Bonnell et al.: Formidable females redux

Supplementary

Supplementary 1 — Multivariate Multilevel Autoregressive (MMAR) model

We model future network measures (t+1) as a function of its current value (t) and the current value
of all other covariates. The estimated effect of each covariate (B) is treated as a random slope using

individual identity (i) as the grouping variable.

Uinpegree,it+1 = B1,i * inDegree;; + B, ; x outDegree;; + f3; * MaleC; + P4 ; * maleFC;,

+ Bs,; * rank; . + Pe; * inAgg;

Houtpegree,it+1 = B7,i * inDegree; + Pg; * outDegree;; + fy; * MaleC;; + By, * maleFC;,

+ P11, xrank;: + P12 * inAgg;;

Umatec,it+1 = P13, * inDegree;; + B14; * outDegree; + P15; * MaleC;; + P16 * maleFC;,

+ P17, * rank; . + P1g; * inAgg;

Umaterc,it+1 = Bio * inDegree;; + Baq; * outDegree; + o1, * MaleC;; + P, * maleFC;

+ Bo3,; * rank;; + P * iNAGg;

Urank,it+1 = B2si * inDegree; + Poq; * outDegree; ; + Ba7; * MaleC;; + Brg; * maleFC;;

+ Pao,; * rank; . + P3o,; * iNAgg;

Kinagg,it+1 = Ba1,i x inDegree;; + B3, ; * outDegree;; + B3 * MaleCy; + B34, * maleFC;,

+ B35, * rank;; + e * INAGYi

Correlations between random slopes are estimated by using a multivariate normal distribution and

calculating the covariance between individual slope differences (Xindividual). Lhis multivariate normal

distribution is used to estimate the effects (slopes) of each effect j for each individual i, pooling data

from all individuals. All data is scaled and centered within each individual, and slopes are given

weakly informative priors centered on zero. This data scaling and prior choice starts the model off

with the assumption that each slope is most likely zero.

B;; = Mulivariate normal(ﬁu,zindivmual)

Finally, the likelihood of observed measures (k) are calculated by using a multivariate normal
distribution of the mean predicted network measures and a covariance matrix describing the
dependence in the errors between network predictions (Xsigma)-

Yit+1 = Mulivariate normal(uk t+1,25igma)

To fit this model we use the cholesky parameterization (see supp. 2).

18



Bonnell et al.: Formidable females redux

Supplementary 2 — model code for the MMAR
data {

int<lower =0> T; // No. of observations

int<lower =0> M; // No. of variables in y_t

int<lower =0> L; // No. of control variables

vector[M] Y[T]; // Obs of state variables

vector[M] Y_prev[T]; //Obs of state variables lagged

int<lower =0> ID[T]; //Obs of individual id

int<lower =1> N; //No. of unique individual ids

}

parameters {

cholesky_factor_corr[M] L_corr_noise;
vector<lower =0>[M] sd_noise;
cholesky_factor_corr[36] L_corr_ind;

vector<lower =0>[36] sd_ind;

vector[36] Amu;

vector[36] A[N];

transformed parameters {
matrix[M,M] L_sigma;
matrix[36,36] L_ind;
L_sigma = diag_pre_multiply(sd_noise, L_corr_noise);

L_ind =diag_pre_multiply(sd_ind, L_corr_ind);

model {
vector[M] mus[T];
for (tin 1:T) {

muslt,1] = A[ID[t],1] * Y_prev[t,1] + A[ID[t],2] * Y_prev[t,2] + A[ID[t],3] * Y_prev|[t,3] + A[ID[t],4] * Y_prev[t,4] + A[ID[t],5] *
Y_prev[t,5] + A[ID[t],35] * Y_prev][t,6]; //in degree

muslt,2] = A[ID[t],6] * Y_prev[t,2] + A[ID[t],7] * Y_prev([t,1] + A[ID[t],8] * Y_prev][t,3] + A[ID[t],9] * Y_prev[t,4] + A[ID[t],10] *
Y _prev(t,5] + A[ID[t],34] * Y_prev[t,6]; //out degree

