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a,b, Christopher YOUNG
a,b,c, Stephanus

Peter HENZI
a,b and Louise BARRETT

a,b

aDepartment of Psychology, University of Lethbridge, 4401 University Drive, Lethbridge, T1K 3M4, Canada, bApplied

Behavioural Ecology and Ecosystems Research Unit, University of South Africa, Florida, Gauteng, South Africa,

and cEndocrine Research Laboratory, Mammal Research Institute, Faculty of Natural and Agricultural Science,

University of Pretoria, Pretoria, South Africa

*Address correspondence to Tyler Bonnell. E-mail: tyler.bonnell@uleth.ca.

Handling editor: Matthew Hasenjager

Received on 4 March 2020; accepted on 23 July 2020

Abstract

The development of multilayer network techniques is a boon for researchers who wish to under-

stand how different interaction layers might influence each other, and how these in turn might in-

fluence group dynamics. Here, we investigate how integration between male and female grooming

and aggression interaction networks influences male power trajectories in vervet monkeys

Chlorocebus pygerythrus. Our previous analyses of this phenomenon used a monolayer approach,

and our aim here is to extend these analyses using a dynamic multilayer approach. To do so, we

constructed a temporal series of male and female interaction layers. We then used a multivariate

multilevel autoregression model to compare cross-lagged associations between a male’s centrality

in the female grooming layer and changes in male Elo ratings. Our results confirmed our original

findings: changes in male centrality within the female grooming network were weakly but positive-

ly tied to changes in their Elo ratings. However, the multilayer network approach offered additional

insights into this social process, identifying how changes in a male’s centrality cascade through the

other network layers. This dynamic view indicates that the changes in Elo ratings are likely to be

short-lived, but that male centrality within the female network had a much stronger impact

throughout the multilayer network as a whole, especially on reducing intermale aggression (i.e.,

aggression directed by males toward other males). We suggest that multilayer social network

approaches can take advantage of increased amounts of social data that are more commonly col-

lected these days, using a variety of methods. Such data are inherently multilevel and multilayered,

and thus offer the ability to quantify more precisely the dynamics of animal social behaviors.

Key words: multilayer networks, multilevel multivariate autoregressive model, primate social dynamics, social networks, sociality,
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Social structure in animal groups is often generated through multiple

kinds of behavioral interactions and is therefore intrinsically multi-

dimensional. In other words, interactions of different kinds can

influence and feedback on each other, in ways that depend on

aspects of individual identities, such as age, sex, and dominance

rank. Until recently, it has been difficult to capture this complexity
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in our analyses of animal social structure. Instead, the tendency has

been to create composite indices of behavior to produce a single

monolayer network—in effect, collapsing or flattening the different

behavioral interaction networks, with an attendant loss of informa-

tion about the social structuring within a group. Pulling the different

layers apart, and understanding how network structure within layers

influences structure across layers is a central goal of multilayer net-

work analysis (MLNA) (Finn et al. 2019).

Among highly social species, such as the anthropoid primates,

the promise of MLNA is that the more nuanced analysis of social

structure, made possible by these new techniques, will give rise to a

deeper understanding of within-group social dynamics. This, in

turn, will provide a means of identifying how particular network

structures are formed, maintained, and exert their known effects on

fitness. For example, a multilayer network allows us to model the

dependence between different interaction layers, as well as potential-

ly look at these layers across time (Pinter-Wollman et al. 2014).

Using this approach, it becomes possible to generate a meta-network

that describes the dependencies between the layers of interest within

the multilayer network. By these means, we can investigate how

changes in one behavioral layer influence subsequent patterns of be-

havior in another, facilitating the identification of the mechanisms

by which social life influences reproductive and life history parame-

ters (Ostner and Schülke 2018). The assumption here, then, is that a

multilayer network approach will provide much greater insight into

social processes than monolayer networks and that this will com-

pensate for the greater investment of time and effort entailed by the

construction and interpretation of multilayer networks.

