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Abstract7

Factor analysis is a statistical technique for data reduction and structure detection that traditionally relies on the
normality assumption for factors. However, due to the presence of non-normal features such as asymmetry and
heavy tails in many practical situations, the first two moments cannot adequately explain the factors. An extension
of the factor analysis model is introduced by assuming a generalization of the multivariate restricted skew-normal
distribution for the vector of unobserved factors. An efficient and computationally tractable EM-type algorithm is
adopted for computing the maximum likelihood estimates by presenting a hierarchical representation of the proposed
model. Finally, the efficiency and advantages of the proposed novel methodology are demonstrated through both
simulated and real benchmark datasets.
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1. Introduction10

Factor analysis (FA), originally proposed in the seminal paper of Spearman (1904), is a widely acknowledged
statistical technique that not only aims to reduce the dimensions of data, but also to identify the underlying structure of
the data. Generally, the FA model is a generalization of the principal component analysis with an additional appealing
scaling invariance property. This means that any change in the scales of the response variables only leads to scale
change in the corresponding row of the factor loadings matrix. Theoretically, the FA model relaxed the assumption
with respect to the normality distribution of factors and errors. Specifically, let {Yi}

n
i=1 be a set of n independent and

identically distributed (iid) random vectors followed by a p-dimensional continuous distribution. The FA model can
then be formulated as

Y j = µ + BU j + ε j, U j
iid
∼ Nq(0, Iq), ε j

iid
∼ Np(0, D), U j⊥ε j, (1)

whereNp(ξ,Σ) denotes the p-variate normal distribution with mean vector ξ and covariance matrix Σ, Iq is the identity11

matrix of dimension q, and the symbol ‘⊥’ denotes the independence of two random variables. Furthermore, µ ∈ Rp
12

is a location vector, B ∈ Rp×q is the matrix of factor loadings, U j ∈ Rq with q < p being the latent variables called13

common factors, ε j ∈ Rp denote the model errors called specific factors, and D is a positive diagonal matrix, say14

D = diag(d) where d = (σ2
1, . . . , σ

2
p). It can be seen from (1) that E(U j) = 0, cov(U j) = Iq and cov(Y j) = BB> + D.15

The multivariate normality assumption for the factors of the model (1) provides a mathematically as well as16

computationally tractable method to investigate the complex correlations between the variables under consideration17

(Basilevsky, 1994). However, the robustness of the model against atypical observations is often criticized in relation18

to real-world problems (Montanari and Viroli, 2010; Hashemi et al., 2020; Liu and Lin, 2015; Lin et al., 2015). In19

∗Corresponding author
Email address: m.naderi@up.ac.za (Mehrdad Naderi)

Preprint submitted to Computational Statistics & Data Analysis August 25, 2022



this regard, the interest in skew distributions provide a platform for a robust extension of the FA model. For instance,20

Montanari and Viroli (2010) proposed a factor model characterized by skew-normally (Azzalini, 1985) distributed21

factors. Liu and Lin (2015) postulated the restricted multivariate skew-normal (rMSN) FA model (called the rSNFA22

model) for accommodating incomplete or missing data. Due to its appealing properties and proven proficiency, the23

rMSN distribution has been employed in a vast number of scientific applications. However, a major drawback of the24

rMSN distribution is that it is sensitive in the presence of extreme outliers. To accommodate for presence of outliers25

in the skew-normal type FA models, Lin et al. (2015) proposed a new generalization of the rSNFA and student-t FA26

(tFA; McLachlan et al. (2007)) models by assuming the restricted multivariate skew-t (rMST) distribution for the27

vector of unobserved factors and errors, referred to as the rSTFA model. The rMST and rMSN distributions (Pyne28

et al., 2009) are equivalent to the classical versions, proposed by Azzalini and Capitanio (2003) and Azzalini (1985),29

after appropriate re-parameterization. The rMSN model belongs to the class of mean-mixture of normal (MMN)30

distributions. Recently, Negarestani et al. (2019) extended the MMN method to obtain models that not only have31

an equal number of parameters, but are also more flexible than the rMSN or rMST distributions. Specifically, a p-32

dimensional random vector X is said to have an MMN distribution if it can be generated through the linear stochastic33

relationship34

X = µ + λW + Z, Z⊥W, (2)

where Z ∼ Np(0,Σ), and W is an arbitrary random variable. It is obvious that model (2) assumes that the mean is not35

fixed for all members of the population. The MMN model can be reduced to symmetric distribution if W is a sym-36

metrically distributed model. However, a more flexible and skew-type one can be obtained based on the assumption37

that W in (2) follows any asymmetric distribution, preferably a positive support model such as the truncated-normal,38

exponential and gamma distributions. Alternatively, the MMN distribution might also belong to the class of skew-39

elliptical models (Azzalini and Capitanio, 1999) if, for example, one considers that W follows the truncated-normal40

model. Proposing any non-elliptical as well as non-symmetric distribution (e.g. the exponential and gamma models)41

for the mixing random variable W, (2) would lead to a skew non-elliptically contoured distribution. By introducing42

two new special cases of the MMN model, Negarestani et al. (2019) showed that the new model could take a wider43

range of skewness and kurtosis than the rMSN, rMST and skew-t-normal (Ho et al., 2011) distributions. They showed44

that the MMN model inherits the log-concavity property from the rMSN distribution, and that it is infinitely divisible,45

unlike the rMSN model. The infinite divisibility enables investigators to study the central limit theorem based on the46

underlying distribution.47

With respect to the mentioned properties of Negarestani et al. (2019), the objective of this paper is to propose48

a new factor model by assuming the MMN distribution for the factors. The proposed hierarchical representation49

enables the development of an expectation-maximization (EM; Dempster et al. (1977)) type algorithm for computing50

the maximum likelihood (ML) estimates of parameters. In the rMST-based models, especially rSTFA, it is known51

that the rMSN-based models are obtained as the degree of freedom tends to infinity. A simulation study in Section 452

shows that the proposed model outperforms both rSNFA and rSTFA models when the degree of freedom increases.53

The mathematical and computational efficiency of the presented methodology, namely the finite sample properties54

and outperformance in dealing with the highly skewed data, are also verified. Finally, two real-world datasets provide55

a comparative analysis of the performance of the new factor model compared with some existing FA models.56

The layout of the paper is as follows. In Section 2, the MMN model formulation and some of its characteristics are57

presented. Section 3 presents the formulation of the MMN factor analysis (MMNFA) model along with its parameter58

estimation. Three simulation scenarios are conducted in Section 4 to investigate the performance of the model and59

to study the finite sample properties of the proposed EM-based estimators. The usefulness of the proposed method60

is illustrated in Section 5 by analyzing two real datasets. Finally, discussion and suggestions for future work follow.61

Some technical details and additional information are provided in the Online Supplement.62

2. The multivariate MMN distribution: review and some properties63

2.1. General formulation64

For the sake of notation, let φp(·;µ,Σ) denote the probability density function (PDF) of Np(µ,Σ), and Φ(·) be the65

cumulative distribution function of the univariate standard normal distribution (CDF). Following Negarestani et al.66
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(2019), let W in (2) have the PDF h(·; ν), parameterized by a vector parameter ν. Therefore, by the hierarchical67

representation68

X|W = w ∼ Np(µ + λw,Σ), W ∼ h(w; ν),

X has the MMN distribution with PDF69

fMMN(x;µ,Σ, λ, ν) =

∫ ∞

−∞

φ(x;µ + λw,Σ)h(w; ν) dw, x ∈ Rp. (3)

The notation X ∼ MMN p(µ,Σ, λ; h(w; ν)) will be used to indicate that X has PDF (3). The mean, covariance matrix
and moment generating function of X are respectively

E(X) =µ + E(W)λ, if E(|W |) < ∞, cov(X) = Σ + Var(W)λλ>, if E(W2) < ∞,

MX(t;µ,Σ, λ) = exp
(
t>µ +

1
2

t>Σt
)

MW (t>λ), (4)

where MW (·) denotes the moment generating function of W.70

Theorem 1. The MMN distribution is closed under linear transformation, i.e. if X ∼ MMN p(µ,Σ, λ; h(w; ν)), then71

for any full rank matrix L ∈ Rq×p, 1 ≤ q ≤ p, the random vector LX is distributed byMMNq(Lµ, LΣL>, Lλ; h(w; ν)).72

Proof. The proof follows by applying the LX transformation to the moment generating function (4).73

Theorem 2. If X ∼ MMNq(µ1,Σ1, λ; h(w; ν)) and Y ∼ Np(µ2,Σ2), then for any matrix A of dimension p×q follows74

that75

AX + Y ∼ MMN p(Aµ1 + µ2, AΣ1 A> + Σ2, λ; h(w; ν)).