mus(t,3] = A[ID[t],11] * Y_prev[t,3] + A[ID[t],12] * Y_prev[t,1] + A[ID[t],13] * Y_prev|[t,2] + A[ID[t],14] * Y_prev[t,4] + A[ID[t],15] *
Y_prev(t,5] + A[ID[t],33] * Y_prev[t,6]; //Male C
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muslt,4] = A[ID[t],16] * Y_prev[t,4] + A[ID[t],17] * Y_prev[t,1] + A[ID[t],18] * Y_prev[t,3]+ A[ID[t],19] * Y_prev[t,2] + A[ID[t],20] *
Y_prev(t,5] + A[ID[t],32] * Y_prev[t,6]; //Male FC

muslt,5] = A[ID[t],21] * Y_prev|[t,5] + A[ID[t],22] * Y_prev[t,1] + A[ID[t],23] * Y_prev[t,3]+ A[ID[t],24] * Y_prev[t,2] + A[ID[t],25] *
Y _prev(t,4] + A[ID[t],31] * Y_prev[t,6]; //Rank

mus[t,6] = A[ID[t],26] * Y_prev[t,6] + A[ID[t],27] * Y_prev[t,1] + A[ID[t],28] * Y_prev|[t,3]+ A[ID[t],29] * Y_prev[t,2] + A[ID[t],30] *
Y_prev[t,4] + A[ID[t],36] * Y_prev[t,5]; //aggression in (males)

}

L_corr_noise ~ Ikj_corr_cholesky(1.0);
sd_noise ~ normal(0,1);
L_corr_ind ~ Ikj_corr_cholesky(1.0);

sd_ind ~ normal(0,1);

Amu ~ normal(0,1);

A~ multi_normal_cholesky(Amu,L_ind);

Y ~ multi_normal_cholesky(mus,L_sigma);

}

generated quantities {
matrix[M,M] Corr_sigma;
matrix[36,36] Corr_ind;
vector[M] mus|[T];

vector[M] Y_rep[T];

//get correlation matrix
Corr_sigma = L_corr_noise * L_corr_noise';

Corr_ind = L_corr_ind * L_corr_ind";

//get predicted values
for (tin 1:T) {

musl[t,1] = A[ID[t],1] * Y_prev[t,1] + A[ID[t],2] * Y_prev[t,2] + A[ID[t],3] * Y_prev][t,3] + A[ID[t],4] * Y_prev[t,4] + A[ID[t],5] *
Y_prev[t,5] + A[ID[t],35] * Y_prev][t,6]; //in degree

muslt,2] = A[ID[t],6] * Y_prev[t,2] + A[ID[t],7] * Y_prev|[t,1] + A[ID[t],8] * Y_prev][t,3] + A[ID[t],9] * Y_prev[t,4] + A[ID[t],10] *
Y_prev[t,5] + A[ID[t],34] * Y_prev][t,6]; //out degree

mus(t,3] = A[ID[t],11] * Y_prev[t,3] + A[ID[t],12] * Y_prev[t,1] + A[ID[t],13] * Y_prev|[t,2] + A[ID[t],14] * Y_prev][t,4] + A[ID[t],15] *
Y_prev[t,5] + A[ID[t],33] * Y_prev][t,6]; //Male C

muslt,4] = A[ID[t],16] * Y_prev[t,4] + A[ID[t],17] * Y_prev[t,1] + A[ID[t],18] * Y_prev[t,3]+ A[ID[t],19] * Y_prev[t,2] + A[ID[t],20] *
Y_prev(t,5] + A[ID[t],32] * Y_prev[t,6]; //Male FC

muslt,5] = A[ID[t],21] * Y_prev|[t,5] + A[ID[t],22] * Y_prev[t,1] + A[ID[t],23] * Y_prev[t,3]+ A[ID[t],24] * Y_prev[t,2] + A[ID[t],25] *
Y_prev(t,4] + A[ID[t],31] * Y_prev[t,6]; //Rank
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Y

}

Y_rep = multi_normal_cholesky_rng(mus,L_sigma);

