 1) ∼ N(x>i β j, u−1
i σ2

j ),

Ui|Zi j = 1 ∼ H(ui; ν j),
Zi|ri ∼ M (1; π1(ri, τ), . . . , πG(ri, τ)) ,

whereM(1; ·) denotes the one trail multinomial distribution. For the realization y = (y1, . . . , yn)>, vector of censoring121

indicators ρ = (ρ1, . . . , ρn)>, and hidden values u = (u1, . . . , un)> and Z = (Z>1 , . . . , Z
>
n )>, the log-likelihood function122

for Θ associated with complete data yc = (w>, ρ>, y>,u>, Z>)>, is therefore given by123

`c(Θ|yc) ≈
n∑

i=1

G∑
j=1

Zi j

{
log π j(ri; τ) −

1
2

logσ2
j −

ui

2σ2
j

(yi − x>i β j)2 + log h(ui; ν j)
}
, (8)

where h(·; ν j) is the pdf of Ui|Zi j = 1.124
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We then develop an expectation conditional maximization either (ECME; Liu and Rubin (1994)) algorithm to125

estimate parameters of the MoE-SMN-CR model. The ECME algorithm is an extension of expectation conditional126

maximization (ECM; Meng and Rubin (1993)) that not only inherits its stable properties (e.g. monotone convergence127

and implementation simplicity) but it can also be faster than ECM. The iterative ECME algorithm replaces some CM-128

steps of the ECM with the CML-steps that maximize the corresponding constrained log-likelihood function instead.129

The ECME algorithm for ML estimation of the MoE-SMN-CR model proceeds as follows:130

• Initialization: Set the number of iteration to k = 0 and choose a relative starting point. Due to the multimodal131

log-likelihood function in the mixture and MoE models, the EM-type algorithm for obtaining parameter esti-132

mates might not give the global estimates if the initial points depart too far from the real values. Therefore, the133

choice of initialization of the EM-based algorithms constitutes an fundamental issue. Nguyen and McLachlan134

(2016) suggested the starting points for the Laplace MoE model via a modified version of the randomized initial135

assignment method (McLachlan and Peel, 2000). However, we recommend the following straightforward steps136

for obtaining the starting points of the MoE-SMN-CR model.137

(i) Partition the sample into G groups using either K-means clustering algorithm (Hartigan and Wong, 1979),138

k-medoids (Kaufman and Rousseeuw, 1990) or trim-k-means (Cuesta-Albertos et al., 1997) methods.139

(ii) To initialize τ, two strategies can be adopted. As the first and simplest strategy, one can set τ̂(0) = 0.140

We note that by using this setting, the MoE model reduces to the MRM as a special case. In the second141

strategy, the information of grouping indices obtained from (i) can be used for initializing τ. Based on the142

grouping indices, one can fit the generalized linear model to the data and compute τ̂(0).143

(iii) By utilizing the grouping indices of (i), the least squares method is applied to the jth group to obtain β̂(0)
j .144

Moreover, the standard deviation of residuals is used to initialize σ2
j .145

(iv) Since the normal model belongs to the SMN class of distributions, we adapt ν̂(0)
j corresponds to an initial146

assumption near normality. For instance, we set ν̂(0)
j = 20 in the MoE-T-CR and MoE-SL-CR models.147

• E-Step: At iteration k, the expected value of the complete-data log-likelihood function (8), known as the Q-
function, is calculated as

Q(Θ|Θ̂(k)) =

n∑
i=1

G∑
j=1

ẑ(k)
i j

log π j(ri; τ) −
1
2

logσ2
j −

1
2σ2

j

(
ûy2

(k)
i j + (x>i β j)2û(k)

i j − 2ûy(k)
i j x>i β j

)
+ Υ̂

(k)
i j

 , (9)

where ẑ(k)
i j = E(Zi j|wi, ρi, θ̂

(k)
j ), ûy2

(k)
i j = E(UiY2

i |wi, ρi, θ̂
(k)
j ), û(k)

i j = E(Ui|wi, ρi, θ̂
(k)
j ), ûy(k)

i j = E(UiYi|wi, ρi, θ̂
(k)
j ),148

and Υ̂
(k)
i j = E

(
log h(Ui; ν j)|wi, ρi, θ̂

(k)
j
)
. In what follows, we discuss about the computation of conditional expec-149

tations for both uncensored and censored cases.150

(i) For the uncensored observations, we have ρi = 0, wi = yOi, and so, û(k)
i j = E(Ui|Y = yOi, θ̂

(k)
j ), ûy(k)

i j =151

yOiû
(k)
i j , ûy2

(k)
i j = y2

Oiû
(k)
i j ,152

ẑ(k)
i j =

π j(ri; τ̂(k)) fSMN

(
yOi; x>i β̂

(k)
j , σ̂

2(k)
j , ν̂(k)

j

)
∑G

l=1 πl(ri; τ̂(k)) fSMN

(
yOi; x>i β̂

(k)
l , σ̂2(k)

l , ν̂(k)
l

) , Υ̂
(k)
i j = E

(
log h(Ui; ν j)|Y = yOi, θ̂

(k)
j
)
.

(ii) For the censored case which is ρi = 1 and wi = (ci1, ci2), we have

ẑ(k)
i j = E(Zi j|ci1 ≤ Yi ≤ ci2, θ̂

(k)
j ) =

π j(ri; τ̂(k))
[
FSMN

(
ci2−x>i β̂

(k)
j

σ̂(k)
j

; ν̂(k)
j

)
− FSMN

(
ci1−x>i β̂

(k)
j

σ̂(k)
j

; ν̂(k)
j

)]
∑G

l=1 πl(ri; τ̂(k))
[
FSMN

(
ci2−x>i β̂

(k)
l

σ̂(k)
l

; ν̂(k)
l

)
− FSMN

(
ci1−x>i β̂

(k)
l

σ̂(k)
l

; ν̂(k)
l

)] ,
û(k)

i j = E(Ui|ci1 ≤ Yi ≤ ci2, θ̂
(k)
j ), ûy2

(k)
i j = E(UiY2

i |ci1 ≤ Yi ≤ ci2, θ̂
(k)
j ),

ûy(k)
i j = E(UiYi|ci1 ≤ Yi ≤ ci2, θ̂

(k)
j ), Υ̂

(k)
i j = E

(
log h(Ui; ν j)|ci1 ≤ Yi ≤ ci2, θ̂

(k)
j
)
.
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Following Garay et al. (2017), the closed form of the conditional expectations for the particular cases of the153

SMN class of distributions are provided in Appendix A.154

For updating Θ̂(k), the CM-steps are implemented by maximizing Q-function (9) as follows:155

• CM-step 1: Calculate β̂(k)
j and σ̂2(k)

j updates as

β̂(k+1)
j =

 n∑
i=1

ẑ(k)
i j û(k)

i j xix>i

−1 n∑
i=1

ẑ(k)
i j ûy(k)

i j xi,

σ̂2(k+1)
j =

1
n j

n∑
i=1

ẑ(k)
i j

(
ûy2

(k)
i j − 2ûy(k)

i j x>i β̂
(k+1)
j + û(k)

i j

(
x>i β̂

(k+1)
j

)2
)
,

where n j =
∑n

i=1 ẑ(k)
i j .156

• CM-step 2: Following Proposition 2 of Nguyen and McLachlan (2016), the update of τ̂(k)
j can be made as157

τ̂(k+1)
j = 4

 n∑
i=1

rir>i

−1  n∑
i=1

[
ẑ(k+1)

i j − π j(ri; τ̂(k))
]

ri

 + τ̂(k)
j .