2.2. Special cases76

In this section, three distributions of the MMN family are presented.77

• The rMSN distribution: Let the mixing variable W follow the truncated standard normal distribution lying within78

a truncated interval (0, ∞), denoted by W ∼ TN(0, 1; (0,∞)). Then, the PDF of a p-dimensional random vector X79

following the rMSN distribution is given by80

f rMSN(x;µ,Σ, λ) = 2φp(x;µ,Ω)Φ
(
λ>Ω−1(x − µ)
√

1 − λ>Ω−1λ

)
, (5)

where Ω = Σ + λλ>. The rMSN distribution, denoted by rMSN p(µ,Σ, λ), has been used extensively, see Lee and81

McLachlan (2013) and Lin et al. (2016) to name a few.82

• Convolution with the exponential distribution: The p-variate exponentiated MMN (MMNE) distribution, say83

X ∼ MMNEp(µ,Σ, λ), is derived from (2) by taking W as a standard exponential distribution, E(1). Using (3), the84

PDF of X can be obtained as85

fMMNE(x;µ,Σ, λ) =

√
2π
δ

exp
(

A2

2

)
φp (x;µ,Σ) Φ(A), x ∈ Rp, (6)

where δ2 = λ>Σ−1λ and A = δ−1
[
λ>Σ−1(x − µ) − 1

]
. It is interesting to note that the number of parameters of the

MMNE model is equal to that of the rMSN distribution. The mean, covariance matrix and moment generating function
of the MMNE distribution, obtained by (4), are

E(X) = µ + λ, cov(X) = Σ + λλ>, MX(t;µ,Σ, λ) =
exp

(
t>µ + 1

2 t>Σt
)

1 − t>λ
, ∀t t>λ , 1.

Proposition 1. The PDF of the multivariate MMNE distribution is log-concave.86

Proof. The proposition is obtained immediately through the properties of the log-concave function, i.e. the class of87

log-concave functions is closed under multiplication.88
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Figure 1: The perspective density and contour plots of the MMNE (upper panel) and MMNEH (with ν = 0.15; lower panel) distributions for various
settings of parameters (the two first panels from left for Σ1 and from right for Σ2).

• Convolution with a mixture of exponential and half-normal distributions: If the PDF of W in (2) is a mixture89

of an exponential distribution with mean 2, E(2), and TN(0, 1; (0,+∞)) given by90

fW (w) = 0.5ν exp
(
− 0.5w

)
+ 2(1 − ν)φ(w), w > 0, 0 < ν < 1, (7)

then, the half-normal exponentiated MMN (MMNEH) distribution follows. Denoted by X ∼ MMNEH p(µ,Σ, λ, ν),91

the associated PDF of X obtained by (3) is92

fMMNEH(x;µ,Σ, λ, ν) = ν

√
2π

2δ
φp (x;µ,Σ) exp

(
A∗2

2

)
Φ(A∗) + (1 − ν) f rMSN(x;µ,Σ, λ), x ∈ Rp, (8)

where A∗ = δ−1
[
λ>Σ−1(x − µ) − 0.5

]
. It is clearly seen that the MMNEH distribution approaches the rMSN model as

ν tends zero. Moreover, the PDF of MMNEH distribution (8) tends to the normal one as both ν and λ approach zero.
Furthermore, the mean, covariance matrix and moment generating function of the MMNEH distribution are

E(X) =µ +
(
ν(2 −

√
2/π) +

√
2/π

)
λ, cov(X) = Σ +

(
7ν + 1 −

(
ν(2 −

√
2/π) +

√
2/π

)2)
λλ>,

MX(t;µ,Σ, λ) = exp
(
t>µ +

1
2

t>Σt
) (

ν

1 − 2t>λ
+ (1 − ν) exp

(
1
2

(t>λ)2
)
Φ(t>λ)

)
, ∀t t>λ , 0.5.

Figure 1 illustrates the perspective density plots with added contours for the bivariate MMNE (upper panel) and93

MMNEH (lower panel) distributions by setting µ = (0, 0), Σ1 =

(
1 0
0 1

)
, Σ2 =

(
0.3 0.5
0.5 1

)
, ν = 0.15, and94

with different settings of λ. These plots depict that both MMNE and MMNEH distributions show different degrees95

of flatness, skewness and kurtosis, depending on the choice of parameters. Figure 2 displays the contour plots of96

bivariate densities given in (5), (6) and (8), obtained with the solutions of f (x; Θ) = c, for c = 0.1 and 0.03, where97

µ = (0, 0), Σ = Σ2, λ = (1, -1), and ν takes various choices from (0,1). Here, f (x; Θ) represents the PDF of the rMSN,98

MMNE or MMNEH models. Note that the rMSN contour is outside those of the MMNE and MMNEH models for99

c = 0.1, whereas for c = 0.03 the contours of the MMNE and MMNEH distributions apparently peak outside the100

rMSN contour. This behaviour is also seen for large values of ν for the MMNEH contours against the MMNE ones.101

Remark 1. It is interesting to emphasize that the class of MMN distributions offers different contour plots comparing102

to the family of normal mean-variance mixture (NMVM) models (McNeil et al., 2005). To illustrate later, Figure 1103
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Figure 2: A contour comparison of the rMSN, MMNE and MMNEH (for various choices of ν) distributions by plotting f (x; Θ) = c under two
levels (a) c = 0.03 and (b) c = 0.1.

in the Online Supplement provides the contour plots of three special cases of the MMN and NMVM distributions.104

Moreover, conditionally on mixing variable W = w, note that the NMVM distributions assume that both the variance105

and mean for all members of the population are not fixed. Details and application of the NMVM model in factor106

analysis can be found in Murray et al. (2014a); Tortora et al. (2015) and Hashemi et al. (2020), among others. Future107

development of the current work will therefore be of interest in proposing a scale mixture of the MMN distribution.108

Subsequently, some lemmas and theorems are presented that are useful for the calculation of some conditional109

expectations involved in the proposed EM-type algorithm discussed in the next section.110

Lemma 1. If W ∼ TN
(
ξ, ω2; (0,∞)

)
, then E (W) = ξ + ω φ(ξ/ω)

Φ(ξ/ω) , and E (Wr) = ξE
(
Wr−1

)
+ ω2(r − 1)E

(
Wr−2

)
for111

r = 2, 3, . . ..112

Lemma 2. Let Y ∼ rMSN p(µ,Σ, λ) and W ∼ TN (0, 1; (0,∞)). Then, W conditionally on Y = y, follows113

TN
(
ξ, σ2; (0,∞)

)
, where ξ = λ>Ω−1(y − µ) and σ2 = 1 − λ>Ω−1λ.114

Theorem 3. Suppose Y ∼ MMNEP(µ,Σ, λ) and W ∼ E(1). Then, W |Y = y ∼ TN
(
Aδ−1, δ−2; (0,∞)

)
, where δ and115

A are defined in (6). Furthermore, for k = 1, 2, . . . ,116

E(Wk |Y = y) =
A
δ

E(Wk−1|Y = y) +
k − 1
δ2 E(Wk−2|Y = y),

where117

E(W |Y = y) =
A
δ

+
φ (A)
δΦ (A)

.

Proof. This result follows from Bayes’ rule and Lemma 1.118

Theorem 4. Let Y ∼ MMNEHP(µ,Σ, λ, ν) and W have PDF (7). Then, the conditional PDF of W given Y = y, is119

fW |Y=y(w) = π(y)
φ
(
w; A∗δ−1, δ−2

)
Φ(A∗)

+ (1 − π(y))
φ
(
w;ϑ, σ2

)
Φ(ϑ/σ)

,

where ϑ = λ>Ω−1(y − µ), σ2 = 1 − λ>Ω−1λ, and120

π(y) =
ν
√

2π
2δ fMMNEH(y;µ,Σ, λ, ν)

φp (y;µ,Σ) exp
(

A∗2

2

)
Φ(A∗).

Furthermore, for any y ∈ Rp, and k = 1, 2, . . . ,121

E
(
Wk |Y = y

)
= π(y)E

(
Vk

1

)
+ (1 − π(y))E(Vk

2),
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where V1 ∼ TN
(
A∗δ−1, δ−2; (0,∞)

)
, V2 ∼ TN

(
ϑ, σ2; (0,∞)

)
and

E(V1) =
A∗

δ
+

φ (A∗)
δΦ (A∗)

, E(Vk
1) =

A∗

δ
E(Vk−1

1 ) +
k − 1
δ2 E(Vk−2

1 ), k ≥ 2,

E(V2) =ϑ + σ
φ (ϑ/σ)
Φ (ϑ/σ)

, E(Vk
2) = ϑE(Vk−1

2 ) + (k − 1)σ2E(Vk−2
2 ), k ≥ 2.