Bonnell et al.: Formidable females redux

mus|t,6] = A[ID[t],26] * Y_prev|[t,6] + A[ID[t],27] * Y_prev[t,1] + A[ID[t],28] * Y_prev[t,3]+ A[ID[t],29] * Y_prev[t,2] + A[ID[t],30] *
prev[t,4] + A[ID[t],36] * Y_prev[t,5]; //aggression in (males)
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Supplementary 2 — Figures
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Figure S1: Visual inspection of the change in time series generated when using alternative window
size choices: a) mean male grooming in-degree from females, b) mean male grooming out-degree to
females, c) mean eigenvector centrality of males within the female grooming layer, d) mean
eigenvector centrality of males within the male grooming layer, and e) mean male aggression in-

degree from other males.
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Figure S2: Sample entropy from each time series generated using window sizes ranging from 30
days to 400 days: a) mean male grooming in-degree from females, b) mean male grooming out-
degree to females, ¢) mean eigenvector centrality of males within the female grooming layer, d)

mean eigenvector centrality of males within the male grooming layer, and €) mean male aggression

in-degree from other males. For each measure 5 bootstrapped replicates are shown alongside the
observed data. Linear trends in each time series were removed prior to calculating sample entropy.
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Figure S3: Results from the bootstrap test on network measures: a) grooming in-degree from

females, b) grooming out-degree to females, c) aggression in-degree from males, d) eigenvector

centrality of males within the female grooming layer, and e) eigenvector centrality of males within
the male grooming layer. The y-axis is the correlation between the network level measures of nodes

in the observed and bootstrapped networks. The lines and points represent the mean correlation,

while the shaded areas represent the 95%CI calculated from 1000 bootstrapped samples.

Correlations were estimated for subsamples of the data: 100%, 80%, and 60% to quantify the

influence of potential missing data on network measures.
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Figure S4: Estimated effect of a males centrality within the female grooming network (maleFC) on

its change in Elo-ratings for a) 4 month window size, b) 5 month window size, ¢) 6 month window
size.
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layer (maleC), ¢) male grooming in-degree from females on maleFC, d) male grooming out-degree

grooming layer (maleFC) on out-degree, b) maleFC on male centrality within the male grooming
to females on maleFC, and ¢) male aggression in-degree on maleFC.

Figure S5: Individual level estimates in terms of: a) the effect of male centrality within the female
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Figure S6: Estimated dependence in a) the individual level differences in lagged effects, i.e., if an
individual was estimated to have a larger effect of grooming out-degree on subsequent male
centrality in the female network (maleFC) were they also likely to have a lower effect of grooming
in-degree on subsequent maleFC, and b) in the error of the social network measures. In b) the
values associated with edges represent estimated correlation coefficients in the MMAR model
between the errors of each social network measure. In a) the effects with the highest level of
estimated individual level differences are presented, though all correlation estimates contain 0 when
considering the 95% credible interval.
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Supplementary 3 — Making predictions with the MMAR

One advantage of the multivariate multilevel autoregressive model (MMAR) approach for analyzing
multilayer networks is that the dynamics of how changes in one layer influence other layers can be
estimated. However, the resulting outputs from these types of models are relatively opaque. With many
parameters estimates, and many interactions. One way to gain intuition about the model, and to interpret
the results, is to use the fitted MMAR to make predictions about how changes in one measure cascade
through the multilayered network. The steps required to do this are: 1) fit a MMAR model to data, 2)
extract posterior distributions of each parameter, 3) draw from these posterior distributions to
parameterize equations describing the dependence between the social network measures, 4) initialize all
network measures to a starting value, and 5) use the parameterized equation to make predictions about
changes in the multilayer network. For step 4, we introduced a change in one layer, and used step 5 to
predict the consequences of this change through time. We used this approach to make predictions about
the magnitude of perturbation caused by changing each measure. We also made these predictions at the
level of the mean, i.e., pin eq. s1, as well as predictions at the level of the outcome scale, i.e., y eq. s1,
taking into account the estimated covariance matrix (X) from the MMAR model. We provide the code used
to make these predictions below.

