ScienceDirect

Available online at www.sciencedirect.com

IFAC i

CONFERENCE PAPER ARCHIVE

IFAC PapersOnLine 54-21 (2021) 121-126

Towards an Access Economy Model for
Industrial Process Control: A Bulk Tailings
Treatment Plant Case Study
L.L. Rokebrand * J.J. Burchell*** L.E. Olivier**** I.K. Craig*

* Department of Electrical, Electronic and Computer Engineering,
University of Pretoria, Pretoria, South Africa.
** Sibanye-Stillwater Platinum, Middelkraal Farm, Marikana, 0284,
South Africa.
** Analyte Control, Pretoria, South Africa.

Abstract: A nonlinear model for the surge tank of Sibanye-Stillwater’s Platinum tailings
treatment plant is derived and linearised. Three controllers (two classical feedback and one model
predictive controller (MPC)) are presented for control of the plant, and it is shown that a de-
coupled proportional-integral (PI) control structure, as would be employed in practice, performs
the worst, while a nonlinear MPC controller provides the best performance. To illustrate an
access economy model concept for industrial process control, a cloud platform to facilitate
the competition between various controllers is presented and a scenario given with the three
controllers competing to control the surge tank process. The platform is shown to provide the
plant access to a controller that performs better than what is available locally.
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1. INTRODUCTION

With the move to an access economy based model in
many industries, a similar shift in the field of industrial
automation will likely follow (Eckhardt and Bardhi, 2015).
There has in fact been a shift to moving the upper layers of
the automation hierarchy away from the plant and into a
cloud based service (Gershon (2013); Hegazy et al. (2017)).
Industrial automation vendors are increasingly providing
software and managed services, with many automation
vendors having developed their own IToT cloud platforms
(Isaksson et al. (2018);0’Brien et al. (2019)).

A cloud platform is therefore proposed where a ‘selector’
evaluates a number of different controllers over a period of
time, and at the end of each period, selects and implements
the controller which has been determined optimal based on
some performance measure. This philosophy would allow
for a number of vendors to develop a control strategy for
a particular plant G, with the best performing controller,
as determined by the selector, being chosen for control.
This could allow for more competition in the industrial
automation industry where a few large vendors typically
dominate the market. The selector performance measure
could be influenced by the price and complexity of the
vendor controllers. In addition, users might impose other
criteria, such as a performance and reliability rating, on
the pool of possible vendors. Fig. 1 shows the feedback
loop diagram of the proposed philosophy.

There are a number of issues that will need to be addressed
and clarified in order for such a platform to be practically
viable. These would include:
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Fig. 1. Competing cloud platform controllers with a local
fall-back controller.

(1) A process model would be needed for the development
of each controller, and would thus have to be made
available by the plant to each vendor (possibly via the
selector) willing to compete to control the plant. The
model could also be developed by the vendor from
plant input-output data.

(2) Manipulated and controlled variable (MV and CV)
constraints should be made available to the selector
and the competing controllers for preventing the
implementation of control moves which violate the
constraints, and for use in controller development.

(3) The control actions provided by each controller
should be simulated on a plant model in order to
evaluate their performance. Such an evaluation is easy
to do for reference following as long as the desired ref-
erence is available to the selector. This process is more
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challenging when evaluating the disturbance rejection
capabilities of the competing controllers, as it will
require some knowledge of the actual disturbances d,
either measured or estimated.

(4) The competing controllers are continuously evaluated
in simulation on a plant model. When one of them is
selected to control the real plant, the control moves
generated by the selected controller will likely not be
equal to those of the actual plant, but may in fact
differ substantially. A bump-less transfer mechanism
should therefore be used by each selected controller.
Such a mechanism should know what the current
plant control moves are, and when the controller
switching is to take place.