Proof. The proof is straightforward.122

The following theorem considers the moment generating function of the quadratic form associated with the special123

cases of the MMN family of distributions. This quadratic form might be useful for assessing the validity of the124

underlying distributional assumption.125

Theorem 5. The moment generating function of the quadratic form Q = X>VX for any symmetric matrix V can be126

obtained as:127

i) If X ∼ MMNEp(0,Σ, λ),128

MQ(t) =

√
2π|Ψ|1/2

δ|Σ|1/2
exp

(
λ>Σ−1ΨΨΣ−1λ

2δ4 + 0.5δ−2
)
Φ

(
δ−2λ>Σ−1ΨΣ−1λ − 1
√
δ2 + λ>Σ−1ΨΣ−1λ

)
,

ii) If X ∼ MMNEH p(0,Σ, λ, ν),129

MQ(t) =
ν
√

2π|Ψ|1/2

2δ|Σ|1/2
exp

(
λ>Σ−1ΨΨΣ−1λ

2δ4 +
1

8δ2

)
Φ

(
δ−2λ>Σ−1ΨΣ−1λ − 2
√
δ2 + λ>Σ−1ΨΣ−1λ

)
+

(1 − ν)
|Σ(Σ−1 − 2tV)|

,

where Ψ =
(
Σ−1 − 2tV − δ−2Σ−1λλ>Σ−1

)−1
.130

Proof. The proof can be found in Appendix B of the Online Supplement.131

In the following theorems, some conditions are presented under which two linear and/or quadratic forms of the132

MMN distribution are independent.133

Theorem 6. Let X ∼ MMNEp(0,Σ, λ). For h ∈ Rp and V ∈ Rp×p, the linear form h>X and the quadratic134

form X>VX are independent if and only if VΩ1h = 0 and VΩ1α1 = 0 where Ω1 =
(
Σ−1 − δ−2Σ−1λλ>Σ−1

)−1
and135

α1 = Σ−1λ.136

Proof. Proof of the result is provided in Appendix B of the Online Supplement.137

Theorem 7. Let X ∼ MMNEH p(0,Σ, λ, ν). For any h ∈ Rp and symmetric matrix V ∈ Rp×p, the linear form h>X138

and the quadratic form X>VX are independent if and only if VΩ1h = 0, VΩ1α1 = 0, VΩ2h = 0, VΩ2α2 = 0 where139

Ω2 = Σ + λλ> and α2 =
λ>Ω−1

2 (x−µ)
√

1−λ>Ω−1
2 λ

.140

Proof. The result can be obtained by following a similar procedure used in Theorem 6.141

Theorem 8. For any symmetric matrix V1,V2 ∈ Rp×p, the quadratic forms X>V1X and X>V2X are independent if142

and only if:143

i) V1Ω1V2 = 0, when X ∼ MMNEp(0,Σ, λ).144

ii) V1Ω1V2 = 0 and V1Ω2V2 = 0, when X ∼ MMNEH p(0,Σ, λ, ν).145

Proof. Details of the proof are given in Appendix B of the Online Supplement.146
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Theorem 9. Let X ∼ MMNEp(µ,Σ, λ) (or X ∼ MMNEH p(µ,Σ, λ, ν)) and the following partitions147

X =

(
X1
X2

)
, µ =

(
µ1
µ2

)
, λ =

(
λ1
λ2

)
, Σ =

(
Σ11 Σ12
Σ21 Σ22

)
,

where X1,µ1, λ1 ∈ Rq and Σ11 ∈ Rq×q. Then, X1 and X2 are independent if and only if two conditions (i) Σ12 = 0 and148

(ii) either λ1 = 0 or λ2 = 0 hold simultaneously.149

Proof. The focus is on the MMNE distribution. The proof of one side is straightforward. Thus, suppose that X1 and150

X2 are independent. Then, the moment generating of X can be represented as151

MX(t;µ,Σ, λ) = MX1 (t1;µ1,Σ11, λ1)MX2 (t2;µ2,Σ22, λ2), ∀t = (t>1 , t>2 )>,

where t1 ∈ Rq and t2 ∈ Rp−q, MX(·; ·) is defined in (4). Therefore,152

exp
(
t>1 Σ12 t2

)
=

1 − t>λ
(1 − t>1 λ1)(1 − t>2 λ2)

. (9)

It is obvious that (9) holds if both (i) and (ii) happen, which completes the proof. The proof for the MMNEH model153

is similar and hence is omitted.154

3. The MMN factor analysis model155

3.1. Model formulation156

Next, a new factor model is defined by considering the MMN distribution for latent factors to model correlation in
the presence of asymmetric levels of sources. The MMNFA model postulated here can be formulated through (1) as

Y j = µ + BU j + ε j,

U j
iid
∼ MMNq(−aνΛ−1/2λ,Λ−1,Λ−1/2λ; h(w; ν)), ε j

iid
∼ Np(0, D), U j⊥ε j, (10)

where the scaling coefficients are aν = E(W j) and bν = Var(W j), Λ = Iq + bνλλ>. Notice that the scaling coefficients157

aν and bν are chosen such that U j fulfills the assumptions of the FA model, i.e., E(U j) = 0 and cov(U j) = Iq.158

Alternatively, by the linear representation (2), the proposed MMNFA model in (10) admits the following two-level159

hierarchical representation160

Y j | W = w j ∼ Np(µ − aνBΛ−1/2λ + w jBΛ−1/2λ,Σ), W j ∼ h(w j; ν). (11)

Consequently, Y j ∼ MMNP(µ − aνη,Σ, η; h(w; ν)), where Σ = BΛ−1B> + D and η = BΛ−1/2λ. Therefore, the mean161

and covariance matrix of Y j obtained by (4) are162

E(Y j) = µ, cov(Y j) = BB> + D, and cov(Y j,U j) = B.

It is clear that cov(Y j) of the MMNFA model always exists, whereas for the rSTFA model (Lin et al., 2015) and the163

generalized hyperbolic skew-t factor analysis (GHSTFA; Murray et al. (2014a)), for example, the covariance matrices164

respectively are165

ν

ν − 2
(BB> + D) and

ν

ν − 2
(BB> + D) +

2ν2

(ν − 2)2(ν − 4)
λλ>,

which do not exist for ν = 2. The same result can be obtained in comparing the cov(Y j,U j) for the MMNFA, rSTFA166

and GHSTFA models.167

It can be verified that model (10) is still satisfied when B is replaced by BR for any arbitrary orthogonal rotation168

matrix R with order q > 1. Therefore, the MMNFA model suffers from an identifiability problem associated with169

the rotation invariance of the loading matrix B. To overcome this challenge, two commonly implemented methods170

introduced by Lawley and Maxwell (1971) and Fokoué and Titterington (2003) can be used. Lawley and Maxwell171

(1971) recommended choosing R as a uniqueness condition, such that B>D−1B is a diagonal matrix with elements172

arranged in descending order. The second method used here is to constrain B in such a way that its upper-right173

triangle is zero and its diagonals are strictly positive (Fokoué and Titterington, 2003). In both approaches, q(q − 1)/2174

constraints are imposed on B and the number of free parameters is reduced to p(q + 2) + q − q(q − 1)/2 + s where s175

denotes the length of ν. Furthermore, the imposed constraints on B lead to the condition (p−q)2 ≥ (p + q) that is used176

for obtaining the maximum number of factors, q (McLachlan and Peel, 2000).177
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3.2. Parameter estimation via an EM-type algorithm178

In this section, an extension of the EM algorithm called expectation conditional maximization (ECM; Meng and179

Rubin (1993)) is implemented for estimating the MMNFA parameters. As the EM algorithm is a well-known iterative180

tool used to estimate parameters of the model with hidden variables, the ECM algorithm can increase the speed of181

convergence. The key idea of the ECM approach is to construct a complete-data log-likelihood function, i.e., the182

likelihood of the observed data plus the latent or missing data. Then, the algorithm is iterated between the E- and183

CM-steps, where in the E-step, the expectation of the complete-data log-likelihood, called Q-function, is computed,184

and in the CM-step, parameters are updated by maximizing the Q-function. To facilitate the procedure of the ECM185

algorithm, the following scaling transformations (Liu and Lin, 2015) are considered186

B̃ ∆
= BΛ−1/2 and Ũ j

∆
= Λ1/2U j. (12)

By the hierarchical representation (11) and scaling transformations (12), the MMNFA model can alternatively be187

represented by188

Y j | Ũ = Ũ j ∼ Np(µ + B̃Ũ j, D), Ũ j | W = w j ∼ Nq
(
(w j − aν)λ, Iq

)
, W j ∼ h(w j; ν). (13)

It is straightforward to see Ũ j | (Y = y j,W = w j) ∼ Nq(q j,C), and to obtain the conditional distribution of W j given189

y j by Bayes’ rule as190

f (w j | Y = y j) =
φ
(
y j;µ − aν B̃λ + w jB̃λ,Σ

)
f (w j)

fMMN(y j;µ − aνη,Σ, η, ν)
, (14)

where191

q j = C
{
ξ j + λ(w j − aν)

}
, ξ j = B̃>D−1(y j − µ) and C = (Iq + B̃>D−1 B̃)−1. (15)

As a result of (13), the complete-data log-likelihood function for Θ = (µ, B, D, λ, ν) associated with the observed192

data y = (yi, . . . , yn)>, missing value Ũ = (Ũ>1 , . . . , Ũ
>
n )> and latent variable w = (w1, . . . ,wn)>, ignoring additive193

constants, is194

`c(Θ
∣∣∣y, Ũ,w) =

n∑
j=1

log h(w j; ν) −
n
2

log |D| −
1
2

tr

D−1
n∑

j=1

Υ j

 − 1
2

n∑
j=1

{(
w2

j − 2w jaν + a2
ν

)
λ>λ − 2(w jŨ j − aνŨ j)>λ

}
,

where Υ j =
(
y j − µ − B̃Ũ j

)(
y j − µ − B̃Ũ j

)>, and tr(M) denotes the trace of matrix M.195

Proposition 2. The following conditional expectations can be established from (13),