• CML-step: The update of ν̂(k)
j crucially depends on the conditional expectation Υ̂

(k)
i j which is quite complicated.158

However, we can estimate υ = (ν1, . . . , νG) through maximizing the restricted actual log-likelihood function as159

υ̂(k+1) = arg max
υ


n∑

i=1

log
G∑
j=1

π j(ri; τ̂(k+1))

 fSMN

yOi − x>i β̂
(k+1)
j

σ̂(k+1)
j

; ν j

 /σ̂(k+1)
j


1−ρi

FSMN

ci2 − x>i β̂
(k+1)
j

σ̂(k+1)
j

; ν j

 − FSMN

ci1 − x>i β̂
(k+1)
j

σ̂(k+1)
j

; ν j



ρi
 . (10)

Recommended by Lin et al. (2014) and Zeller et al. (2019), a more parsimonious model can be achieved by160

assuming the identical mixing component, i.e. ν1 = ν2 = · · · = νG = ν. This setting changes the problem161

of nontrivial high-dimension optimization into the more simple one/two dimensional search. The R function162

nlminb( ) is used to update υ in the numerical parts of the current paper.163

The above E- and M-steps are iterated until some convergence criteria are met. We terminate the algorithm when164

either the maximum number of iterations approaches l000 or the difference between two consecutive log-likelihood165

values is less than the per-specified tolerance 10−5.166

Remark 1. To facilitate the estimation of ν = (ν1, . . . , νG) for the MoE-CN-CR model in the above EM algorithm, one
can introduce an extra latent binary variable Bi such that Bi = 1 if an observation yi in group g is a bad point and
Bi = 0 otherwise. The hierarchical representation of the MoE-CN-CR model can therefore be written as

Yi|(xi,U = ui,Zi j = 1, Bi = 1) ∼ N(x>i β j, u−1
i σ2

j ),

Ui|(Zi j = 1, Bi = 1) ∼ h(ui; ν j, γ j),
Bi|(Zi j = 1) ∼ B(1, ν j),

Zi|ri ∼ M (1; π1(ri, τ), . . . , πG(ri, τ)) , (11)

where B(1, ν j) denotes the Bernoulli distribution with succeed probability ν j. Consequently, by computing the Q-167

function based on (11), the update of ν(k)
j is168

ν̂(k+1)
j =

∑n
i=1 ẑ(k)

i j b̂(k)
i j∑n

i=1 ẑ(k)
i j

,
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where

b̂(k)
i j =



ν̂(k)
j φ

(
yOi; x>i β̂

(k)
j , γ̂

−1(k)
j σ̂2(k)

j
)

ν̂(k)
j φ

(
yOi; x>i β̂

(k)
j , γ̂

−1(k)
j σ̂2(k)

j
)

+ (1 − ν̂(k)
j )φ

(
yOi; x>i β̂

(k)
j , σ̂

2(k)
j

) , for the uncensoed cases,

ν̂(k)
j

(
Φ
(
ci2; x>i β̂

(k)
j , γ̂

−1(k)
j σ̂2(k)

j
)
− Φ

(
ci1; x>i β̂

(k)
j , γ̂

−1(k)
j σ̂2(k)

j
))

FCN
(
ci2; x>i β̂

(k)
j , σ̂

2(k)
j , ν̂(k)

j , γ̂
(k)
j
)
− FCN

(
ci1; x>i β̂

(k)
j , σ̂

2(k)
j , ν̂(k)

j , γ̂
(k)
j
) , for the censoed cases.

Since there is no closed-form solution for γ̂(k+1)
j , it is computed by maximizing the constrained actual observed log-169

likelihood function (10) as a function of γ = (γ1, . . . , γG).170

3.3. Computational and operational aspects171

3.3.1. Model selection and performance assessment172

In practical model-based clustering, the number of components G is not known and should be estimated from173

the data. In this regard, one can fit a mixture model for a range of values G and choose the best one based on some174

model selection criteria. The two commonly used measures, Akaike information criterion (AIC; Akaike (1974)) and175

Bayesian information criterion (BIC; Schwarz et al. (1978)), are exploited to determine the most plausible value of G.176

The AIC and BIC are defined as177

AIC = 2m − 2`max and BIC = m ln n − 2`max,

where `max is the maximized (observed) log-likelihood, and m the number of free parameters in the model. Although178

the smallest value of AIC or BIC results in the most favored model, they do not necessarily correspond to optimal179

clustering. For the sake of classification performance, the misclassification error rate (MCR), Jaccard coefficient180

index (JCI; Niwattanakul et al. (2013)), Rand index (RI; Rand (1971)) and adjusted Rand index (ARI; Hubert and181

Arabie (1985)) are used when the true group labels are known. Noted that the lower MCR (close to zero) or a higher182

RI and JCI (tend to one) indicates a much similarity between the true labels and the cluster labels obtained by the183

candidate model. An ARI of one also corresponds to perfect agreement, and the expected value of the ARI under184

random classification is zero. Negative ARI values are possible and indicate classification results that are worse, in185

some sense, than would be expected by random classification.186

3.3.2. Note on computing conditional expectations187

As expressed in Appendix A, the conditional expectations of the MoE-SMN-CR sub-models critically depend on188

the hazard function or the cdf of SMN model. For instance, in the left-censoring scheme, ûy(k)
i j for the MoE-N-CR189

model depends on the hazard function of normal distribution as HF(x) = φ (x)
/
Φ (x). The computation of this hazard190

function for very small values of x (say x < −35 as encountered many times in the simulation studies) in R may lead191

to “NaN”. To overcome this issue, Filho and Garay (2017) in the R package “TSMN” and Zeller et al. (2019) in the192

R package “CensMixReg” set the denominator to the small machine value (the R command “.Machine$double.xmin”193

was used). However, this setting may lead to negative value for σ̂2 as we found. We recommend to use a remedy194

for obtaining the exact values of HF(x). In our computation, we have used log-transformation via the following R195

command196

HF.x = exp
(
dnorm(x, log = T ) − pnorm(x, log.p = T )

)
.

Figure B.8 in the Appendix B highlights the difference of three ways of the HF computation in R. What is197

observed from Figure B.8 is actually the difference between the computation of HF(x) function for x < −35. Similar198

trick can be applied for the right- and interval-censoring schemes.199

3.3.3. Standard error estimates200

For estimating the standard error of the ML estimators, we follow Meilijson (1989) to exploit an information-201

based method for calculating the asymptotic covariance matrix of the ML estimates. Let `ci be the complete-data202
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log-likelihood contributed from the ith observation, viz.203

`ci = `c(Θ|w>i , ρ
>
i , y

>
i ,u

>
i , Z

>
i ) =

G∑
j=1

Zi j

log π j(ri; τ) −
1
2

logσ2
j −

ui

2σ2
j

(yi − x>i β j)2 + log h(ui; ν j)

 .
Then, the Fisher information matrix can be approximated by

Io(Θ̂|y) =

n∑
i=1

ŝi ŝ>i ,

where ŝi = E
(∂`ci

∂Θ

∣∣∣∣wi, ρi, Θ̂
)

is the individual score vector corresponding to the ith observation. The elements of

individual score vector (ŝ>i,τ1
, . . . , ŝ>i,τG−1

ŝ>i,β1
, . . . , ŝ>i,βG

, ŝi,σ2
1
, . . . , ŝi,σ2

G
) have the explicit forms as

ŝi,τ j = E
(∂`ci

∂τ j

∣∣∣∣wi, ρi, Θ̂
)

=
(
ẑi j − π j(ri; τ̂)

)
ri,

ŝi,β j = E
(∂`ci

∂β j

∣∣∣∣wi, ρi, Θ̂
)

=
ẑi j

σ̂2
j

(
ûyi jxi − ûi jx>i β̂ jxi

)
,

ŝi,σ2
j
= E

( ∂`ci

∂σ2
j

∣∣∣∣wi, ρi, Θ̂
)

= −
ẑi j

2σ̂4
j

(
σ̂2

j − ûy2
i j − ûi j(x>i β̂ j)2 + 2ûyi jx

>
i β̂ j

)
.