Here, we use a dynamic multilayer network approach to help

test this assumption. In previous work on our long-term study popu-

lation of vervet monkeys Chlorocebus pygerythrus, we used a mono-

layer network approach to investigate how male–female social

dynamics influenced a male’s social standing in the group. Female

vervets are codominant with males and are frequently top-ranking

(Young et al. 2017). This being so, we asked whether associating

with particular females allowed males to dominate other males,

thereby improving their rank and, potentially, their mating opportu-

nities. We found that males with high degree in the female spatial

proximity network and those with high eigenvector centrality in the

female grooming network were more likely to show an upward rank

trajectory across time (Young et al. 2017). Here, we revisit this out-

come by considering whether the effect persists across a later period

of the study and whether a dynamic multilayer approach provides

additional insights that the previous monolayer approach cannot

match. That is, we use a temporal multilayer network to ask

whether male integration into the female grooming network leads to

a rise in male Elo rating (i.e., we now address the direction of the ef-

fect), and extend our previous analyses by investigating whether

changes in one network exert an influence on other layers in the net-

work across time.

To do so, we 1) define our measures of interest, 2) construct a

multilayer network for our vervet study groups, 3) slide the multi-

layer network through time using a moving window approach

(Bonnell and Vilette 2020) to generate a time series of network and

individual state measures, and 4) estimate the dependencies between

these measures. The estimated dependencies then inform us how

changes in one individual’s measure in a particular layer influence

that individual’s measures in other layers.

On the one hand, our approach could be seen as a more complex

variant of traditional monolayer approaches. That is, we use con-

ventional monolayer centrality measures for each interaction

network in our analysis, and investigate the dependencies between

them (i.e., how changes in one layer influences another), whereas

most multilayer network analyses to date have used network metrics

over the entire network. On the other hand, we would argue that, if

an analysis involves the construction of a multilayer network then,

by definition, it is a multilayer network analysis, and the specific

metrics used are not definitional in this same sense (after all, one can

calculate multilayer metrics only if one has constructed a multilayer

network, which suggests it is the latter that is absolutely necessary

and not the former). In short, we have used the metrics and analyses

we feel most appropriate to address our question, which, as already

noted, is to estimate the dependencies between network measures

taken from different layers of the multilevel network. This allows us

to investigate whether and how changes in one layer precede

changes in another (i.e., multilayer dependence), and potentially

identify feedback loops within the multilayer network structure.

Materials and Methods

Species and study site
Vervets are a moderately sexually dimorphic, female philopatric,

Old World monkey species. Males leave their natal groups at sexual

maturity, after which they may sequentially migrate into one or

more other groups during the course of their lives (Young et al.

2019). Data for these analyses were collected between January 2015

and November 2018 from 3 troops (RBM, RST, and PT) of habitu-

ated and individually recognizable vervet monkeys occupying river-

ine woodland at the Samara Game Reserve in the semiarid Karoo

Biome of South Africa (RBM males: 4–10, RBM females: 2–11; RST

males: 5–17, RST females: 7–16; PT males: 2–10, PT females: 8–10;

Pasternak et al. 2013). Data were collected 5 days per week on each

of the troops. In our previous work, we considered the period be-

tween March 2012 and September 2015. Scan samples of individual

animals’ identity and activity were collected every 30 min, including

grooming interactions. In each case, the identity of the individuals

involved and the direction of grooming (i.e., which animal was

groomed and which performed the grooming) were noted. Each

scanning period lasted a maximum of 10 min to ensure that as many

animals as possible were sampled within each group. For agonistic

interactions, data were collected ad libitum, with the identity of the

individuals involved recorded, along with the direction of the ag-

gression, and the outcome of the encounter (i.e., methods follow

Young et al. 2017). Analyses are based on 14,779 grooming interac-

tions and 18,982 agonistic interactions among adult troop members.

Network construction
We constructed a dynamic multilayer network using the frequency

of grooming and agonistic interactions. We further subdivided these

data into construct separate network layers for males and females.

From this multilayered construction, we then adopted a moving

window approach in order to generate a time series of network

layers (Figure 1; Bonnell and Vilette 2020). This method consists of

1) subsampling the data within a time window (e.g., 1 January

2015–1 April 2015), 2) generating networks from this subset of

data, 3) extracting network measures from these networks, and fi-

nally, 4) returning to 1 and shifting the time window through time

(e.g., 1 February 2015—1 May 2015). In this way, our network con-

sisted of layers for each sex, each behavior, and each time period.
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Network measurement extraction
From the time series of networks, we extracted network measures at

the individual level to describe the integration of males in the female

network (Table 1). To measure the extent of a male’s integration

into the female network, we identified the number of females that a

male groomed (i.e., grooming out-degree), and the number of

females that groomed the male (i.e., grooming in-degree). To assess

whether the particular females that a male groomed had any influ-

ence on his rank, we extracted a male’s centrality in the female

grooming network. To do so, we considered each male in turn and

calculated his eigenvector centrality within the female grooming

layer, that is, a network was created using all female–female edges

along with the selected male’s edges to/from females in turn. This

network was then used to estimate eigenvector centrality for the

male node. This was repeated for each male (Figure 1). Hence, if the

male groomed, or was groomed by, more central females then his

position within the female grooming layer would also be more

central.