(5) The idea is that the competing controllers reside in
the cloud which could be remote from the actual
plant to be controlled. A local controller is therefore
required as a fall-back controller should a technical
fault occur. Such faults could be local and/or include
unreliable communication between the plant being
controlled and the cloud platform on which the com-
peting controllers reside. By the very nature of the
requirements placed on this controller, it is necessary
that it be locally installed at the plant. Controllers
G.1,Ge...G,, in Fig. 1 would typically be supervi-
sory Advanced Process Controllers (APCs). A local
base layer control infrastructure is assumed.

This paper presents a case study of the proposed control
structure using a surge tank from Sibanye-Stillwater’s
Platinum bulk tailings treatment (BTT) plant, the aim of
which is to keep the density of the tank outflow constant
while maintaining a steady tank level. The dynamic model
of the system is derived and linearised in Section 2. Section
3 presents three different controllers, two classical feedback
and one MPC controller, and Section 4 presents the
scenario where the three controllers compete to control the
process via the cloud platform with the selector selecting
the one it deems the best.

2. SURGE TANK DYNAMIC MODELLING
2.1 Model Derivation

A BTT surge tank is shown in Fig. 2. The input flow rate,
the water flow rate, and the output flow rate are ¢;, qu,
and ¢, respectively. The input density, the density in the
tank, and the output density are p;, p, and p, respectively.
v represents the tank volume as calculated from a tank
level measurement. A mass balance can be used to derive
a dynamic surge tank model as

dpv

% = pi¢i + Gw — PoYo- (1)
Perfect mixing is assumed such that the density in the tank
is equal to the output density. (1) can then be simplified
as

d v
vdffﬂtpa = pidi + qw — Plo- 2)

The volume in the surge tank will be conserved if it is
assumed that there is no volume change during mixing
(Dontsov and Perice, 2014). This yields

dv

- — i w — qo- 3
o =~ it w4 (3)
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Fig. 2. BTT surge tank.
Substituting (3) into (2) gives
D
v TPt qw p(qi + qu)- (4)

The following non-linear state-space model can be ob-
tained from (3) and (4):

{v} gi t quw — qo
| = |1
P ;(pi(h‘ + qw — (¢ + qu))

The system states are v and p, the inputs are ¢;, ¢, and
qo and the disturbance variable is p;.

()

2.2 Model Linearisation

Applying a first order Taylor series approximation to (5)
under equilibrium conditions yields the linear state-space
*

model given by:
ov
op

(6)

Table 1 show the nominal values of all the system variables
obtained from historical data along with maximum and
minimum values. Substitution of these values into (5)
yields zero for the time derivatives of both v and p,
confirming that these conditions constitute an equilibrium.
Substitution of these values into (6) yields:

BB B b ][l

and
b= 3 ) ©

The elements of the state vector x are p and v, the inputs u
are ¢; and q,, and the disturbance d is p;. In this process the
output flow rate g, is kept constant, reducing the number
of inputs to two. Converting (7) to a transfer function
matrix model of the form:

y = Gp(s)u+ Ga(s)d (9)
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yields:
1 1 0
Y1 S S Uy (10)
[m] 0.01  —0.04 [UJJ %
s+75 s+ 75 s+

where the outputs y; and yo are equal to the states z; and
9 or v and p respectively.

Table 1. Process variable nominal values and

constraints
Variable Nominal Minimum Maximum Unit
v 10 3 20 m3
p 1.4 1 1.5 tonne/m3
g 600 300 1200 m?3 /hour
qw 150 0 750 m?3 /hour
Pi 1.5 1 2 tonne/m3

Perfect disturbance rejection is not possible for this pro-
cess. This can be intuitively deduced from the system con-
straints given in Table 1. The disturbance variable p; can
vary between 1 and 2 tonne/m?, thus if the set-point for
the density p is fixed at the nominal value of 1.4 tonne/m3,
it will not be possible to maintain this density if the
density of the feed falls below 1.4 tonne/m3. If the input
density increases to its maximum value of 2 tonne/m3,
it is possible to maintain the output density constant by
decreasing the feed flow rate ¢; to its lower constraint and
increasing the water flow rate to 450 m3/hour.