As a result, the variance of the ML estimates can be consistently estimated from the diagonal of the inverse of204

Io(Θ̂|y) under some regularity conditions. We note that the standard error of ν̂ critically depends on the calculation205

of E
(

log(Ui)|wi, ρi, Θ̂
)

which is a computational challenge. It could be mentioned that the inverse of Io(Θ̂|y) is not206

always available. One can refer to Yu et al. (2021) to find an innovative interpolation procedure based on the cubic207

spline interpolation to directly estimate the asymptotic variance-covariance matrix of the ML estimates obtained by208

the EM algorithm.209

4. Monte-Carlo simulation studies210

In this section, five Monte-Carlo simulation studies are conducted in order to verify the asymptotic properties of211

the ML estimates, to assess the fitting and clustering performance of the model, and to check the robustness of the212

proposed model in dealing with highly peaked and heavily tailed data as well as its sensitivity in presence of outliers.213

4.1. Data generation214

Note that one of the simplest and straightforward ways for generating interval-censored data is to define the random215

thresholds as Ci1 = Yi−U(1)
i and Ci2 = Yi +U(2)

i such that the non-informative condition (1.2) of Gómez et al. (2009) is216

met. Here the continuous variables U(1)
i and U(2)

i are independently distributed byU(0, c), where the notationU(a, b)217

stands for the uniform distribution on interval (a, b). Recommended by Gómez et al. (2009), a way to go around the218

non-informative condition is to construct Ci1 = max(Yi−U(1)
i ,Yi +U(2)

i −c) and Ci2 = min(Yi +U(2)
i ,Yi−U(1)

i +c) with219

c = 1. In short, suppose we generate n realizations from model (6), y = (y1, . . . , yn)>. To have a p% interval-censored220

data, the following steps are used in our simulation studies.221

S 1) Calculate the number of censored samples NC = [n × p] + 1, where [a] denotes the greatest integer less
222
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than or equal to a. Then, generate an index set, IND, as a sample of size NC from the set {1, 2, · · · , n}
without replacement. Use sample( ) function in R for this purpose.

S 2) For i = 1, . . . , n, if i ∈ IND, then

S 21) Generate two independent random samples, u(1)
i and u(2)

i , fromU(0, c).

S 22) Set the thresholds to ci1 = max(yi − u(1)
i , yi + u(2)

i − c), ci2 = min(yi + u(2)
i , yi − u(1)

i + c).

223

4.2. Asymptotic properties of the ML estimates224

In this section, a simulation study is performed to examine the asymptotic properties of the ML parameter esti-225

mates obtained through the ECME algorithm. We simulate 500 Monte-Carlo samples from the special cases of the226

MoE-SMN-CR model with G = 2. The presumed parameters are227

β1 = (0,−1,−2,−3)>, β2 = (−1, 1, 2, 3)>, (σ2
1, σ

2
2) = (1, 2), τ1 = (0.7, 1, 2)>,

ν1 = ν2 = 3 for the T and SL distributions, and (ν1, γ1) = (ν2, γ2) = (0.3, 0.3) for the CN model. For each sample size228

n = 50, 100, 500, 2000, we set up xi = (1, xi1, xi2, xi3)>, such that xi1, xi2, and xi3 are generated fromU(1, 5),U(−2, 2),229

andU(1, 4), respectively. Moreover by generating ri1 and ri2 fromU(−2, 1) andU(−1, 1), the gating covariate is set230

to ri = (1, ri1, ri2)>. By imposing three levels of right-censoring (7.5%, 15%, 30%) on the data, the ECME algorithm231

described in Section 3.2 is preformed to carry out the ML parameter estimates. To investigate parameter recovery, we232

compute the bias and the mean squared error (MSE):233

BIAS(θ̂ j) =
1

500

500∑
l=1

(θ̂(l)
j − θtrue) and MSE(θ̂ j) =

1
500

500∑
l=1

(θ̂(l)
j − θtrue)2,

where θ̂(l)
j denotes the estimate of a specific parameter θ j at the lth replication.234

Figures 1 and 2 display the bias and MSE plots of the parameter estimates of the MoE-N-CR, MoE-T-CR, MoE-235

SL-CR and MoE-CN-CR models for the censoring levels 7.5% and 30%. To shorten the length of the paper, plots of236

the 15% censoring level are moved to Appendix C. It can be observed that β̂ js have very small (around zero) BIAS237

for all sample sizes. Moreover, as n increases the MSE of β̂ js tend to zero. It is also noticeable that the influence238

of the censoring on the bias and variability of the σ2
j and ν j estimates increases as the censorship rate increases for239

all models. However, as can be expected, the bias and variability of σ2
j and ν j tend to decrease toward zero by240

increasing the sample size. The plots in Figure 2 furthermore show the descending trend in the bias and MSE of the241

gating function parameter estimates as a function of the sample size. These results indicate that the model parameter242

estimates via the ECME algorithm are empirically consistent.243

4.3. Model selection performance via information criteria244

One of the challenges in the MoE models is to choose the optimal number of experts G. In dealing with this245

challenge, we conduct a simulation study to compare the ability of the proposed MoE-SMN-CR sub-models to select246

the accurate G. We generate 100 samples of size n = 500 from a three-component MoE-SMN-CR model (6), where247

the mixing variable U is followed by a generalized inverse Gaussian (GIG) distribution with parameter ϑ = (κ, χ, ψ),248

denoted by the MoE-SGIG-CR model. Details of the GIG distribution and its new data-generating algorithm can be249

found in Hrmann and Leydold (2013). It is assumed that the data is left-censored with one of the levels 7.5%, 15%250

or 30%, xi = ri = (1, xi1)> such that xi1 is simulated from U(−2, 2), β1 = (−4, 4)>, β2 = (0,−2)>, β3 = (0, 4)>,251

σ2
1 = σ2

2 = σ2
3 = 0.1, τ1 = (0, 13)>, τ2 = (2, 9)>, ϑ1 = (−0.5, 1, 2), ϑ2 = (0.5, 1, 2), and ϑ3 = (−0.5, 2, 1). An example252

of generated samples with and without censored cases is shown in Figure 3.253

In this simulation study, it is assumed that the number of mixture components G is unknown. We therefore fit the254

MoE-N-CR, MoE-T-CR, MoE-SL-CR and MoE-CN-CR models to the generated data with G ranging from 1 to 5 in255

each replication. The detailed numerical results including the average values of CPU running time (CPU T. in minute256

to fit an MoE-SMN-CR model for all G = 1, . . . , 5), AIC and BIC together with the rate of true class identification257
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Figure 1: The BIAS and MSE plots of β j and σ2
j estimates for the MoE-SMN-CR model (censoring levels 7.5% and 30%).
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Figure 2: The BIAS and MSE plots of τ j, ν2
j and γ j estimates for the MoE-SMN-CR model (censoring levels 7.5% and 30%).
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Figure 3: Simulated MoE-SGIG-CR data. Left panel: data without any censored observation. Right panel: data with 15% left-censored observations
denoted by 4. Dash lines represent the true experts.