We also entered the agonistic data into the “EloRating” package

in R (Albers and Vries 2001; Neumann et al. 2011; Vilette et al.

2019) in order to estimate changes in Elo ratings for each male. We

used the Elo rating method as it allows for the dynamic updating of

individual rank status within the group, and included agonistic

interactions between all individuals (males, females, and juveniles).

We used a 4-month burn-in period (1 September 2014–1 January

2015) and calculated continually updated Elo ratings for each male

over the entire study period. These individual Elo ratings were then

combined with network measures extracted using the moving win-

dow approach. To determine whether increased male integration

resulted in increased aggression/isolation from other males, we also

estimated the number of males that showed aggression toward a

male (i.e., aggression in-degree), and the eigenvector centrality of

the male within the male grooming network. We followed our ear-

lier work in using eigenvector centrality to measure the network pos-

ition of males in the male and female grooming layers (Young et al.

2017).

To generate time-aggregated layers of the multilayer network,

we adopted a moving window approach using the “netTS” package

in R (R Core Team 2018; Bonnell and Vilette 2020). We calculated

sample entropy on time series generated from multiple window

sizes. That is, we performed a multiscale entropy analysis, within

the time scales relevant to the biological question, to determine

whether there were time scales that gave rise to more predictable

time series. Our analyses suggested no strong evidence for any nat-

ural scale (Supplementary Figures S1 and S2). We, therefore, chose a

window size of 120 days (4 months) as bootstrap tests suggested

that, at this temporal scale, grooming in-/out-degree, and aggression

in-degree were robust, although eigenvector centrality measures

Table 1. Social network measures used to describe male integration within social groups

Social network measure Network layer

A male’s out-degree to females Male! female grooming layer

A male’s in-degree from females Male female grooming layer

Centrality of a male within male grooming network Male–male grooming layer

Centrality of a male within female grooming network Male–female grooming layer

A male’s aggression from other males Male aggression layer

Change in a male’s Elo rating Male aggression layer

Figure 1. Illustrative diagram of the construction of the dynamic multilayer network. The network is composed of 2 behavioral layers, aggression, and grooming,

broken into sex-specific layers, male (blue) and female (orange). This construction is then shifted through time (using a 30-day window) to generate a time series

of networks.
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showed a relatively larger amount of noise, particularly male eigen-

vector within the male grooming layer (Supplementary Figure S3).

Window sizes smaller than 4 months resulted in greater measure-

ment noise in all centrality measures, whereas window sizes larger

than 4 months start to aggregate the data beyond time scales

thought to be important for social integration. In particular, within

our study population, the mating season (April–June) and birth sea-

sons (October–December) are thought to roughly encompass 3-

month time periods (Young et al. 2019). Given the results of the

bootstrap test, we opted for 4 months as a compromise between

desired temporal aggregation and noise in our estimated network

measures. We additionally ran models with 5- and 6-month win-

dows to estimate the sensitivity of our main results to the choice of

window size (Supplementary Figure S4). To create a time series of

these 4-month networks over the study period, we shifted the win-

dow forward by 30 days each time.

Statistical analysis
We used a multilevel multivariate autoregressive model (MMAR) to

estimate the dependence between changes in an individual’s social

network measures (Table 1). We then used this model to test

whether male Elo ratings are influenced by male centrality within

the female grooming layer. This model approach allows for the esti-

mation of both lagged and cross-lagged effects. Lagged effects can

be thought of as the momentum of a particular measure, for ex-

ample, how autocorrelated an individual social network measure is

over time, whereas cross-lagged associations estimate how changes

in an individual’s social network measure at 1 time period influences

another measure in the next time period (Schuurman et al. 2016).