Vit ~ MVNorm(p; ., 2) Eq. sl

Code:
sim_guitar <- function(x, post, uncertainty=FALSE, nsim=25,nreps=100, mirror =TRUE){

#Starting point
Y start <- x
Y <- matrix(NA,ncol = 1,nrow=06)

#get parameters
parm <-post %>% dplyr::select(contains("Amu"))
parm_sigma <-post %>% dplyr::select(contains("L_sigma'"))

#define the number of simulated steps

nreps = nreps

outputs <- matrix(NA, ncol=6+2,nrow=nsim*nreps)
outputs[1,] <- ¢(Y_start,1,1)

for(j in 1:nreps){

#choose random row from the posterior samples
rand_row = sample(l:nrow(parm),1)

#get covariance matrix for this run

parm_sigma mat <- matrix(unlist(parm_sigma[rand row,]),ncol=6, nrow=6)

parm_sigma mat[upper.tri(parm_sigma mat)] <- t(parm_sigma_mat)[upper.tri(parm_sigma mat)]
parm_sigma mat<- parm_sigma mat %*% t(parm_sigma_mat)

#run simulation
for(i in 1:nsim){

if(i == 1){

#record data
outputs[i+((j-1)*nsim),] <- c(Y_start,1,j)

#make the current the past
Y prev=Y_start
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} else {

#update the current state

Y[1] =parm[rand row,1] * Y prev[1] + parm[rand row,2] * Y prev[2] + parm[rand row,3] * Y prev[3]+
parm[rand_row,4] * Y _prev[4] + parm[rand row,5] * Y _prev[5] + parm[rand row,35] * Y prev[6]

Y[2] = parm[rand_row,6] * Y prev[2] + parm[rand row,7] * Y _prev[l] + parm[rand row,8] * Y prev[3] +
parm[rand row,9] * Y_prev[4] + parm[rand row,10] * Y_prev[5] + parm[rand row,34] * Y _prev[6]

Y[3] =parm[rand_row,11] * Y prev[3] + parm[rand_row,12] * Y prev[l] + parm[rand row,13] * Y _prev[2] +
parm[rand_row,14] * Y prev[4] + parm[rand row,15] * Y _prev[5] + parm[rand row,33] * Y prev[6]

Y[4] = parm[rand_row,16] * Y_prev[4] + parm[rand_row,17] * Y _prev[l] + parm[rand row,18] * Y prev[3]+
parm[rand row,19] * Y prev[2] + parm[rand row,20] * Y _prev[5] + parm[rand row,32] * Y prev[6]

Y[5] =parm[rand row,21] * Y _prev[5] + parm[rand _row,22] * Y prev[1] + parm[rand row,23] * Y _prev[3]+
parm[rand_row,24] * Y _prev[2] + parm[rand row,25] * Y _prev[4] + parm[rand row,31] * Y _prev[6]

Y[6] = parm[rand_row,26] * Y _prev[6] + parm[rand row,27] * Y prev[1] + parm[rand row,28] * Y _prev[3]+
parm[rand row,29] * Y _prev[2] + parm[rand row,30] * Y _prev[4] + parm[rand row,36] * Y _prev[5]

#make predictions for the next states
if(uncertainty)Y <- mvrnorm(n =1, Y, parm_sigma mat)

#record data
outputs[i+((j-1)*nsim),] <- ¢(Y,1i,j)

#make the current the past
Y prev=Y

#simulation results
colnames(outputs) <- ¢("in_deg_G","out deg G","cent","Fcent","elo","agg","time","rep")
outputs.df <- as.data.frame(outputs) %>% gather(SNM,value, in_deg G:agg)

#get means and hpdi

outputs.df§snm_time <- pasteO(outputs.df$SNM," " outputs.df$time)

if(nreps>1){

outputs.df.summary <- outputs.df %>% group by(snm_time) %>% summarize(mu = mean(value), hpi.l =
rethinking::HPDI(value)[1], hpi.u = rethinking::HPDI(value)[2], time=time[1],SNM=SNM[1])

} else {

outputs.df.summary <- outputs.df %>% group by(snm_time) %>% summarize(mu = mean(value), hpi.l = 0, hpi.u=

0, time=time[1],SNM=SNM]1])

}

#whether to have the string plucked in the middle (mirrored) or have it plucked at the begginging of the plot/x-axis
(non-mirrored)

if(mirror){

outputs.df.before <- outputs.df.summary

outputs.df.before$time <- -outputs.df.before$time

outputs.df.before$mu <- 0

outputs.df.before$hpi.l <- 0

outputs.df.before$Shpi.u <- 0

outputs.df.summary<-rbind(outputs.df.summary,outputs.df.before)

}

return(outputs.df.summary)
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