(RC; the mean of the number of replications in which the model with G = 3 is outperformed) are reported in Table258

1. As a rational basis for choosing the most plausible model, Table 1 is also reported the frequencies (in parentheses)259

supported by the AIC and BIC.260

Results depicted in Table 1 suggest that the BIC is more reliable than the AIC for model selection purpose. Based261

on the RC measure, it can be observed that the MoE-T-CR, MoE-SL-CR and MoE-CN-CR models perform better262

than the MoE-N-CR model in identifying the number of components since the data are generated from a heavy-tailed263

distribution. For G = 3, the frequencies of plausible model in Table 1 show that the MoE-T-CR and MoE-SL-CR264

models outperform the other MoE models to fit to the data. In Figure 4, we plot the curve of the estimated experts to a265

dataset, with 15% censoring level, in which all models suggest G = 3 based on the BIC. It could clearly be observed266

that the MoE-T-CR model fit the data better than the other models.267
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Table 1: Simulation results, based on 100 replications, for performance comparison of the MoE-SMN-CR sub-models to the generated data from
the MoE-SGIG-CR model.

G = 1 G = 2 G = 3 G = 4 G = 5 RC
Cens. Level Model AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC CPU T.
7.5% MoE-N-CR 1959.914 1972.558 1199.770 1233.487 937.685 992.475 918.283 994.146 929.686 1026.622 0.39 0.73 1.277

(4) (16) (3) (7) (9) (16) (25) (54) (30) (67)
MoE-T-CR 1944.642 1961.501 1031.442 1073.588 915.670 983.104 882.016 974.737 893.425 1011.434 0.58 0.83 4.016

(46) (48) (84) (85) (64) (60) (60) (34) (50) (25)
MoE-SL-CR 1945.130 1961.988 1048.648 1090.795 895.996 963.430 883.740 976.462 903.997 1022.006 0.61 0.84 8.662

(33) (34) (4) (2) (20) (18) (10) (9) (11) (6)
MoE-CN-CR 1946.769 1967.842 1094.680 1145.256 931.721 1011.798 910.684 1020.264 913.511 1052.592 0.58 0.77 3.537

(17) (2) (9) (6) (7) (6) (5) (3) (8) (2)

15% MoE-N-CR 1950.180 1962.310 1201.584 1231.051 954.333 1007.388 939.155 1011.253 931.957 1027.453 0.35 0.59 1.947
(8) (29) (1) (4) (6) (14) (22) (43) (26) (54)

MoE-T-CR 1936.854 1953.712 1037.712 1079.858 892.430 959.864 893.762 986.483 897.911 1015.920 0.59 0.80 5.783
(46) (42) (89) (89) (70) (66) (61) (46) (56) (38)

MoE-SL-CR 1937.009 1953.867 1076.567 1118.713 908.995 976.428 905.568 998.289 911.626 1029.635 0.62 0.78 9.208
(26) (21) (6) (6) (19) (17) (12) (9) (10) (5)

MoE-CN-CR 1938.737 1959.810 1136.442 1187.017 962.042 1042.120 938.145 1047.725 918.808 1057.890 0.40 0.70 4.267
(20) (8) (4) (1) (5) (3) (5) (2) (8) (3)

30% MoE-N-CR 1947.912 1960.556 1164.255 1197.972 886.857 941.647 879.832 955.695 867.216 964.152 0.35 0.78 2.566
(0) (6) (3) (7) (8) (12) (13) (34) (20) (47)

MoE-T-CR 1924.194 1941.052 1018.596 1060.742 823.155 890.588 814.159 906.880 810.957 928.966 0.49 0.85 6.124
(50) (47) (87) (90) (71) (69) (65) (56) (61) (44)

MoE-SL-CR 1924.250 1941.109 1044.162 1086.308 838.302 905.735 833.820 926.542 840.034 958.043 0.54 0.90 10.016
(39) (40) (2) (2) (19) (17) (19) (10) (12) (7)

MoE-CN-CR 1927.552 1948.625 1089.598 1140.173 876.187 956.264 871.465 981.045 866.797 1005.879 0.55 0.85 5.890
(11) (7) (8) (1) (2) (2) (3) (0) (7) (2)
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Figure 4: The estimated Experts curves of the special cases of the MoE-SMN-CR model for the MoE-SGIG-CR simulated data with 15% left-
censoring.

4.4. Performance in dealing with the highly peaked and thick-tailed data268

In this simulation study, we simulate data with n = 100, 500 and 2000 observations from a three-component MoE-269

SMN-CR model via representation (4) under two generating scenarios of U. The first scenario (S1) is conducted by270

assuming U−1 ∼ E(0.5), the exponential distribution with parameter λ = 0.5, whereas the second one (S2) considers271

U ∼ BS(α, 1), the Birnbaum-Saunders distribution (Birnbaum and Saunders, 1969) with parameter α and β = 1. Bear272

in mind that the former scenario generates data from Laplace distribution which is known as a highly peaked model273

and the latter scenario provides a heavier tail model than the normal distribution (Naderi et al., 2017, 2019). The274

Laplace and BS censored MoE models, referred as the MoE-SLap-CR and MoE-SBS-CR, are not considered in this275

paper since their conditional expectations involved in the ECME algorithm do not exist.276

In each replication of 200 trials, the interval-censored data, with level 7.5%, 15% or 30%, are generated from the277

MoE-SLap-CR and MoE-SBS-CR models with G = 3, and the presumed parameter values θ j = (β j, σ
2
j , ν j), j =278

1, 2, 3, where β1 = (−2,−1,−2,−3)>, β2 = (0.5, 1, 2, 3)>, β3 = (2, 1, 3, 5)>, (σ2
1, σ

2
2, σ

2
3) = (1, 3, 5), τ1 = (2, 10)>,279

τ2 = (0.7, 10)> and (α1, α2, α3) = (3, 1, 2) for the MoE-SBS-CR model. For this purpose, we also set up xi =280
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Table 2: The average of AIC, BIC, MCR and AIR, over 200 replications, by fitting special cases of the MoE-SMN-CR model to the generated data
under S1 scenario.

Model→ MoE-N-CR MoE-T-CR MoE-SL-CR MoE-CN-CR
n ↓ Measure 7.5% 15% 30% 7.5% 15% 30% 7.5% 15% 30% 7.5% 15% 30%

AIC 496.030 505.090 514.104 485.298 496.103 497.694 494.472 503.898 506.189 502.770 511.464 514.687
BIC 545.528 554.588 563.602 542.612 553.417 555.008 551.786 561.212 563.503 567.901 576.594 579.817

100 MCR 0.165 0.192 0.222 0.175 0.185 0.225 0.165 0.178 0.216 0.158 0.175 0.213
ARI 0.618 0.576 0.499 0.598 0.584 0.497 0.617 0.594 0.506 0.630 0.604 0.517
JCI 0.632 0.602 0.551 0.619 0.608 0.548 0.630 0.616 0.553 0.641 0.621 0.560

CPU T. 0.021 0.019 0.007 0.420 0.212 0.114 2.776 2.724 2.351 0.184 0.070 0.026

AIC 2370.929 2425.217 2618.009 2330.694 2369.694 2531.162 2338.787 2383.382 2554.371 2335.274 2378.907 2545.153
BIC 2451.006 2505.295 2698.086 2423.415 2462.416 2623.884 2431.509 2476.104 2647.092 2440.640 2484.272 2650.518

500 MCR 0.162 0.167 0.214 0.153 0.163 0.201 0.154 0.158 0.186 0.155 0.157 0.187
ARI 0.614 0.616 0.572 0.628 0.617 0.577 0.627 0.624 0.598 0.626 0.629 0.596
JCI 0.630 0.634 0.597 0.642 0.635 0.601 0.642 0.641 0.616 0.639 0.642 0.612

CPU T. 0.105 0.077 0.096 0.570 0.447 0.496 5.013 5.887 12.063 0.248 0.070 0.058

AIC 9397.490 9559.804 10548.390 9220.558 9278.635 10085.960 9255.169 9325.645 10221.340 9235.637 9310.615 10157.243
BIC 9503.907 9666.221 10654.800 9343.778 9401.854 10209.180 9378.389 9448.865 10344.560 9370.060 9445.036 10291.67

2000 MCR 0.154 0.167 0.240 0.147 0.159 0.222 0.147 0.159 0.213 0.146 0.154 0.202
ARI 0.634 0.614 0.521 0.644 0.621 0.530 0.645 0.623 0.541 0.647 0.623 .556
JCI 0.645 .0632 0.559 0.654 .0637 0.564 0.656 0.641 0.571 0.656 0.644 0.580

CPU T. 1.436 1.189 1.279 3.477 2.988 2.855 19.478 18.354 17.189 1.873 1.434 1.363

Table 3: The average of AIC, BIC, MCR and AIR, over 200 replications, by fitting special cases of the MoE-SMN-CR model to the generated data
under S2 scenario.