E(Ũ j | y j) =C
{
ξ j + λ

(
E(W j | y j) − aν

)}
,

E(W jŨ j | y j) =C
{
ξ jE(W j | y j) + λ

(
E(W2

j | y j) − aνE(W j | y j)
)}
,

E(Ũ jŨ>j | y j) =
{
E(Ũ j | y j)ξ>j +

[
E(W jŨ j | y j) − aνE(Ũ j | y j)

]
λ> + Iq

}
C,

where ξ j and C are defined in (15).196

Proof. The proof is straightforward using the posterior distributions given in (14).197

Now, the ECM algorithm for ML estimation of the MMNFA model proceeds as follows:198

• E-step: At the kth iteration, the Q-function is computed with Θ evaluated at Θ̂(k) as199

Q(Θ | Θ̂(k)) =

n∑
j=1

E
(

log h(W j; ν) | y j, Θ̂
(k)) − n

2
log |D| −

1
2

tr

D−1
n∑

j=1

Υ
(k)
j


−

1
2

n∑
j=1

{
(t̂(k)

j − 2ŵ(k)
j aν + a2

ν)λ
>λ − 2(ζ̂(k)

1 j − aνζ̂
(k)
0 j )>λ

}
, (16)
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where the necessary conditional expectations obtained by Proposition 2 are

ŵ(k)
j =E(W j | y j, Θ̂

(k)), t̂(k)
j = E(W2

j | y j, Θ̂
(k)), E(log h(W j; ν) | y j, Θ̂

(k)),

ζ̂(k)
0 j =E(Ũ j | y j, Θ̂

(k)), ζ̂(k)
1 j = E

(
WiŨ j | y j, Θ̂

(k)
)
, Ω̂

(k)
j = E

(
Ũ jŨ>j | y j, Θ̂

(k)
)
, (17)

and

Υ
(k)
j = (y j − µ)(y j − µ)> − B̃ζ̂(k)

0 j (y j − µ)> − (y j − µ)ζ̂(k)
0 j B̃> + B̃Ω̂(k)

j B̃>, (18)

which contains unknown parameters µ and B̃. Note that the calculation of E(Wr
j | y j, Θ̂

(k)) and E(log h(W j; ν) |200

y j, Θ̂
(k)) critically depends on h(w; ν).201

• CM-step 1: Maximizing (16) over µ, λ, B and D leads to the following CM estimators:202

µ̂(k+1) =

∑n
j=1(y j −

ˆ̃B(k)ζ̂(k)
0 j )

n
, λ̂(k+1) =

∑n
j=1

(
ζ̂(k)

1 j − â(k)
ν ζ̂

(k)
0 j

)
∑n

j=1

(
t̂(k)

j − 2ŵ(k)
j â(k)

ν + â2(k)
ν

) ,
ˆ̃B(k+1) =

 n∑
j=1

(y j − µ̂
(k+1))ζ̂(k)>

0 j


 n∑

j=1

Ω̂
(k)
j

−1

, D̂(k+1) =
1
n

diag

 n∑
j=1

Υ̂
(k)
j

 ,
where â(k)

ν = E(W j)
∣∣∣
ν=ν̂(k) , Υ̂(k) is obtained by substituting µ̂(k+1) and ˆ̃B(k+1) into (18). Then, the factor loading203

matrix before transformation is B̂(k+1) = ˆ̃B(k+1)Λ̂1/2(k+1), where Λ̂(k) = Iq + bνλ̂(k+1)λ̂(k+1)> with bν evaluated at204

ν̂(k).205

• CM-step 2: The update of ν depends on the chosen distribution for W and is obtained by206

ν̂(k+1) = arg max
ν

n∑
j=1

E
(

log h(W j; ν) | y j, Θ̂
(k))−1

2

n∑
j=1

{
(t̂(k)

j − 2ŵ(k)
j aν + a2

ν)λ̂
(k+1)>λ̂(k+1) − 2(ζ̂(k)

1 j − aνζ̂
(k)
0 j )>λ̂(k+1)

}
.

This maximization can be achieved by using some built-in R functions such as optim and nlminb whenever207

h(·; ν) has a complicated form.208

The above E- and CM-steps are iterated until either the number of iterations exceeds the maximum limit or a suitable209

convergence rule is achieved. Denote the resulting ML estimates upon convergence by Θ̂ = (µ̂, B̂, D̂, ν̂). Then, the210

prediction of the conditional factor scores is Ûi = E(U | y j, Θ̂) = Λ̂−1/2ζ̂0i, where Λ̂ and ζ̂0 j are calculated using211

Λ = Iq + bνλλ> and (17), respectively, with Θ evaluated at Θ̂.212

3.3. Special cases of the MMNFA model213

If W ∼ TN (0, 1; (0,∞)) in (10), the rSNFA model is obtained. The necessary conditional expectations involved214

in (16) and (17) for the rSNFA model can be computed by Lemma 2 and since it is free of parameter ν, it is not215

necessary to obtain the conditional expectation E(log h(W j; ν) | y j, Θ̂
(k)). More details can be found in Liu and Lin216

(2015).217

Let W in (10) follow E(1). Then, we have aν = bν = 1 and consequently Y j ∼ MMNEP(µ − η,Σ, η) where218

Σ = BΛ−1B> + D and η = BΛ−1/2λ. The obtained factor model is named exponentiated MMNFA, abbreviated as219

MMNEFA. The necessary conditional expectations involved in (16) and (17) for MMNEFA can be computed via220

Theorem 3. Note also that the MMNEFA model is free of the mixing parameter, ν, and so it is unnecessary to obtain221

the conditional expectation E(log h(W j; ν) | y j, Θ̂
(k)).222

However, if W in (10) has PDF (7), then the scaling coefficients reduce to aν = ν(2−
√

2/π)+
√

2/π, bν = 7ν+1−a2
ν223

and the half-normal exponentiated MMNFA (MMNEHFA) model is obtained. In this case, Y j ∼ MMNEHP(µ −224

aνη,Σ, η, ν). The necessary conditional expectations involved in (16) and (17) for MMNEHFA can be computed by225

Theorem 4.226
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Remark 2. There is no closed-form solution for updating the mixing parameter ν of the MMNEHFA model, since227

the conditional expectation E(log h(W j; ν) | y j, Θ̂
(k)) is complicated. In this case (and other similar cases), ν can be228

updated by implementing an extension of the EM and ECM algorithms, namely the expectation-conditional maxi-229

mization either (ECME; Liu and Rubin (1994)). In the CM-step of the ECME approach, the parameters are updated230

by maximizing either the Q-function or the corresponding constrained actual likelihood function. The so-called231

‘CML-step’ is adopted here to maximize the restricted actual log-likelihood function. That is, the update of ν is now232

expressed as233

ν̂(k+1) = arg max
ν∈[0,1]

n∑
j=1

log fMMNEH(y j; µ̂(k+1) − aνη̂(k+1), Σ̂(k+1), η̂(k+1), ν).

A one-dimensional search in the MMNEHFA model is preformed by implementing the optim function of the statisti-234

cal software R. Through a simulation study described in Section 4.3, it is shown that this optimization works well for235

empirical studies.236

3.4. Notes on implementation237

Aitken’s acceleration method (Aitken, 1926) with per-user-defined tolerance, ε = 10−5, is exploited to determine238

whether the ECM algorithm has achieved convergence (see McLachlan and Krishnan (2008) for more details). It is239

well known that the choice of starting points plays an important role in the EM-type algorithm. Since the MMNFA240

model includes the original FA model as a special case, we set λ̂(0) = 0 and ν̂(0) corresponding to an initial assumption241

near to normality. Then, by fitting the FA model to the data, reasonable initial values of the mean vector µ̂(0), factor242

loading matrix B̂(0) and error covariance matrix D̂(0) can be obtained. The R command “factanal” is used for fitting243

the FA model.244

In the data analysis, two well-known model selection criteria is to be used, which take the form of the penalized245

log-likelihood mC(n) − 2`max, to compare models and to determine an appropriate value for q. Here, `max is the246

maximized log-likelihood, m is the number of parameters in the considered model, and the factor C(n) equals to 2 for247

the Akaike information criterion (AIC) and to log(n) for the Bayesian information criterion (BIC).248