We estimated the mean effect across individuals and allowed for in-

dividual differences in these effects (i.e., random effects), using a

multilevel model. As our data consists of multiple males measured

over time, and a number of males within our study period attempt

to integrate into multiple groups (i.e., RBM, RST, or PT), we speci-

fied each male integration attempt, that is, male ID by troop, as a

random effect. This multilevel approach takes into account data

that are grouped within individuals, pools this information to help

estimate lagged and cross-lagged parameters in the model, and

quantifies the interdependence between individual differences in

these parameters. We fitted this model using a Bayesian framework

in R (R Core Team 2018) with rStan (Stan Development Team

2018). Main effects were given weakly informative priors centered

on zero (i.e., normal [0,1]), starting the model off with the highest

probability mass for each parameter at zero. Variables were also

scaled and centered within individuals. Model code is presented in

the supplementary Material (Supplementary 1). With this particular

prior setup, we assume to begin with that there is no dependence be-

tween or within network layers through time.

Model predictions of network dynamics
MMAR models identify nonlinear feedbacks, capturing cascading

influence across network layers. Given that there are many parame-

ters in the model, and that they interact with each other through

time, interpretation from the individual estimates alone is difficult.

We, therefore, used the model to make predictions about how an in-

dividual would respond to a given change in one of its social net-

work measures (Figure 3). For example, if a male’s aggression in-

degree were to be increased at time t, how would this then cascade

through the multiple layers over time? To make predictions for each

time point, we started all measures at mean values (i.e., 0), drew

from the posterior distributions to parameterize the MMAR model,

and then used the parameterized model to make predictions about

social network measures at the next time point. All predictions used

mean estimated parameters, so essentially we made predictions for

the average vervet male. At time t, we adjusted one network measure

by þ2 and recorded subsequent impacts on all the network meas-

ures. As all network measures were scaled and centered, changes are

shown as deviations from 0.

Given that the MMAR model also estimates uncertainty and the

dependence in uncertainty between social network measures, we

assessed the influence of this noise on predictions. Here, we again

started all network measures at 0 (i.e., the mean), and made predic-

tions using a parameterized MMAR model using draws from the

posterior distribution of our fitted model. In this case, however, we

did not introduce a change to any of the network measures, rather

we included the estimated error and dependencies in the error when

making our predictions, and simulated changes across the network

layers due to this noise alone. This allowed us to estimate the role of

uncertainty in determining the dynamics of the multilayer network.

Results

Dependence between an individual’s social network

measures
Male grooming in- and out-degree, aggression in-degree, and eigen-

vector centrality within the male and female grooming network

layers all showed high positive autocorrelation (i.e., previous meas-

ures are related to current measures) (Figure 2a: vertical lines).

Changes in male Elo ratings showed negative autocorrelation, al-

though the value was lower than for other measures, suggesting a

degree of volatility in Elo ratings (i.e., changes in a particular direc-

tion at 1 time point were likely to be reversed in the next).

We also found crossed-lagged associations, where changes in 1

layer were associated with subsequent changes in another layer

(Figure 2b diagonal lines). The association of most interest—the

main effect of a male’s eigenvector centrality within the female

grooming layer—was found to be positively associated with changes

in a male’s change in Elo rating at the next time step. Additionally, a

male’s eigenvector centrality within the female grooming layer was

negatively related to in-coming aggression from other males in the

next time step. Reduced aggression in-degree from males, in turn,

showed a positive relationship with both grooming in- and out-

degree with females. Furthermore, grooming in-degree from female

partners had a positive relationship with grooming out-degree with

female partners in the next time step.

The model also suggested heterogeneity in cross-lagged associa-

tions between males. For example, the estimates of individual differ-

ences (i.e., random effects) suggested there was moderate variability

across individuals in the extent to which grooming in- and out-

degree altered a male’s centrality in the female network at the next

time step. We also found individual differences in the extent to

which aggression in-degree (i.e., the number of males aggressing a

given male) altered a male’s eigenvector centrality in the female

grooming network. The model also suggested that males differ in

how eigenvector centrality in the female grooming network influ-

enced both out-degree and male’s eigenvector centrality in the male

grooming layer (Figure 2b). However, all these influences were

found to have estimates that centered on zero, that is, the positive

and negative relationships shown by individual males tended to can-

cel each other out, so there was little evidence of a mean effect

(Supplementary Figure S5).
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Our model also suggested few dependencies between these