Model→ MoE-N-CR MoE-T-CR MoE-SL-CR MoE-CN-CR
n ↓ Measure 7.5% 15% 30% 7.5% 15% 30% 7.5% 15% 30% 7.5% 15% 30%

AIC 522.443 542.212 556.691 498.602 514.384 533.806 508.967 525.134 544.353 502.185 521.979 538.774
BIC 571.941 591.710 606.189 555.916 571.698 591.121 566.280 582.448 601.666 567.315 587.108 603.903

100 MCR 0.235 0.248 0.263 0.183 0.190 0.209 0.188 0.193 0.211 0.190 0.197 0.214
ARI 0.498 0.472 0.448 0.589 0.571 0.541 0.584 0.563 0.539 0.581 0.557 0.535
JCI 0.518 0.501 0.493 0.627 0.599 0.572 0.618 0.586 0.577 0.605 0.572 0.561

CPU T. 0.032 0.015 0.011 0.505 0.278 0.103 4.544 4.313 2.563 0.168 0.096 0.023

AIC 2561.848 2564.510 2665.281 2432.404 2432.566 2503.707 2455.665 2464.471 2551.097 2490.907 2502.043 2799.294
BIC 2641.925 2644.587 2745.358 2525.125 2525.288 2596.428 2548.386 2557.192 2643.818 2596.273 2607.408 2904.659

500 MCR 0.197 0.207 0.217 0.162 0.172 0.187 0.172 0.179 0.190 0.176 0.186 0.201
ARI 0.588 0.553 0.533 0.636 0.602 0.574 0.624 0.585 0.563 0.618 0.574 0.545
JCI 0.604 0.583 0.577 0.643 0.622 0.601 0.633 0.612 0.587 0.627 0.596 0.569

CPU T. 0.172 0.110 0.194 0.850 0.542 0.967 12.179 9.570 14.585 0.284 0.145 0.386

AIC 10056.300 10424.278 10954.970 9576.709 9829.808 10326.340 9646.046 9956.371 10514.060 9654.003 9976.371 10527.060
BIC 10162.717 10530.695 11061.380 9699.929 9953.028 10449.560 9769.266 10079.591 10637.280 9794.025 10110.791 10661.420

2000 MCR 0.214 0.223 0.255 0.171 0.174 0.216 0.189 0.178 0.218 0.171 0.181 0.219
ARI 0.556 0.535 0.513 0.613 0.601 0.569 0.592 0.576 0.533 0.601 0.583 0.550
JCI 0.578 0.560 0.553 0.644 0.619 0.598 0.607 0.596 0.563 0.626 0.603 0.569

CPU T. 3.834 2.555 1.446 6.327 4.868 2.219 16.068 14.826 13.642 5.576 4.521 2.079

(1, xi1, xi2, xi3)>, such that xi1, xi2, and xi3 are generated from U(1, 5), U(0, 1), and U(−2,−1), respectively, and281

ri = (1, ri1)> where ri1 is generated fromU(−1, 1).282

We compare the performance of the three-component MoE-N-CR, MoE-T-CR, MoE-SL-CR, and MoE-CN-CR283

models in terms of model selection indices (AIC and BIC) as well as clustering agreement measures (MCR, JCI, and284

ARI). Tables 2 and 3 present the average values of AIC, BIC, MCR, JCI, ARI, and CPU running time (in minute), over285

all 200 replications for the S1 and S2 scenarios of simulation, respectively. Results depicted in these tables reveal that286

the MoE-T-CR model outperforms the others in terms of AIC and BIC. Although the clustering performance of all287

models are very closed to each others, as expected from the MoE structure, the MoE-T-CR and MoE-CN-CR models288

provide a slight improvement in the MCR, JCI and AIR over the MoE-N-CR and MoE-SL-CR models.289

4.5. Sensitivity analysis in presence of outliers290

This simulation study aims at investigating the robustness of estimating MoE-SMN-CR sub-models in which some291

outliers are introduced into the simulated data. Each of the three models MoE-SLap-CR, MoE-SBS-CR and MoE-292

SGIG-CR is considered for data generation. Following Nguyen and McLachlan (2016), we set xi = ri = (1, xi1)>293

where xi1 is generated fromU(−1, 1), β1 = (0, 1)>, β2 = (0,−1)>, σ2
1 = σ2

2 = 0.01, τ1 = (0, 10)>, ϑ1 = (−0.5, 1, 0.2),294

ϑ2 = (0.5, 1, 0.2) for the MoE-SGIG-CR model, and (α1, α2) = (0.5, 1) for the MoE-SBS-CR model. We assume295
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Figure 5: Scatterplots of the simulated data with 7.5% left-censoring (4) generated from the MoE-SLap-CR, MoE-SBS-CR and MoE-SGIG-CR
models and containing 6% outliers (green ◦). Dash lines represent the true experts.

Table 4: Simulation results for assessing the robustness of the proposed MoE model to outliers under various censoring levels and outliers percent-
ages.

Cens. Level→ 7.5% 30%
True model Fitted model 0% 2% 4% 6% 0% 2% 4% 6%

MoE-N-CR 0.0347 0.0948 0.1418 0.1897 0.1029 0.1626 0.2357 0.2776
MoE-SGIG-CR MoE-T-CR 0.0297 0.0855 0.1195 0.1623 0.0698 0.1375 0.1857 0.2068

MoE-SL-CR 0.0300 0.0856 0.1201 0.1642 0.0733 0.1392 0.1891 0.2161
MoE-CN-CR 0.0334 0.0865 0.1232 0.1692 0.0928 0.1379 0.2013 0.2481

MoE-N-CR 0.0385 0.0979 0.1436 0.1936 0.1061 0.1657 0.2338 0.2788
MoE-SBS-CR MoE-T-CR 0.0342 0.0885 0.1226 0.1654 0.0735 0.1416 0.1918 0.2292

MoE-SL-CR 0.0344 0.0889 0.1230 0.1662 0.0789 0.1437 0.1932 0.2284
MoE-CN-CR 0.0375 0.0897 0.1260 0.1729 0.0981 0.1427 0.2076 0.2507

MoE-N-CR 0.0451 0.1050 0.1512 0.1978 0.1142 0.1772 0.2401 0.2892
MoE-SLap-CR MoE-T-CR 0.0406 0.0950 0.1287 0.1712 0.0827 0.1519 0.1979 0.2289