4. Monte Carlo simulation studies249

4.1. Model performance in dealing with skewed and leptokurtic simulated data250

A simulation study is conducted to examine how well the MMN-based FA models work in the presence of asym-251

metrical features in the data. Following Lin et al. (2015), artificial datasets of sizes n = 100, 300 are generated from252

the FA model by assuming non-normal distribution for the latent factors. In each replication of 100 Monte Carlo (MC)253

samples, let p = 10 and 50, three numbers of factor q = 2, 3 and 4, and the parameter values µ = 0, B = Uni f (p, q),254

and D = diag{Uni f (p, p)}, in which Uni f (p, q) denotes a matrix of random numbers, with dimension p×q uniformly255

drawn from the unit interval (0, 1). To add various degrees of skewness and kurtosis, the latent factors U are gener-256

ated from the beta distribution with shape parameters α = 0.1 and β = 30, Beta(0.1, 30), and Chi-square distribution257

with one degree of freedom (χ2
(1)). Therefore, the population skewness/kurtosis of U equals 6/52 for Beta(0.1, 30)258

and 2.8/12 for χ2
1. Random samples generated from the multivariate normal distribution, with zero mean and scale259

covariance D, are also considered as errors.260

Assuming the number of latent factors is known, Table 1 summarizes the results of fitting MMNEFA, MMNE-261

HFA and rSNFA models, including the average of the BIC values, required CPU time (in second), together with the262

frequencies of the particular model chosen based on the smallest BIC value, by considering q = 2, 3 and 4 for each263

simulated dataset. The number of parameters involved in the MMNEFA, MMNEHFA and rSNFA models is reported264

in Table 1 of the Online Supplement. The model comparison results displayed in Table 1 suggest that the MMNEFA265

model provides a better fit than the others for the χ2
1 data generator (in all 24 scenarios), while, the MMNEHFA266

works much better than the other two models for the Beta(0.1, 30) data generator. Based on the CPU time, it can be267

concluded that the MMNEFA model is, in average, faster than rSN and MMNEH models.268
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Table 1: Results of the first simulation study based on 100 replications.
χ2

1 Beta(0.1, 30)
n p q MMNEFA MMNEHFA rSNFA MMNEFA MMNEHFA rSNFA

100 10 2 Mean 2283.22 2288.15 2286.05 3836.78 3833.17 3850.05
Freq. 70 4 26 22 70 8

CPU time 0.70 9.90 0.90 0.20 5.40 0.30
3 Mean 2306.37 2310.03 2308.17 3853.52 3852.68 3871.7

Freq. 78 4 18 23 76 1
CPU time 0.80 10.10 1.0 0.30 6.50 0.40

4 Mean 2335.27 2339.12 2336.9 3877.24 3875.73 3896.16
Freq. 77 6 17 22 76 2

CPU time 0.80 10.90 1.00 0.30 7.40 0.50
100 50 2 Mean 11358.79 11362.12 11361.25 16771.9 16761.04 16794.64

Freq. 78 3 19 42 53 5
CPU time 2.1 32.60 2.40 0.70 11.00 1.00

3 Mean 11512.74 11515.98 11515.45 16824.24 16811.01 16859.1
Freq. 83 7 10 15 84 1

CPU time 2.00 31.40 2.3 0.90 12.90 1.10
4 Mean 11664.48 11668.18 11667.78 16908.47 16894.25 16942.91

Freq. 85 5 8 7 93 0
CPU time 2.00 31.20 2.30 1.00 15.20 1.20

300 10 2 Mean 6628.65 6632.69 6632.08 10242.86 10238.74 10281.86
Freq. 85 3 12 19 75 6

CPU time 1.30 19.10 1.30 0.30 7.70 0.30
3 Mean 6669.01 6673.14 6672.53 10279.35 10270.04 10310.05

Freq. 86 3 11 9 91 0
CPU time 1.30 18.50 1.30 0.40 9.20 0.50

4 Mean 6706.86 6711.23 6710.77 10299.31 10292.48 10342.4
Freq. 88 2 10 2 98 0

CPU time 1.41 18.10 1.97 0.50 10.60 0.60
300 50 2 Mean 33007.32 33019.02 33016.40 49002.36 48977.10 49082.37

Freq. 86 4 10 17 83 0
CPU time 3.80 62.5 3.90 1.50 21.90 1.7

3 Mean 33214.02 33236.72 33231.04 49173.35 49145.64 49208.27
Freq. 92 2 6 2 98 0

CPU time 3.90 67.20 4.00 1.60 23.7 2.10
4 Mean 33418.61 33433.01 33424.49 49279.12 49250.88 49350.10

Freq. 96 2 2 2 98 0
CPU time 4.30 72.30 6.0 2.10 25.80 2.70

4.2. Comparison of fitting under different degrees of freedom of the rSTFA model269

To demonstrate the performance of the proposed factor model, the second comprehensive simulation study is270

conducted. Consider five-dimensional artificial data with n = 150 observations generated from an rSTFA model (Lin271

et al., 2015). The presumed parameters are µ> = (10, 20, 30, 40, 50), D = diag{1, 2, 3, 4, 4}, and272

B> =

(
3 3 3 4 7
0 4 6 8 9

)
.

Also, to achieve various levels of skewness and kurtosis, consider the degree of freedom ν ∈ {4, 10, 15, 20, 30, 40} and273

two scenarios designed as274

Scenario 1: (λ1, λ2) = (2, 6), Scenario 2: (λ1, λ2) = (3, 3).

The performance of the rSNFA and rSTFA models are compared with the proposed MMNE and MMNEH factor275

analyzers. Over 100 trials, Table 2 summarizes the average of the AIC and BIC values of the considered models, their276

corresponding standard deviations (Std.), together with the frequencies of the particular model chosen by the smallest277

AIC and BIC values, by considering q = 2 for each simulated dataset. The required CPU time is also recorded in the278

table. As the true model is always expected to have the best performance, the results depicted in Table 2 show that the279

rSTFA model works well for small degrees of freedom ν = 4 and 10. It is observed that in these cases, i.e. ν = 4, 10,280

the MMNEFA model is the second-best performing model. However, as the value of ν increases, both the rSTFA and281

rSNFA models approach the same estimation results, and thus the rSNFA model might outperform the rSTFA model.282

But, it is clear that when ν exceeds 10, the MMNEFA model provides a better fit than the others with the smallest AIC283

and BIC in both scenarios. Figures 2 and 3 in the Online Supplement display the density contours of the fitted bivariate284
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Table 2: Comparison of the rSNFA, rSTFA, MMNEFA and MMNEHFA models based on 100 MC samples generated from the rSTFA model.
Scenario 1 Scenario 2

ν Criterion rSNFA rSTFA MMNEFA MMNEHFA rSNFA rSTFA MMNEFA MMNEHFA
ν = 4 AIC Mean 3401.24 3265.96 3366.91 3364.27 3377.94 3241.85 3343.08 3341.92

Std. 212.31 188.85 209.52 208.06 218.05 199.67 215.05 214.54
Freq. 0 100 0 0 0 100 0 0

BIC Mean 3464.47 3332.19 3430.13 3430.51 3441.16 3308.08 3406.31 3408.15
Std. 212.31 188.85 209.52 208.06 218.05 199.67 215.05 214.54
Freq. 0 100 0 0 0 100 0 0

CPU time 1.71 8.68 1.62 30.70 1.67 7.93 1.20 23.36

ν = 10 AIC Mean 3080.85 3061.67 3066.77 3070.06 3116.26 3097.05 3105.45 3110.07
Std. 165.32 163.66 167.50 166.62 172.52 170.61 173.39 173.41
Freq. 0 59 33 8 2 79 16 3

BIC Mean 3144.07 3127.91 3129.99 3136.30 3179.48 3163.28 3168.68 3176.30
Std. 165.32 163.66 167.50 166.62 172.52 170.61 173.39 173.41
Freq. 0 53 46 1 2 67 29 2

CPU time 1.75 7.44 1.57 37.53 1.63 6.92 0.95 33.58

ν = 15 AIC Mean 3056.20 3049.03 3048.11 3052.92 3011.41 3001.59 3003.13 3008.93
Std. 191.64 190.96 192.42 190.76 203.03 203.54 204.17 203.59
Freq. 1 41 53 5 1 51 45 3

BIC Mean 3119.43 3115.26 3111.33 3119.15 3074.64 3067.83 3066.36 3075.17
Std. 191.64 190.96 192.42 190.76 203.03 203.54 204.17 203.59
Freq. 8 27 64 1 5 39 55 1

CPU time 1.74 7.27 1.59 38.36 1.44 5.95 0.99 33.27

ν = 20 AIC Mean 3039.65 3036.86 3032.11 3037.21 2965.83 2961.72 2958.96 2964.95
Std. 143.13 142.72 144.38 143.50 185.84 186.03 185.41 184.60
Freq. 9 20 64 7 8 34 58 0

BIC Mean 3102.88 3103.09 3095.34 3103.44 3029.05 3027.95 3022.19 3031.18
Std. 143.13 142.72 144.38 143.50 185.84 186.03 185.41 184.60
Freq. 11 6 82 1 11 17 71 1

CPU time 1.66 6.85 1.51 37.06 1.41 5.63 1.05 34.99

ν = 30 AIC Mean 2981.47 2980.69 2973.46 2978.81 2999.34 2998.24 2995.84 3002.29
Std. 197.40 197.52 200.03 199.24 163.03 163.13 163.53 163.62
Freq. 9 15 70 6 18 19 62 1