individual-level effects. The only dependence found was a weak

negative relationship between the effect of a male’s in- and out-

grooming on eigenvector centrality in the female network (r ¼
�0.25, 95% CI: –0.55, 0.03) (Supplementary Figure S6a). That is,

if the effect of grooming in-degree on eigenvector centrality was

lower than average for a particular male, the effect of that male’s

grooming out-degree on eigenvector centrality in the female net-

work was likely to be higher than average. We did, however, find

strong dependence on the errors associated with these social net-

work measures, particularly between grooming in-degree, groom-

ing out-degree, and to a lesser extent, a male’s eigenvector

centrality in the female network (Supplementary Figure S6b). This

suggests that there remains covariance between these network

measures, and can often point to common drivers, for example,

changes in the physical environmental might impact both groom-

ing in- and out-degree.

Model predictions of network dynamics
Inducing a positive change in a male’s Elo rating produced little ef-

fect on other layers (Figure 3a), whereas increasing aggression from

other males led to a reduction in male centrality in his grooming

layer, and an increase in Elo rating and grooming in-/out-degree

with females (Figure 3b). Inducing an increase in a male’s eigen-

vector centrality in the female grooming network layer generated

the longest lasting impacts (tþ20 months), largely via decreasing

aggression in-degree from other males (Figure 3c). An increase in

Figure 2. Estimated lagged and cross-lagged associations for (A) main effects and (B) individual-level differences. Edges between nodes represent associations,

red for negative, green for positive, where the width of the edge corresponds to the magnitude of the association. In (a), edges for associations where 95% CI con-

tained 0 were removed for visual clarity. Similarly, in (b), as edges represent estimates of standard deviation, we chose to remove edges when the 95% CI esti-

mates contained 0.01, highlighting those estimates likely to contain individual differences. Node labels: grooming in-degree (inDeg), grooming out-degree

(outDeg), male centrality in the male grooming layer (maleC), male centrality in the female grooming layer (maleFC), aggression in-degree (agg), and change in

Elo rating (DElo). The top nodes represent measures at time Tþ 1, whereas those below represent those measures at the previous time point (T).
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male eigenvector centrality in the male grooming layer principally

resulted in an increase in the male’s eigenvector centrality in the fe-

male grooming layer (Figure 3d). Finally, grooming in- and out-

degree with females showed reciprocal effects, with in-degree show-

ing more of an influence than out-degree (Figure 3e and f). Note

that all induced changes to a male’s social network measures showed

high resilience, reverting back to the male’s mean values (i.e., 0)

within 15–20 months after the introduced disturbances at t¼0

(Figure 3).

The results of the simulations with noise alone indicate that noise

is likely to play a large role in a male’s social network measures, and

this uncertainty drives large changes beyond those described by the

main effects in our model (Figure 4). This suggests that there are

likely to be important factors that are absent from our model, and/

or that stochastic factors—injury, for example—can also result in

changes to a male’s social network position.

Discussion

The results of our MMAR analyses showed that there was high posi-

tive autocorrelation within several of our network measures for

both males and females, indicating that individual social measures

were persistent and stable across time. It should also be noted, how-

ever, that some moderate autocorrelation was expected due to the

overlap in our moving windows. Nevertheless, as all network meas-

ures were calculated with the same amount of window overlap, we

can compare their relative magnitudes to gain insight into which

measures have higher/lower autocorrelation patterns: for example,

Figure 3. Model predicted mean change to all network-level measures following an introduced change in 1 measure: (A) rank increase, (B) increase in aggression,

(C) increase in centrality within the female network, (D) increase in centrality in the male network, (E) increase in out-grooming partners, and (F) increase in in-

grooming partners. Shaded regions indicate the 95% credible interval from 100 simulated predictions. Time on the x-axis is in months. In each panel, there is an

induced change in 1 measure at t¼ 0, and the cascade of impacts on all measures can then be seen to the right of the induced change, in terms of both their amp-

litude (height on the y-axis) and duration of their effects (how long the measure takes to return to 0 on the x-axis). As all measures have been scaled the induced

change of 2 scaled units would be considered as a large positive change.
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the relatively higher autocorrelation of male eigenvector centrality

within the female network and aggression in-degree from males

compared with, for example, the lower autocorrelation in male

grooming toward females. This suggests much of the autocorrelation

reflects social processes and is not simply an artifact of the moving

window approach. That is, it points to resilience in the network, as

we discuss in more detail below. We also found that changes in male

Elo rating were negatively autocorrelated (although the value was

lower than for other measures) suggesting a degree of volatility in

male rank trajectories. That is, changes in a male’s Elo rating at 1

time point were likely to be reversed at the next. This corroborates

patterns observed in related analyses (e.g., Vilette et al., submitted

for publication).