MoE-SL-CR 0.0407 0.0953 0.1290 0.1719 0.0886 0.1548 0.2010 0.2394
MoE-CN-CR 0.0437 0.0963 0.1329 0.1779 0.1032 0.1539 0.2165 0.2562

left-censoring scheme with levels 7.5% and 30%, and sample size 500. An example of simulated samples with left-296

censoring level 7.5% from the MoE-SLap-CR, MoE-SBS-CR and MoE-SGIG-CR models is shown in Figure 5. Plots297

in Figure 5 show that the generated responses are usually greater that -1.6. Apart from the main generated (censored298

and uncensored) samples, we also add class of outliers with varying probability c ranging from 0% to 6%. To do so,299

we set r = x where the explanatory variable x is simulated from U(−1, 1). Moreover, the corresponding response y300

for all generated x is set to the value -2 (Nguyen and McLachlan, 2016). The green circles in Figures 5 and 6 show301

the 6% outliers added to the main generated samples. In each trial of 500 replications, the MoE-N-CR, MoE-T-CR,302

MoE-CN-CR, and MoE-SL-CR models are fitted to the generated data. Figure 6 shows an example fitted MoE curves303

to the data generated from the MoE-SLap-CR, MoE-SBS-CR and MoE-SGIG-CR models. It can obviously be seen304

that the heavy-tailed models provide better platforms for describing the data than the MoE-N-CR model.305

To assess the impact of the outliers on the parameter estimates and on the quality of the results, in each 500306

replication, the mean square error between the true regression mean function and the estimated one is calculated as307

MSE =
1

500

500∑
i=1

(
EΘ̂(xi, ri) − EΘtrue (xi, ri)

)2
,

where EΘ(xi, ri) =
∑G

j=1 π j(ri; τ)x>i β j evaluated at the true and estimated parameters. Table 4 shows, for each of the308

four MoE models, the average of MSE for various percentage of outliers and censoring levels in the data. First, one309

can see that the MSE tends towered zero as the level of censoring and percentage of outliers approach zeros for all310

cases of the MoE-SMN-CR model. Since the three considered scenarios generate fat-tailed data, it can be observed311

that without outliers (c = 0%) the error of the MoE-N-CR model is greater than those of the other MoE models,312

reflecting its lack of robustness. Upon inspection of Table 4, one can conclude that by adding outliers to the data, the313
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Figure 6: Scatter plots of the artificial data with 7.5% left-censoring (4) generated from the MoE-SLap-CR, MoE-SBS-CR and MoE-SGIG-CR
models and containing 6% outliers (green ◦).

MoE-T-CR (and the MoE-SL-CR in the second order) model clearly outperforms others for all situations. It highlights314

that the MoE-T-CR model is much more robust to outliers under these data generating scenarios.315

4.6. Classification evaluation316

As recommended by the Associate Editor and reviewers, the last simulation investigates the benefits of using the317

gating function in the proposed MoE-SMN-CR model for the classification purposes. To do so, we compare the318

clustering performance of our proposed model with the mixture of censored linear regression models based on the319

SMN class of distributions (MRM-SMN-CR), proposed by (Zeller et al., 2019). Hereafter, we will denote the mixture320

of censored linear regression models based on the normal, Student-t, slash and contaminated-normal distributions,321

respectively by MRM-N-CR, MRM-T-CR, MRM-SL-CR and MRM-CN-CR. Following Zeller et al. (2016) and Yang322

et al. (2020), we generate interval-censored samples of size 500 from a MoE-T-CR model with level 7.5%, 15% or323

30% and parameter values324

β1 = (0,−1,−2,−3)>, β2 = (−1, 1, 2, 3)>, β3 = (0,−2, 1, 3)>, τ1 = (0.7, 1, 6)>, τ2 = (1, 0.9, 10)>

(σ2
1, σ

2
2, σ

2
3) = (1, 2, 4), and (ν1, ν2, ν3) = (2, 3, 5). For xi = (1, xi1, xi2, xi3)> and ri = (1, ri1, ri2)>, we generate xi1, xi2325

and xi3 fromU(1, 5),U(−2, 2), andU(1, 4), respectively, as well as ri1 formU(−2, 1) and ri2 fromU(−1, 1).326

For the sake of clustering comparison, we compute the right number of allocations and MCR of the three-327

component MoE-SMN-CR and MRM-SMN-CR sub-models for each sample. Table 5 depicts the mean of right328

allocations (MRA) with its standard deviation (SDRA), the avrage of MCR, and CPU time over 100 replications. It329

can be observed that the heavy-tailed MoE models have greater MRA and smaller MCR and SDRA which confirms330

that the MoE-T-CR, MoE-SL-CR and MoE-SL-CR models provide improvement in the right clustering. Moreover,331

Table 5 reports the percentages that the true MoE-T-CR model is chosen in terms of right allocation in comparison332

with the other fitted models. As can be expected, the MRA significantly favor true model against the MRM-SMN-CR.333

5. Real data analysis334

This section considers the wage rates dataset, previously analyzed by Mroz (1987); Caudill (2012) and Karlsson335

and Laitila (2014), for illustrative purposes of the developed novel MoE-SMN-CR model. This dataset contains 753336

observed wage rates (hours of working outside the home) of married white women between the ages of 30 and 60 in337

1975, of whom 325 have zero hours working. It means that 43.16% wives did not work in 1975 and can therefore338

be treated as the left-censored subjects at zero. Recently, Zeller et al. (2019) reanalyzed the wage-rates dataset in339

order to illustrate the performance of the MRM-SMN-CR. By considering the wife’s annual work hours outside home340

scaled by 1000 as the response variable (y), and the explanatory variables including (x1) the wife’s education in341

15



Table 5: Simulation results, based on 100 replications, for assessing the advantages of using gating function in clustering data when they are
generated from the MoE-T-CR model. Percentages that the true model is chosen vs other models are presented in parentheses.

MRA SDRA MCR CPU T.
Fitted model 7.5% 15% 30% 7.5% 15% 30% 7.5% 15% 30% 7.5% 15% 30%
MRM-N-CR 410.520 (100) 379.171 (100) 323.700 (100) 19.896 27.371 49.456 0.177 0.242 0.339 0.084 0.060 0.087
MRM-T-CR 417.560 (100) 388.060 (100) 345.000 (100) 13.021 17.756 22.813 0.165 0.227 0.314 0.285 0.184 0.198

MRM-SL-CR 412.770 (100) 383.090 (100) 328.567 (100) 16.028 18.066 24.582 0.174 0.234 0.331 6.915 7.214 11.595
MRM-CN-CR 411.960 (100) 382.350 (100) 329.900 (100) 14.713 21.087 18.746 0.169 0.236 0.333 0.309 0.325 0.362

MoE-N-CR 461.290 (86) 439.790 (89) 407.333 (89) 17.290 25.661 38.462 0.077 0.120 0.182 0.799 0.412 0.178
MoE-T-CR 476.350 (–) 463.890 (–) 432.800 (–) 10.197 15.733 20.671 0.050 0.078 0.134 1.191 0.916 0.651

MoE-SL-CR 469.180 (80) 459.660 (82) 426.767 (78) 10.984 16.404 29.619 0.062 0.085 0.146 10.163 7.269 15.145
MoE-CN-CR 465.637 (83) 447.460 (85) 420.600 (84) 11.043 15.575 29.557 0.069 0.102 0.153 1.269 1.093 0.893
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Figure 7: The histogram of the response variable y overlaid with its Kernel density estimate.

years, (x2) the wife’s age, (x3) the wife’s previous labor market experience and (x4) the wife’s previous labor market342

experience squared, Caudill (2012); Karlsson and Laitila (2014) and Zeller et al. (2019) concluded that a mixture of343

two-component linear regression censored model provides an appropriate platform for analyzing this dataset. Figure344

7 shows the histograms of y overlaid with the estimated kernel density curve. The bimodality of the data and the345

suitability of the two-component mixture model to fit the data can be observed. It could be mentioned from the346

histogram that the data are heavily right-tailed distributed.347

The mixture modeling allows clustering of the data in terms of the estimated posterior classification probability,348