BIC Mean 3044.69 3046.92 3036.68 3045.04 3062.56 3064.48 3059.06 3068.52
Std. 197.40 197.52 200.03 199.24 163.03 163.13 163.53 163.62
Freq. 13 8 77 2 23 9 67 1

CPU time 1.62 7.74 1.54 37.39 1.49 7.76 1.13 38.37

ν = 40 AIC Mean 2985.14 2985.08 2978.86 2984.20 2946.52 2946.75 2943.39 2950.31
Std. 180.58 180.09 180.73 178.94 206.25 206.24 205.84 205.16
Freq. 20 9 65 6 26 16 58 0

BIC Mean 3048.36 3051.31 3042.08 3050.44 3009.74 3012.99 3006.61 3016.54
Std. 180.58 180.09 180.73 178.94 206.25 206.24 205.84 205.16
Freq. 18 4 77 1 28 4 68 0

CPU time 1.61 9.71 1.53 37.25 1.33 8.19 1.21 38.58

rMSN, rMST, MMNE and MMNEH distributions, together with two summary histograms and nonparametric density285

curves of their marginal distributions. For both scenarios 1 and 2, better performance of the MMNEFA model is286

confirmed for large values of ν. Furthermore, as expected, since the rSNFA and MMNEFA are free of the additional287

parameter ν, the allocated CPU time for them is much smaller than for the rSTFA and MMNEHFA models.288

4.3. Finite sample properties of ML estimates289

In this experiment, 500 MC artificial samples are generated from each of the MMNEFA and MMNEHFA models290

with the same presumed true parameter values µ> = (10, 20, 30), B> = (2, 4, 6), D = (0.6, 0.4, 0.8)I3, λ = 3 and291

ν = 0.4. The data are simulated by applying the stochastic representation in (10), where the chosen sample size n is292

varied from 100 to 500, 2000 and 4000. For each synthetic data set generated from the MMNEFA or MMNEHFA293

models, the corresponding model is fitted and the parameter estimates are obtained. Tables 3 and 4 report the average294

values and the corresponding Std. of the ECM-based estimates across all samples for the MMNEFA and MMNEHFA295

models, respectively. Moreover, in order to examine the performance of the ML estimates for each sample size and296

for each parameter, the absolute bias (AB) and the mean squared error (MSE) is determined297

AB =
1

500

500∑
i=1

∣∣∣θ̂(i) − θtrue

∣∣∣ and MSE =
1

500

500∑
i=1

(
θ̂(i) − θtrue

)2
,
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Table 3: Mean, Std., AB and MSE of the ML estimates over 500 MC samples generated from the MMNEFA model (true parameter in parentheses).
n Measure µ1(10) µ2(20) µ3(30) b1(2) b2(4) b3(6) σ2

1(0.6) σ2
2(0.4) σ2

3(0.8) λ(3)
100 Mean 9.9734 19.9354 29.9051 2.0212 3.9813 5.9704 0.5767 0.4216 0.7505 2.9703

Std. 0.2144 0.4104 0.6061 0.1953 0.3618 0.5479 0.0924 0.2404 0.3198 1.4520
AB 0.0266 0.0646 0.0949 0.0212 0.0197 0.0596 0.0233 0.0316 0.0705 1.0993
MSE 0.0462 0.1710 0.3728 0.0378 0.1300 0.2974 0.0090 0.1808 0.0950 1.0209

500 Mean 9.9829 19.9886 29.9742 2.0106 4.0149 6.0381 0.5929 0.4155 0.7728 3.0241
Std. 0.0947 0.1707 0.2527 0.0824 0.1549 0.2302 0.0385 0.1910 0.1403 1.1747
AB 0.0071 0.0114 0.0358 0.0106 0.0149 0.0381 0.0071 0.0155 0.0328 0.7241
MSE 0.0089 0.0290 0.0635 0.0068 0.0240 0.0539 0.0015 0.1682 0.0368 0.5090

2000 Mean 10.0045 20.0074 30.0141 2.0045 4.0019 6.0108 0.5978 0.4066 0.7889 3.0029
Std. 0.0468 0.0808 0.1248 0.0406 0.0805 0.1168 0.0218 0.1388 0.0833 0.5793
AB 0.0045 0.0074 0.0141 0.0045 0.0019 0.0108 0.0022 0.0066 0.0189 0.4089
MSE 0.0022 0.0065 0.0156 0.0017 0.0064 0.0136 0.0005 0.0968 0.0153 0.2041

4000 Mean 10.0016 20.0027 30.0056 2.0009 3.9992 6.0014 0.5993 0.4034 0.7926 3.0010
Std. 0.0347 0.0606 0.0933 0.0317 0.0634 0.0959 0.0143 0.0966 0.0571 0.3595
AB 0.0016 0.0027 0.0056 0.0009 0.0008 0.0014 0.0007 0.0034 0.0096 0.3040
MSE 0.0012 0.0036 0.0086 0.0010 0.0040 0.0091 0.0002 0.0535 0.0115 0.1025

Table 4: Mean, Std., AB and MSE of the ML estimates over 500 MC samples generated from the MMNEHFA model (true parameter in parenthe-
ses).

n Measure µ1(10) µ2(20) µ3(30) b1(2) b2(4) b3(6) σ2
1(0.6) σ2

2(0.4) σ2
3(0.8) λ(3) ν(0.4)

100 Mean 10.2682 20.5464 30.7745 2.5537 4.5902 6.6550 0.5335 0.3551 0.7466 2.5811 0.4734
Std. 0.4082 0.8144 1.2181 0.2510 0.5081 0.7444 0.1076 0.1554 0.3167 1.7584 0.2443
AB 0.0382 0.0664 0.0745 0.0537 0.0402 0.0550 0.0335 0.0951 0.0966 1.1811 0.2034
MSE 0.0472 0.1263 0.2247 0.0690 0.1443 0.0878 0.0215 0.0800 0.0662 1.6031 0.0219

500 Mean 10.1065 20.2169 30.3266 2.3207 4.2337 6.3585 0.5574 0.3743 0.7608 2.7214 0.4543
Std. 0.1622 0.3213 0.4794 0.1277 0.2549 0.3721 0.0404 0.0656 0.1402 1.1462 0.1225
AB 0.0265 0.0369 0.0466 0.0207 0.0137 0.0385 0.0126 0.0543 0.0568 0.9314 0.0943
MSE 0.0294 0.0493 0.0844 0.0373 0.0429 0.0362 0.0116 0.0597 0.0244 1.0240 0.0132

2000 Mean 9.9955 19.9295 29.9469 2.0280 4.0550 6.0854 0.5989 0.3957 0.8044 2.8207 0.4113
Std. 0.1228 0.2403 0.3618 0.0665 0.1340 0.2008 0.0212 0.0325 0.0623 0.7625 0.1086
AB 0.0095 0.0125 0.0131 0.0089 0.0075 0.0154 0.0091 0.0257 0.0144 0.5207 0.0313
MSE 0.0091 0.0163 0.0338 0.0132 0.0109 0.0103 0.0064 0.0176 0.0109 0.6775 0.0089

4000 Mean 10.0090 19.9991 29.9988 2.0024 4.0040 6.0074 0.6009 0.3994 0.8003 3.0846 0.4098
Std. 0.0757 0.1504 0.2270 0.0461 0.0913 0.1393 0.0152 0.0250 0.0482 0.6525 0.0562
AB 0.0040 0.0059 0.0092 0.0055 0.0061 0.0074 0.0069 0.0174 0.0103 0.3846 0.0198
MSE 0.0032 0.0062 0.0127 0.0096 0.0093 0.0086 0.0042 0.0125 0.0088 0.4183 0.0040

where θ̂(i) is the ML estimate of θtrue obtained from the ith replicate. It can be observed from both Tables 3 and 4298

that the AB and MSE values approach zero as n increases, showing empirically the asymptotic unbiasedness and the299

consistency of the ML estimates obtained via the ECM-based algorithm.300

5. Real data analysis301

5.1. Wine recognition data302

Firstly, the proposed methodology is applied to the Italian wine recognition dataset. The wine dataset is available303

in the UCI Machine Learning Repository (archive.ics.uci.edu/ml) and comprises 13-dimensional chemical measure-304

ments of n = 178 Italian wines grown in three different cultivars (groups), Barolo, Grignolino and Barbera, with sizes305

59, 71 and 48, respectively. In this analysis, the focus is solely on the Barbera group. Table 5 summarizes basic306

descriptive statistics of the 13 attributes, including their sample skewness, kurtosis and p-values of the Kolmogorov-307

Smirnov (KS) and r∗n (Rodrı́guez and Alva, 2010) tests for marginal normality and skew-normality, respectively. The308

results depicted in Table 5 show that for the considered data most of the attributes are moderately skewed. Moreover,309

the p-values of the KS test significantly suggest that not all of the 13 measures follow the normal distribution, but310

there is enough evidence in favour of the skew-normal (SN) distribution based on the r∗n test for all attributes. In the311

multivariate perspective, by applying the generalized Shapiro-Wilk test for multivariate normality (GSW; Alva and312