3. CONTROL PHILOSOPHIES

Three different controllers are presented which will be
used in the competitive control scenario. This includes
two classical feedback controllers, namely a de-coupled
PI controller with the Skogestad Internal Model Control
(SIMC) tuning and an ideal inverse controller, along with
a non-linear MPC controller. These three controllers are
denoted as G _jocat; Ge1 and Go respectively (see Fig. 1).

3.1 Feedback Control

G jocal - De-coupled PI Controller with SIMC' Tuning:
De-coupled PI controllers tuned according to the SIMC
rules (Skogestad, 2003) are used as the local fall-back
controller as this is relatively easy for plant personnel to
implement in practice. For the plant model in (10), the
relative gain array (RGA) is found to be:

0.8 0.2
RGA(Gy) = {0.2 0.8}

over all frequencies. The diagonal elements are closer to
one than the off-diagonal elements, thus for decentralised
control, it is best to use the input flow rate ¢; to control
the tank volume v and the water flow rate ¢, to control
the liquid density p (Skogestad and Postlethwaite, 2005).
Applying the SIMC rules in (Skogestad, 2003) to the
models G,(1,1) and G,(2,2) in (10) for each input-output
pairing, the following controller is derived:

(11)

100(s + 25) .
Gc,local = N (12)
. —2500(s + 75)

S

The tuning factor 7. in (Skogestad, 2003) serves as a tuning
parameter to adjust the aggressiveness of the controller. A
value of 0.01 was chosen which corresponds with a 100
rad/hour bandwidth.

Fig. 3 shows the response of the controller to an increase
of 0.1 tonne/m3 in p;. The response of this controller
is reasonable with respect to both tank volume v and
density p with relatively small deviations from the set-
point resulting from the disturbance.
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Fig. 3. Outputs of de-coupled PI controller G._jycq; for step
disturbance of 0.1 tonne/m3 in p;.

G1 - Ideal Inverse Controller:  Ideal control is achieved
by using the inverse of the plant model and is found to be:

. 0.8 20(s + 75)
Ga = EG;I =k ° (13)
1y —20(+75)
s

where k is an adjustable gain parameter used to adjust
the bandwidth of the controller. It can be seen that the
resulting controller consists of two purely proportional
elements and two elements which take on a PI structure,
with the proportional elements acting only on the volume
error and the PI elements acting only on the density
error. The value of k was chosen to be 100, which yields
a theoretical bandwidth of 100 rad/hour, same as that
chosen for G¢_jpcqr- Fig. 4 which shows the response of the
controller to an increase of 0.1 tonne/m? in p;, simulated
on the non-linear plant model given in (5). It can be seen
that there is a steady-state offset in the tank volume V
as result of the plant model mismatch and the purely
proportional terms in the controller in (13) acting on this
error. It can also be seen from this figure that the response
in the density p is comparable with that of G¢_jocai-

3.2 Gy Model Predictive Control (MPC)

An MPC controller (G.2) was designed using the state-
space formulation of Mayne and Rawlings (2009) and
the nonlinear model to perform predictions. A quadratic
objective function given by:
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Fig. 4. Outputs of inverse controller G.; for step distur-
bance of 0.1 tonne/m? in p;.

V(u,x, 8,r(k)) =

NP
(e(k) = y(k + jlk)"Qr(k) — y(k + jlk))
=1 (14)
Nec
+> " Aui + klk)"RAU( + k|k) + 6(k)" ®5 (k)

was used, where k is the present sampling time, x(k) =
y(k) = [v,p]T is the current state of the plant, r(k) is
the reference or setpoint, §(k + j|k) is the predicted plant
value at time k + j, & is the slack variable for constraint
handling and N, and N, are the prediction and control
horizons respectively. The weighting matrices Q and R
used to tune the controller and the slack variable weighting
matrix W were chosen to be:

Q:[1e0—3 ﬂ R=02c—7xI W=1c7xI

The error of the tank volume v thus contributes much less
to the value of the objective function than the density p,
with changes in the control action contributing the least
in order to allow for more aggressive control action.