ẑi j, that a single point belongs to a given group. Although the previous works on the wage-rates dataset focused on349

the aforementioned explanatory variables and showed that only these variables have significant effects on y, there are350

eleven measures that could provide more information in investigating the complex relationship of random phenomena351

under study. One of those variables that we will use for clustering purposes is the living status, labeled as “city”, that352

takes 1 for living in the city and 0 otherwise. Assuming “city” as the group indicator, one can obtain ẑi j, and can353

therefore compute the clustering criteria MCR, RI, ARI and JCI of the MRMs proposed by Zeller et al. (2019). In this354

regard, the posterior probabilities of the two-component MRM-N-CR, MRM-T-CR, MRM-SL-CR and MRM-CN-CR355

are computed by fitting them to the considered data. It is observed that all of the models proposed by Zeller et al.356

(2019) assign data points to one group.357

As the advantages of the MoE model, it is possible for the investigator to choose some covariates for the gating358

function. In analyzing wage-rates data, we consider x = (1, x1, x2, x3, x4)> and r = (1, r1, r2, x2)> for gating function,359

where (r1) is the unemployment rate in county of residence and (r2) is the number of kids less than 6 years old in the360

household. We note that the covariates of the gating function can be the same as x, however by considering various361

combinations of the available explanatory variables, we observe that these three variables provide a better clustering362

performance. An interesting open issue for future work could be the variable selection problem for both x and r in the363

MoE models.364

By fitting the MoE-N-CR, MoE-T-CR, MoE-SL-CR, and MoE-CN-CR models to this dataset for G = 1, . . . , 4,365

the two-component MoE model has been selected based on the BIC. It should be noted that our results are not366

directly comparable with those obtained by Karlsson and Laitila (2014) since they imposed some restrictions on β for367
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Table 6: ML estimates with corresponding approximate standard errors(SE) together with their AIC, BIC, and clustering performance measures.
MoE-N-CR MoE-T-CR MoE-SL-CR MoE-CN-CR

Parameter ↓ Estimates SE Estimates SE Estimates SE Estimates SE
β10 5.5476 0.6362 5.5438 0.6573 5.6223 0.7524 5.4714 0.9077
β11 -0.0554 0.0268 -0.0627 0.0027 -0.0658 0.0287 -0.0607 0.0227
β12 -0.1272 0.0130 -0.1256 0.0014 -0.1227 0.0167 -0.1212 0.0212
β13 0.0653 0.0355 0.0822 0.0050 0.0371 0.0063 0.0485 0.0114
β14 0.0004 0.0002 -0.0003 0.0001 0.0013 0.0029 0.0009 0.0007
β20 1.5064 0.2850 0.7306 0.0675 1.3579 0.4638 1.3405 0.2478
β21 0.0165 0.0025 0.0109 0.0025 0.0259 0.0051 0.0212 0.0028
β22 -0.0592 0.0125 -0.0410 0.0013 -0.0578 0.0109 -0.0560 0.0098
β23 0.2418 0.0205 0.2424 0.0018 0.2426 0.0207 0.2404 0.0128
β24 -0.0047 0.0006 -0.0049 0.0001 -0.0048 0.0007 -0.0047 0.0021
σ2

1 0.5001 0.0682 0.4365 0.0066 0.3773 0.0836 0.4173 0.1109
σ2

2 0.7130 0.0568 0.4661 0.0043 0.3120 0.0367 0.4214 0.1291
ν1 – – 9.3049 – 9.0866 – 0.0342 –
ν2 – – 6.2745 – 1.8225 – 0.1577 –
γ1 – – – – – – 0.2643 –
γ2 – – – – – – 0.2237 –
τ0 26.7338 5.6234 48.3470 6.3394 14.4513 3.9352 17.4136 4.6459
τ1 0.2519 0.1023 0.3414 0.2210 0.1845 0.0138 0.1999 0.0851
τ2 4.1959 1.2368 6.9057 1.7441 0.8211 0.1362 0.7284 0.1246
τ3 -0.7383 0.2304 -1.2943 0.3588 -0.4177 0.1394 -0.4912 0.1537

AIC 1234.5830 1219.2230 1219.2830 1224.094
BIC 1308.5680 1302.4570 1302.5160 1316.575
RI 0.5123 0.5214 0.5323 0.5118
JCI 0.3676 0.3847 0.4029 0.3713

estimation. Moreover, it is clear that adding more variables to the model will definitely affect on the likelihood. We368

therefore can not compare the results of model selection criteria with those reported by Zeller et al. (2019).369

Table 6 shows the ML results obtained by fitting the four considered models. The estimates of β11 in all MoE-370

SMN-CR sub-models imply a positive influence of education on the respond variable for the first group which is371

contrariwise for the second group. Looking at the coefficient estimates of experience, it can be seen that the wives’372

annual work hours rise as their experience enhanced. However, all models suggest the descending trend, in both373

group, for the mean of the work hours as a function of age. The estimate of ν1 in Table 6 is moderately large for the374

MoE-T-CR, MoE-SL-CR models and quite small for the MoE-CN-CR model. It might support the fact that the best375

distribution to fit the data is a mixture of normal and a heavy-tailed distributions. The results in Table 6 also reveal that376

the estimated gating parameters are moderately significant, showing that the considered covariates r have an effect on377

the analysis. Comparing the estimates of τi’s for four proposed models, the number of kids less than 6 years old has378

the highest impact on gating function. Results based on AIC and BIC finally indicate that the MoE-T-CR and MoE-379

SL-CR models provides an improved fit of the data over the other models. Moreover, by comparing the clustering380

criteria in Table 6, it turns out that the MoE-SL-CR model yields quite better classification.381

6. Conclusions and discussions382

This paper proposed a new robust mixture of linear experts model for the censored data based on the scale-mixture383

of normal class of distributions. This MoE-SMN-CR model extended the classical MoE model which has been384

demonstrated to solve the two challenges to deal with heavy-tail distributed data and outliers as well as censored data.385

The newly proposed MoE-SMN-CR model is very extensive which extends the classical MoE model and includes386

MRM and finite mixture regression model for censored data proposed by Zeller et al. (2019) as special cases. The use387

of covariates in the gating function is an advantage of the MoE models which might result in better classification of388

the data. Utilizing the embedded hierarchical structure of the SMN class of distributions, we developed an innovative389

EM-type algorithm to obtain ML parameter estimates computationally, which is implemented in statistical software390

R.391

Five Monte-Carlo simulation studies were conducted to investigate the performance of the model in applications392

both for non-linear regression and prediction and for model-based clustering. Results of the simulation studies con-393

firmed that the proposed MoE-SMN-CR model can provide evidence of the robustness to the outliers and atypical394
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observations. Finally, a real-world data analysis demonstrated the applicability and benefit of the proposed approach395

for practical applications.396

As discussed in Section 5, an interesting future direction of the current work is the variable selection for both397

parts of the regression and gating function. The utility of our current approach can be further extended to the multiple398

regression on multivariate data rather than simple regression on univariate data, which we are actively exploring. To399

do so, we refer the reader to the work of Lachos et al. (2017) who proposed an exact ECM algorithm for the mixture400

of censored multivariate Student-t distributions. Another possible extension of the work herein is to consider a full401

Bayesian approach as a basis of inference and prediction (Peng et al., 1996; Zens, 2019). Recommended by the402

Associate Editor and the reviewers, one can introduce an MoE model for censored data based on the results of Mattos403

et al. (2018); Lachos et al. (2020) for handling skew and heavy-tails distributed data, as well as based on the results404

of Lin et al. (2018); Lin and Wang (2019) for analyzing censored and missing data observations simultaneously.405
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Appendix A. Conditional expectations of the special cases of the SMN distributions413