We also found meaningful cross-lagged associations, and this

allowed us to confirm the central finding of our original analyses:

namely, a positive relationship between male eigenvector centrality

in the female network and male Elo rating in the next time step.

Crucially, our ability to calculate cross-lagged associations allowed

us to establish the direction of these effects, which our original anal-

yses did not permit, and demonstrate that it was changed to male

centrality in the female network that preceded any change in Elo rat-

ing and not vice versa; although it was also clear that this effect was

short-lived. We also found that changes to a male’s grooming cen-

trality within the female network had implications for other social

layers beyond effects on Elo rating, with changes in one layer caus-

ing a cascade of impacts across all layers. Specifically, we were able

to show that male eigenvector centrality within the female grooming

network reduced the level of aggression received from males in the

next time step and that this, in turn, led to increased amount of

grooming both received from and given to females. In addition, the

more grooming a male received from females in 1 time step led to

increased grooming of females by males in the subsequent time step.

This pattern of results fits with our earlier suggestion that female

codominance with males would increase females’ ability to choose

the males with which they associated, in contrast to other species,

like baboons, where a female’s choice of male partners is highly con-

strained (Young et al. 2017).

Having said all this, it is also the case that changes in Elo ratings

had little influence on other layers in the network and, as already

noted, showed negative temporal autocorrelation. This suggests that

the changes to Elo ratings were short-lived and returned quickly to

mean levels. In addition, there was a moderate level of heterogeneity

in cross-lagged associations (i.e., meaningful differences in the ran-

dom effects), which suggests that male centrality in the female

grooming was influenced by different factors across males (i.e.,

grooming more females did not always lead to higher network cen-

trality, but appeared to depend on the identity of the males in ques-

tion). This lack of any lasting effect on Elo ratings, combined with

variability in how a male integrates into the female network, thus

calls into question our original conclusion that rank-based changes

could exert a long-term influence on male social status, and thus

have a positive impact on mating success and hence individual fit-

ness. Recent paternity analyses support this new conclusion, in that

reproductive skew in our population is low, with mating access un-

related to male rank, and only weak associations between rank and

paternity (and only in some years; Minkner et al. 2018). Combined

with our analyses here, this suggests that further investigation of

male-female social dynamics, independently of any effect on rank,

will be informative with respect to the determinants of male mating

and paternity success.

It is also apparent, however, that we may have failed to include

some relevant ecological or social measures that predict male inte-

gration or, equally, that chance plays a large role in male social net-

work position. Specifically, our analyses showed that the estimated

dependencies between social network measures contributed little to

the changes observed in individual male social position (Figure 4).

The potential for noise to influence male social integration has par-

ticularly interesting implications for variability in male social behav-

ior. If chance influences which males will become integrated,

selection would be predicted to be weaker for specific behaviors.

Figure 4. Model predictions including the influence of uncertainty on the development of a male’s social network measures. Initial conditions are set to the mean

level of each social network measure, with no induced changes, that is, all changes observed in the plot are due to the effects of noise (and the interdependence

in noise between social network measures) for (A) 100 simulated model predictions summarized into a mean line and 95% credible interval ribbons and (B) 1

simulated model prediction.
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Essentially, there may be “lucky” males that become integrated due

to processes beyond their direct control, and who then experience

certain social benefits that influence their behavior. This may lead to

increased variation between males, with potential downstream con-

sequences for mating opportunities and other fitness-related bene-

fits. The ability to quantify individual responses to changes in other

behavioral layers and to compare these estimates to the magnitude

of error/chance could be a promising avenue of research with a

multilayer network approach. By the same token, a comparison be-

tween predictable responses across layers versus noise could prove

useful in understanding the role of chance in social group formation.