Estrada (2009)) and the canonical-based test for multivariate skew-normality (CSN; Balakrishnan et al. (2014)), it is313

suggested that the multivariate normality assumption be rejected in favour of the multivariate SN distribution. The314

p-values corresponding to the test statistics are GSW = 0.0444 and CSN = 0.4610.315

Using the “regression” method (see Chapter 9.5 of Johnson and Wichern (2007)), three factor score estimates316

are obtained from the classical FA model with q = 3. Figure 2 in the Online Supplement shows the histogram and317
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Table 5: An overview of 13 attributes of Barbera data with the p-values of the KS and r∗n tests.
Variable Description Skewness Kurtosis KS r∗n

y1 Alcohol 0.147 -0.666 0 0.448
y2 Malic acid 0.098 -0.422 0 0.193
y3 Ash 0.353 -0.832 0 0.503
y4 Alkalinity of ash 0.453 -0.594 0 0.408
y5 Magnesium 0.524 -0.617 0 0.567
y6 Total phenols 0.988 1.298 0 0.749
y7 Flavanoids 0.977 -0.003 0 0.288
y8 Nonflavanoid phenols -0.515 -0.603 0 0.426
y9 Proanthocyanins 1.523 3.426 0 0.884
y10 Color intensity 0.292 -0.828 0 0.371
y11 Hue 0.572 -0.529 0 0.395
y12 OD280/OD315 0.665 0.349 0 0.412
y13 Proline 0.309 -0.524 0 0.390
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Figure 3: Scatter plots of factor scores superimposed on a set of contour lines estimated by the rMSN, MMNE and MMNEH distributions together
with two summary histograms and curves of their marginal densities for the Barbera data..

corresponding normal Q-Q plots of the three FA factor score estimates that highlight serious departures of factor318

scores from the normality assumption. The contours of the fitted bivariate rMSN, MMNE and MMNEH distributions,319

together with two summary histograms and curves of their marginal distributions, are plotted in Figure 3. Theses plots320

reveal that skewed distributions can capture the scattering patterns relatively well. These characteristics motivate the321

consideration of skewed FA models, which can take both skewness and kurtosis of the data into account and are322

expected to showcase more appropriate statistical inference.323

The FA, tFA, rSNFA, rSTFA, MMNEFA, MMNEHFA, GHSTFA and generalized hyperbolic common skew-324

t factor analysis (GHCSTFA; Murray et al. (2014b)) models are fitted to the original and standardized chemical325

measurements with q ranging from 2 to 5. The standardization is done so as to have zero mean and unit standard326

deviations and to avoid variables that have a greater impact due to different scales. Note that by fitting the tFA,327

rSTFA, GHSTFA, and GHCSTFA models, it is observed that the degree of freedom of all models tends to infinity.328

The detailed numerical results, including the maximized log-likelihood values, and the number of free parameters,329

together with the BIC are reported in Table 6. It can be observed that the MMNEFA model with q = 3 outperforms330

other competitors because it has the smallest BIC score, regardless of whether the data are standardized or not. The331

ML estimate of parameters and their standard error (in parentheses) for the best chosen model are presented in Table332

7. The procedure for computing the standard error of the parameter estimates is presented in the Online Supplement.333

The estimated skewness parameters, in Table 7, are statistically significant and less than zero, revealing that the latent334

factors are negatively skewed. From the Varimax rotated solution of factor loadings presented in Table 7, it can be335

seen that the variables have positive and negative loadings on the three factors. The first factor loads heavily on y9336

and y10, while the second one loads heavily on y7, in absolute value, followed by y8. It is known that the phenolic337

content of wine refers to the two phenolic compounds, the natural phenol and polyphenols (color). Moreover, the338

natural phenols can be broadly classified into the flavonoid and non-flavonoid categories. Therefore, the first and339

14



Table 6: Estimation performance of eight factor models fitted to the Barbera data.
Original data Standardized data Original data Standardized data

Model q m `max BIC `max BIC Model q m `max BIC `max BIC
FA 2 51 -684.78 1567.00 -788.43 1774.29 tFA 2 52 -684.75 1570.81 -788.40 1778.11

3 62 -649.80 1539.61 -753.45 1746.90 3 63 -649.82 1543.53 -753.47 1750.83
4 72 -638.68 1556.09 -742.33 1763.39 4 73 -638.70 1560.00 -742.35 1767.30
5 81 -627.65 1568.87 -731.30 1776.17 5 82 -627.65 1572.74 -731.30 1780.05

rSNFA 2 53 -671.81 1548.79 -775.46 1756.09 rSTFA 2 54 -671.90 1552.84 -775.55 1760.14
3 65 -636.82 1525.26 -740.47 1732.56 3 66 -636.87 1529.23 -740.51 1736.53
4 76 -625.89 1546.00 -729.54 1753.29 4 77 -625.93 1549.95 -729.58 1757.25
5 86 -613.14 1559.21 -716.79 1766.51 5 87 -613.15 1563.10 -716.80 1770.40

MMNEFA 2 53 -666.93 1539.04 -770.58 1746.34 MMNEHFA 2 54 -665.24 1539.53 -768.89 1746.83
3 65 -631.45 1514.53 -735.10 1721.83 3 66 -629.71 1514.92 -733.36 1722.22
4 76 -620.68 1535.57 -724.33 1742.87 4 77 -618.67 1535.42 -722.32 1742.72
5 86 -607.02 1546.96 -710.67 1754.26 5 87 -605.06 1546.91 -708.71 1754.21

GHSTFA 2 65 -653.76 1559.15 -756.29 1764.21 GHCSTFA 2 43 -889.96 1946.39 -792.52 1751.51
3 76 -640.92 1576.05 -744.47 1783.16 3 56 -880.22 1977.24 -754.44 1725.67
4 86 -626.76 1586.44 -730.41 1793.74 4 68 -909.78 2082.79 -751.43 1766.10
5 95 -621.49 1610.74 -724.16 1816.09 5 79 -772.04 1849.90 -1097.85 2501.53

Table 7: Summary of ML results together with the associated standard errors in parentheses for the best chosen model.
Parameter

Variable µ col1(B) col2(B) col3(B) d
y1 0.0006 (0.0214) 0.3560 (0.0176) 0.0654 (0.0176) 0.2217 (0.0215) 0.7931 (0.0107)
y2 0.0010 (0.0114) -0.2155 (0.0151) 0.2217 (0.0150) 0.0523 (0.0240) 0.8748 (0.0073)
y3 -0.0004 (0.0342) 0.0752 (0.0330) -0.0813 (0.0277) 0.9827 (0.0317) 0.0006 (0.0353)
y4 -0.0004 (0.0320) 0.1678 (0.0279) -0.0916 (0.0349) 0.7347 (0.0270) 0.4024 (0.0332)
y5 -0.0025 (0.0287) 0.0947 (0.0297) -0.4997 (0.0208) 0.1630 (0.0219) 0.6502 (0.0242)
y6 0.0004 (0.0209) 0.3748 (0.0226) 0.0038 (0.0266) 0.4243 (0.0158) 0.4624 (0.0379)
y7 -0.0042 (0.0290) 0.3257 (0.0001) −0.8505 (0.0001) 0.1827 (0.0001) 0.0001 (0.0282)
y8 0.0037 (0.0326) 0.2191 (0.0180) 0.6841 (0.0280) 0.0175 (0.0361) 0.3514 (0.0429)
y9 0.0001 (0.0313) 0.9710 (0.0299) -0.1014 (0.0284) 0.1098 (0.0387) 0.0107 (0.0346)
y10 -0.0003 (0.0271) 0.6709 (0.0154) -0.1556 (0.0261) 0.0602 (0.0242) 0.5018 (0.0312)
y11 0.0007 (0.0150) -0.4338 (0.0135) 0.2008 (0.0202) 0.2294 (0.0132) 0.6958 (0.0125)
y12 0.0021 (0.0228) -0.1231 (0.0289) 0.4294 (0.0218) 0.2683 (0.0202) 0.6717 (0.0292)
y13 0.0016 (0.0227) 0.2285 (0.0149) 0.2814 (0.0228) -0.1418 (0.0265) 0.8060 (0.0120)

λ
-1.4831 (0.2520) -6.1825 (1.1312) -0.6494 (0.2961)

second factors can respectively be viewed as the natural phenols factor and color assessment indices. Also, y3 and340

y4 have heavy loadings on the third factor, which might be called a mineral factor. Thus, one can conclude that the341

variables, y3, y4, and y7 − y10, explain most of the variability in the Barbera data.342

5.2. Italian olive oil data343

The second dataset is related to the eight fatty acids found by lipid fraction in 572 Italian olive oils (Forina and344