Uncensored observations: For the uncensored data yi, we have ρi = 0. Therefore, the only necessary conditional414

expectation û(k)
i j = E(Ui j|Y = yi, θ̂

(k)
j ) for the considered models can be computed as follows.415

• If Y ∼ N
(
x>i β̂

(k)
j , σ̂

2(k)
j

)
, in this case, U = 1 with probability one, and so û(k)

i j = 1.416

• If Y ∼ T
(
x>i β̂

(k)
j , σ̂

2(k)
j , ν̂(k)

j
)
, We have

û(k)
i j =

ν̂(k)
j + 1

ν̂(k)
j + δ

(
yi, x>i β̂

(k)
j , σ̂

(k)
j

) ,
where δ(y, µ, σ) =

(
(y − µ)/σ

)2
.417

• If Y ∼ SL
(
x>i β̂

(k)
j , σ̂

2(k)
j , ν̂(k)

j
)
, We have

û(k)
i j = 2

(
δ
(
yi, x>i β̂

(k)
j , σ̂

(k)
j

))−1 Γ
(
ν̂(k)

j + 1.5, 0.5δ
(
yi, x>i β̂

(k)
j , σ̂

(k)
j

))
Γ
(
ν̂(k)

j + 0.5, 0.5δ
(
yi, x>i β̂

(k)
j , σ̂

(k)
j

)) .
• If Y ∼ CN

(
x>i β̂

(k)
j , σ̂

2(k)
j , ν̂(k)

j , γ̂
(k)
j
)
, We have

û(k)
i j =

1 − ν̂(k)
j + ν̂(k)

j (γ̂(k)
j )1.5 exp

{
0.5(1 − γ̂(k)

j )δ
(
yi, x>i β̂

(k)
j , σ̂

(k)
j

)}
1 − ν̂(k)

j + ν̂(k)
j (γ̂(k)

j )0.5 exp
{
0.5(1 − γ̂(k)

j )δ
(
yi, x>i β̂

(k)
j , σ̂

(k)
j

)} .
Censored cases: In the censored cases, we have ρi = 1. For the sake of notation, let

T (k)
i j =

Yi − x>i β̂
(k)
j

σ̂(k)
j

∼ SMN(0, 1, ν̂(k)
j ), t̂(k)

i j1 =
ci1 − x>i β̂

(k)
j

σ̂(k)
j

, t̂(k)
i j2 =

ci2 − x>i β̂
(k)
j

σ̂(k)
j

.

18



Therefore, the necessary conditional expectations û(k)
i j = E(Ui j|ci1 ≤ Yi ≤ ci2, θ̂

(k)
j ), ûy(k)

i j = E(UiYi|ci1 ≤ Yi ≤ ci2, θ̂
(k)
j ),

and ûy2
(k)
i j = E(UiY2

i |ci1 ≤ Yi ≤ ci2, θ̂
(k)
j ) for the considered models can be computed as follows.

û(k)
i j = E

(
Ui j|t̂

(k)
i j1 ≤ T (k)

i j ≤ t̂(k)
i j2, θ̂

(k)
j

)
=

EΦ

(
1, t̂(k)

i j2

)
− EΦ

(
1, t̂(k)

i j1

)
FS MN

(
t̂(k)
i j2; ν̂(k)

j

)
− FS MN

(
t̂(k)
i j1; ν̂(k)

j

) ,

ûy(k)
i j =

(
x>i β̂

(k)
j

)
û(k)

i j + σ̂(k)
j E

(
Ui jTi j

∣∣∣∣t̂(k)
i j1 ≤ T (k)

i j ≤ t̂(k)
i j2, θ̂

(k)
j

)
=

(
x>i β̂

(k)
j

)  EΦ

(
1, t̂(k)

i j2

)
− EΦ

(
1, t̂(k)

i j1

)
FS MN

(
t̂(k)
i j2; ν̂(k)

j

)
− FS MN

(
t̂(k)
i j1; ν̂(k)

j

)
 + σ̂(k)

j

 Eφ

(
0.5, t̂(k)

i j1

)
− Eφ

(
0.5, t̂(k)

i j2

)
FS MN

(
t̂(k)
i j2; ν̂(k)

j

)
− FS MN

(
t̂(k)
i j1; ν̂(k)

j

)
 ,

ûy2
(k)
i j =

(
x>i β̂ j

(k)
)2

û(k)
i j + 2

(
x>i β̂ j

(k)
)
σ̂(k)

j ûy(k)
i j + σ̂2(k)

j E
(
Ui jT 2

i j

∣∣∣∣t̂(k)
i j1 ≤ T (k)

i j ≤ t̂(k)
i j2, θ̂

(k)
j

)
,

=

(
x>i β̂ j

(k)
)2

û(k)
i j + 2

(
x>i β̂ j

(k)
)
σ̂(k)

j ûy(k)
i j +

σ̂2(k)
j

FS MN

(
t̂(k)
i j2; ν̂(k)

j

)
− FS MN

(
t̂(k)
i j1; ν̂(k)

j

)
(
EΦ

(
0, t̂(k)

i j2

)
− EΦ

(
0, t̂(k)

i j1

)
+

(
t̂(k)
i j1

)
Eφ

(
0.5, t̂(k)

i j1

)
−

(
t̂(k)
i j2

)
Eφ

(
0.5, t̂(k)

i j2
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,

where418

Eφ(r, h) = E
(
Urφ

(
h
√

U
))

and EΦ(r, h) = E
(
UrΦ

(
h
√

U
))
.

In the following, the closed forms of Eφ(r, h) and EΦ(r, h) for the special cases of SMN class of distributions are419

presented.420

• For the normal distribution, we have

Eφ(r, h) = φ(h) and EΦ(r, h) = Φ(h).

• In the case of Student-t distribution, we have

Eφ(r, h) =

Γ

 ν̂(k)
j + 2r

2


√

2πΓ(ν̂(k)
j /2)

 ν̂(k)
j

2


ν̂(k)

j

2
 2

h2 + ν̂(k)
j


ν̂(k)

j + 2r

2
,

EΦ(r, h) = Γ

 ν̂(k)
j + 2r

2


 2

ν̂(k)
j

r

FPVII

(
h; ν̂(k)

j + 2r, ν̂(k)
j

) /
Γ(
ν̂(k)

j

2
),

where FPVII(·; ν, δ) denotes the cdf of Pearson type VII distribution.421

• For the slash model, we have

Eφ(r, h) =
ν̂(k)

j
√

2π

(
2
h2

)ν̂(k)
j +r

Γ(ν̂(k)
j + r,

h2

2
) and EΦ(r, h) =

ν̂(k)
j

ν̂(k)
j + r

FS L

(
h; ν̂(k)

j + r
)
.

• For the contaminated-normal distribution, we have

Eφ(r, h) =
(
γ̂(k)

j

)r
ν̂(k)

j φ

(
h
√
γ̂ j

(k)
)

+
(
1 − ν̂(k)

j

)
φ(h),

EΦ(r, h) =
(
γ̂ j

(k)
)r

FCN

(
h; ν̂(k)

j , γ̂
(k)
j

)
+

(
1 −

(
γ̂(k)

j

)r) (
1 − ν̂(k)

j

)
Φ(h).
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Figure B.8: The normal hazard function plots computed based on three ways in R.

Appendix B. The hazard function plots of the normal distribution422

Appendix C. Further plots of the first simulation423
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Figure C.9: The BIAS and MSE plots of β j and σ2
j estimates for the MoE-SMN-CR model (censoring levels 15%).
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Figure C.10: The BIAS and MSE plots of β j and σ2
j estimates for the MoE-SMN-CR model (censoring levels 15%).
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