This last point links to our social perturbation simulations,

where we investigated how changes in network layers affected the

temporal properties of the global network. Our results here sug-

gested that the social system was resilient, with perturbations to in-

dividual positions returning to their mean levels over time

(Figure 4). That is, we found no evidence that changes in 1 layer

resulted in any kind of positive feedback loop, where changes com-

pounded over time through layers. Rather, it appears that the system

has homeostatic qualities, and returns to its former state. The mech-

anisms by which this resilience to perturbation comes about, and its

consequences, are the focus of ongoing work, but one potential

mechanism is compensation. For example, in our previous work on

baboons, we found that perturbation of the network, due to the loss

of a high ranking female, resulted in changes to the troop’s proxim-

ity network layer (specifically, there was an increase in clustering,

signaling that interactions became more conservative and predict-

able) and this restored stability to the network as a whole (Barrett

et al. 2012).

Turning now to the limitations of our approach, we found that

the great flexibility offered in the construction of multilayer net-

works poses a problem of choosing exactly how to construct the

layers. In our case here, we have had a precedent, in the form of spe-

cific question and a known previous outcome (Young et al. 2017),

to help guide our choice of which layers to include, how to include

them, and what measures to use. Nevertheless, there remained many

decisions for which there were no definitive choices, such as whether

to create sex-specific layers for grooming, which measure to use to

calculate male centrality, which behavioral layers to include or not,

and whether environmental measures should be included. Although

the accumulation of various ambiguities in the decision-making pro-

cess is present in all analyses, the use of multiple layers amplifies the

number of possible choices. Navigating such choices will be one of

the major challenges going forward. Given that this challenge is

shared with many other statistical analyses, potential solutions, or

mitigation strategies from the wider field of statistics may be helpful.

For example, better theory will help us to make better choices, as

will relying on the precedents set by previous studies, sensitivity

analyses, and transparency regarding the choices made (and not

made), for example, by sharing code and data. All of these strategies

have been suggested and used to reduce ambiguity in statistical anal-

yses in this more general sense (Gelman et al. 2013; Weisberg 2014;

McElreath 2016).

Another potential limitation of the multilayer approach adopted

in this article is that the MMAR setup asks how 1 particular net-

work measure influences other measures across multiple layers. As

such, it focuses only on quantifying patterns of change in social net-

works, rather than identifying the specific processes by which these

changes occur. The MMAR approach could productively be com-

bined with more process-based techniques that model the behavior

of individuals (i.e., nodes) directly within the network (Butts 2008;

Snijders et al. 2010). With a combined approach, process models

can be compared with the patterns extracted from real systems. For

example, could a process model reproduce the directional effects,

level of noise, and individual differences identified in the real system

using the MMAR approach? Similarly, process models can provide

insight into how the patterns extracted from a system using MMAR

emerge. We suggest that the combination of process and pattern-

based approaches with dynamic multilayer networks will be a prom-

ising avenue of research.

To conclude, we would note that the advent of multilayer net-

work approaches means it is now possible to envision highly

detailed descriptions of relationships between individuals and how

they change over time. Tied to this more detailed level of social de-

scription is the ability to extract individual behavioral and physio-

logical states through a growing number of on-animal sensors

(Handcock et al. 2009; Krause et al. 2013), for example, weight,

rank, stress, temperature, and location. A challenge then presents it-

self: what do these data-driven, data-rich descriptions of social sys-

tems offer that were not possible before? What kinds of questions

can we now address? We suggest that we need big theory to be able

to take best advantage of these big data (Coveney et al. 2016). Life

history theory is one framework that is likely to be of considerable

value here (Alberts 2019), especially where individual life-lines can

be described in detail from birth until death. A longitudinal multi-

level analysis of the social group could be constructed alongside

such lifelines, giving us a better understanding of how individual

lifelines shape, and are shaped by, social structure. From this point

of view, our dynamic multilayer approach would thus benefit from

a closer integration with life history theory and collective behavior.

Similarly, with the ability of multilayer network approaches to ad-

dress longitudinal questions at multiple social scales, it also seems

possible to test some important social evolutionary mechanisms.

There have been a plethora of correlational and simulation studies

suggesting that some social structures influence fitness-related traits,

via social learning, or by promoting/inhibiting disease transmission

(Altizer et al. 2003; Griffin and Nunn 2012; Allen et al. 2013;

Duboscq et al. 2016). How these structures emerge, are maintained,

and respond to environmental pressures, could provide important

insight into how selection operates in social systems and can be prof-

itably analyzed with careful multilayer, dynamic network analyses.
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