To account for plant model mismatch and unmeasured
disturbances, additional states which serve as input distur-
bance estimates for each input were created and a linear
Kalman Filter was used to provide estimates thereof, as
described in Mayne and Rawlings (2009). The covariance
matrices Q,, and R,, used in the synthesis of the Kalman
Filter were chosen to be:

Qu=1I R,=le—5xI

The larger the ratio between Q, and R,,, the more
aggressive the observer and the quicker it will react to
disturbances, thus the filter is tuned to be relatively
aggressive.

The tuning parameters Q, R, Q,, and R,, were explicitly
chosen to yield a response as similar as possible to that
achieved in the ideal inverse controller, particularly in the
density p.

Fig. 5 shows the response of the non-linear MPC controller
to an increase of 0.1 tonne/m? in p;.
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Fig. 5. Outputs of nonlinear MPC controller (G.2) for step
disturbance of 0.1 tonne/m? in p;.

4. COMPETING CONTROLLERS SCENARIO

This section presents a scenario where the controllers
presented in Section 3 compete to control the actual plant
as shown in Fig. 1. The disturbance d (the density of
the feed p; into the tank) is assumed to be perfectly
estimated by the selector. The disturbance variable p;
varies between 1.74 tonne/m3 and 1.35 tonne/m? over the
6-hour simulation period as shown in Fig. 6. The input
density falls below the set-point of 1.4 tonne/m? about
3-hours into the simulation, for which time the set-point
is unachievable.
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Fig. 6. Plant input density p; acting as disturbance vari-
able.

The selector evaluates the competing controllers by simu-
lating them on the plant model over a particular evaluation
horizon N,. The sum of the squares of the error (SSE)
in the simulated outputs is computed for each evaluation
horizon as:

E

SSEwt= )

j=k—Ne+1

(r(j) = yi(7) " We(r(j) —yi(5)) (15)

where W, is a weighting matrix which is used to place
more or less emphasis on the different outputs. At the
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end of the evaluation horizon, the controller yielding the
smallest value is deemed optimal and is selected. It is
important for the plant model to be a good representation
of the actual plant in order for the selector to work well.

As mentioned in point (4) of Section 1, a controller needs
to initialise its output to correspond to the present control
action implemented on the plant. This is deemed the
responsibility of the controllers themselves. The MPC con-
troller in this work achieve this by having two disturbance
estimators, one which estimates the disturbances based on
the measurement of the actual plant output and the actual
control action implemented on the plant (both pieces of
information which are available to the controllers), and
a second which estimated the disturbance for the model
it may be controlling. If one of the MPC controllers is
selected, the disturbance estimate along with the actual
plant measurements are used in the MPC optimisation
algorithm and seamless transfer of control takes place.
The classical feedback controllers employ a different prin-
ciple in which the integral term of the controller is back
initialised to yield a control action equal to that of the
previous control action applied to the plant. This method
successfully prevents the feedback controllers from gener-
ating any excessive control action in the event that control
is switched over to them.

As is also mentioned in point (2) of Section 1, it is required
that system constraints are supplied to the controllers.
These constraints are incorporated in the MPC formula-
tion described in Section (3), but there is no implicit con-
straint handling present in the classical feedback controller
form. This is implemented ad-hoc by each controller by
setting an output equal to its given constraint in the event
that the output generated by the controller exceed this
constraint. The other output is then set to its respective
constraint, which is done to keep the tank level constant.