Tiscornia, 1982) that came from the three regions of Italy-Southern, Sardinia, and Italy-Northern. These regions345

can be further subdivided into nine different areas. The Italian olive oil dataset, which is available in the “pgmm”346

package of R, was recently analyzed by Tortora et al. (2015), who proposed the mixture of generalized hyperbolic347

factor model. Here, the focus is solely on n = 98 observations from the Sardinia region. Table 8 shows a summary348

of the 8 measures along with their normality KS and skew-normality r∗n tests. From the p-values of the tests and the349

values of skewness and kurtosis, it can be significantly concluded that not all variables follow the normal distribution,350

but there is enough evidence in favour of the SN distribution based on the r∗n test for all attributes. Furthermore, the351

p-values of the tests GSW = 5.666e-13 and CSN = 0.509 for the multivariate normality and skew-normality assure us352

that skewed distributions can describe this data better that the normal model.353

Displayed in Figure 3 in the Online Supplement, the histogram and corresponding normal Q-Q plots of the four354

FA factor score estimates obtained by the “regression” method for the classical FA model with q = 4 highlight a355

serious departure of factor scores from the normality assumption. One can also observe from Figure 4 how well the356

bivariate MMN-based models, as the rMSN, MMNE and MMNEH distributions, can capture the scattering patterns357

of the four FA factor score estimates.358
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Table 8: An overview of 8 attributes of 98 of the Sardinia Italian olive oil data with the p-values of the KS and r∗n tests.
Variable Description Skewness Kurtosis KS r∗n

y1 Palmitic 0.146 -0.518 0 0.253
y2 Palmitoleic -0.367 3.427 0 0.440
y3 Stearic 0.473 -0.603 0 0.361
y4 Oleic -0.772 -0.756 0 0.335
y5 Linoleic 0.683 -1.015 0 0.409
y6 Linolenic 0.550 0.190 0 0.207
y7 Arachidic 0.162 -0.142 0 0.184
y8 Eicosenoic 0.098 -1.169 0 0.279
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Figure 4: Scatter plots of factor scores superimposed on a set of contour lines estimated by the rMSN, MMNE and MMNEH distributions together
with two summary histograms and curves of their marginal densities for the Sardinia Italian olive oil data.

Motivated by the described disadvantages of the FA model and the advantages of the skewed-type FA models to359

analyze the Sardinia olive oil data, the skew FA models are used for illustration purposes. We fit the FA, tFA, rSNFA,360

rSTFA, GHSTFA, GHCSTFA, MMNEFA and MMNEHFA models with q ranging from 2 to 4 to the standardized361

and original data. Notice that the choice of a maximum q = 4 satisfies the restriction (p − q)2 ≥ (p + q). The results362

of the ML fitting, including the maximized log-likelihood values, the number of parameters together with the BIC363

value are reported in Table 9. It can be observed that the MMNEFA model outperforms other competitors based on364

the BIC criteria for both standardized and non-standardized data. From Table 10, which summarizes the ML estimate365

of parameters, along with their standard error (in parentheses), it can readily be seen that the estimated skewness366

parameters are significantly high, indicating that the joint distribution of the latent factors is skewed.367

From the Varimax rotated solution of the factor loadings highlighted in Table 10, the positive and negative loadings368

of variables on the four factors are observed. It is concluded that the first factor has a very high absolute value loading369

on y6. Because this attribute is related to the omega-3 fatty acid, it could be labeled as the vascular system care factor.370

It is clear that the second factor also loads highly on y1 alone, which motivate us to label it as the controversial factor371
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Table 9: Comparison of ML estimation results for the Sardinia olive oil data.
Original data Standardized data Original data Standardized data

Model q m `max BIC `max BIC Model q m `max BIC `max BIC
FA 2 31 -3111.05 6364.24 -887.46 1917.05 tFA 2 32 -3101.77 6350.26 -878.18 1903.08

3 37 -3098.12 6365.89 -874.53 1918.71 3 38 -3081.37 6336.96 -857.77 1889.78
4 42 -3084.14 6360.86 -860.55 1913.67 4 43 -3066.24 6329.63 -842.65 1882.45

rSNFA 2 33 -3105.27 6361.83 -881.67 1914.65 rSTFA 2 34 -3090.237 6336.363 -866.64 1889.18
3 40 -3082.41 6348.21 -858.81 1901.02 3 41 -3070.638 6329.259 -847.04 1882.07
4 46 -3058.63 6328.16 -835.03 1880.97 4 47 -3051.80 6319.10 -828.21 1871.95

MMNEFA 2 33 -3086.657 6324.619 -863.06 1877.43 MMNEHFA 2 34 -3095.39 6346.67 -871.80 1899.48
3 40 -3069.008 6321.416 -845.41 1874.23 3 41 -3072.60 6333.19 -849.01 1886.00
4 46 -3053.01 6316.92 -829.41 1869.73 4 47 -3053.29 6322.07 -829.69 1874.88

GHSTFA 2 40 -3092.47 6368.35 -868.88 1921.16 GHCSTFA 2 28 -4162.47 8453.32 -912.26 1952.90
3 46 -3076.03 6362.96 -852.43 1915.77 3 36 -4022.80 8210.66 -901.10 1967.26
4 51 -3064.16 6362.15 -840.56 1914.96 4 43 -3611.82 7420.80 -890.04 1977.23

Table 10: ML solutions together with the associated Varimax rotated loading and their standard errors in parentheses for the best chosen model.
Parameter

Variable µ col1(B) col2(B) col3(B) col4(B) d
y1 -0.0034 (0.0365) 0.0037(0.0353) 0.9492(0.0333) 0.3145(0.345) 0.0019(0.0313) 0.0038 (0.0262)
y2 -0.0014 (0.0329) -0.1160(0.0180) -0.1124(0.0341) 0.2729(0.0393) 0.4034(0.0117) 0.7289 (0.0320)
y3 -0.0041 (0.0416) 0.3198(0.0300) 0.0942(0.0428) 0.6497(0.0437) 0.4802(0.0319) 0.2465 (0.0437)
y4 0.0058 (0.0315) -0.1654(0.0222) -0.3695(0.0242) −0.9089(0.0309) -0.1575(0.0346) 0.0172 (0.0119)
y5 -0.0058 (0.0362) 0.1896(0.0008) 0.1356(0.0008) 0.9883(0.0008) -0.0218(0.0007) 0.0001 (0.0186)
y6 0.0024 (0.0460) −0.9224(0.0262) -0.0120(0.0376) -0.3429(0.0339) -0.0370(0.0289) 0.0265 (0.0208)
y7 -0.0001 (0.0341) -0.4198(0.0214) 0.0077(0.0254) 0.0500(0.0280) 0.0005(0.0170) 0.8110 (0.0086)
y8 0.0001 (0.0311) 0.0369(0.0222) 0.0325(0.0377) -0.0275(0.0266) 0.0745(0.0083) 0.9811 (0.0069)

λ
6.4783 (1.3408) 5.1820 (0.9843) 4.9586(0.8864) 6.1359(1.5273)

since contradicting evidence has been found by studies determining whether the palmitic acid contributes to coldihal372

vascular disease and cancer. The estimated factor loadings in Table 10 also reveal that the third factor, which might be373

called the nutrition factor, loads highly on y5 followed by y2 and with a very high absolute loading on y4. Moreover, y3374

has moderately high loading on the fourth factor. Observing the estimate of d, the small uniqueness of these variables375

is evident. The remaining measurements have negligible loadings on the four factors since their estimated loadings are376

fairly small. Thus, one could conclude that the variables y1, y3 − y5, and y6 explain most of variability in the Sardinia377

olive oil data.378

Figure 5 shows the scatter plots overlaid with the marginal contours, obtained by the marginalization of the fitted379

MMNEFA and MMNEHFA models, for four selected variables. The visualization of the contours shows that the fitted380

MMNEFA can satisfactorily adapt the shape of the scattering pattern of the data. To summarize, the implementation381

of MMNEFA can give more accurate results for analyzing the Sardinia olive oil data.382

6. Conclusions383

This paper has dealt with the extension of the FA model, based on the multivariate mean-mixture of the normal384

distribution as an alternative model for analyzing strongly skewed and leptokurtic datasets. Presenting a hierarchical385

stochastic representation, parameter estimation was determined with an ECM algorithm. Two real data analyses386

and three simulation studies illustrate the favorable performance of the presented methodology. It is shown that387

the proposed model can be considered as an alternative to some existing factor analyzers, especially the rSTFA and388

GHSTFA models.389

A further development will be to consider a finite mixture representation of the MMN models (Naderi et al., 2019).390

It would also be of interest to extend the current approach to the finite mixture of the MMNFA model (Liu and Lin,391

2015; Tortora et al., 2015). Due to some computational difficulties in implementing the EM algorithm in modeling392

censored and/or missing value datasets based on the NMVM model, the methodology proposed in this paper can393

facilitate the development of new models for analyzing skewed data with censored and/or missing values (Liu and394

Lin, 2015; Lin et al., 2017; Wang et al., 2019).395
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Figure 5: Scatter plots of pairs of four selected variables of the Sardinia Italian olive oil data and coordinate projected contours.

All computations were carried out using R 3.4.3 in a Win 64 environment with a 2.59 GHz/Intel Core(TM) i7396

6500U CPU Processor and 8.0 GB RAM. R codes for implementation are available upon request.397
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