The evaluation horizon N, should be chosen such that
switching between controllers does not destabilise the
closed-loop system. If the plant is exponentially stabiliz-
able, as is usually the case for industrial systems, then
the stability region of the closed-loop system will be an
open and attractive set. If then a stabilizing supervisory
controller is run for a finite but long enough time, it
is possible for it to drive the process into this stability
region. The switched system will therefore be stable as
long as the intervals between switching are longer than
the corresponding slowest individual closed loop system
dynamics. For the purposes of the proposed platform this
translates into a minimum bandwidth requirement for
each competing controller. Therefore to ensure that the
evaluation horizon N, is much longer than the expected
dynamics of the fastest closed-loop system, it was set to
30 minutes. The weighting matrix in (15) is chosen to be

le—3 0
wo—a- "7 (16)
which is the same as the weighting matrix Q used in
the performance index of the MPC controller, placing
significantly more emphasis on the density p than the
volume v.

Fig. 7 show the plant outputs and Fig. 8 the plant inputs
for when the plant is controlled via the platform. The

selected controller is shown in Fig. 9 over the 6-hour
simulation period. The simulation of each controller, which
is performed by the selector, is done on the nonlinear
plant model. A 10% gain uncertainty is also applied to
the input water flow-rate ¢, of the actual plant. As
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Fig. 7. Plant outputs under cloud platform control.

can be seen in Fig. 9, control is initially performed by
the local controller G_oeq: (controller 0), which is the
de-coupled PI controller, after which control is switched
over to controller G.; (controller 1). For the remainder
of the simulation period, control is performed by G
(controller 2), which is the MPC controller, apart from
a single evaluation period between 3.5 and 4 hours where
the inverse controller G.; was selected. This means that
during the evaluation horizons between 0.5-1 hours and
3.5-4 hours, the inverse controller G.; performed better in
controlling the model than the MPC controller G o.

In the period from 2.6 hours to 3.2 hours the set-point
density of 1.4 tonne/m? is not achievable as the input
density p decreases below 1.4 tonne/m? as can be seen in
Fig. 6, hence the deviation from set-point in the output p.

In order to provide a quantitative measure of overall sys-
tem performance, the sums of the squares of the error
(SSE) over the whole simulation were calculated accord-
ing to:
N
SSE; =Y (r(k) —yi(k)) - (r(k) — yi(k)),
k=1
where N is the total number of samples in the simulation
and the subscript ¢ denotes the output (i.e. 1 for v and 2
for p). The sum of the squares of the error according to
(17) achieved in the tank volume v and output density
p with the cloud platform controller are 88 and 0.66
respectively. Table 2 shows the sum of the squares of
the error according to (17) achieved in the tank volume
v and output density p for each controller acting alone
on the plant for the same disturbance scenario given in
Fig. 6, as well as the total calculated according to (15)
over the full 6 hours of simulation. It can be seen that
the value achieved in the density p, when the plant is

(17)
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Fig. 8. Plant inputs under cloud platform control.

controller

Fig. 9. 6-hour simulation showing the controller selected
by the platform. Controller 0 is the local controller

G _jocal, controller 1 is G.1, and controller 2 is Gs.

under platform control, is comparable with the individual
controllers acting alone. The SSE for the volume v when
the plant is under platform control, is much larger than for
G2, which is due to the initial selection of the decoupled
PI controller G _jpcqi, Which performs poorly in terms of
level control. The MPC controller performs best in terms
of level v and density p control. Given that the platform
starts out with the suboptimal local controller G._jocq1, the
fact that it achieves a level of performance similar to that
of the MPC controller, is notable.

Table 2. Controller performance indices with
the platform and for each individual controller
acting alone

SSE, SSE, SSEiot
No Platform (Ge jocat) 0.66 490 1.15
With Platform 0.66 88.0 0.75
Inverse Controller (G¢1) 0.66 168 0.83
NMPC Controller (Ge2) ~ 0.66  7.80  0.67

5. CONCLUSION

A detailed non-linear model of Sibanye-Stillwater’s Plat-
inum tailings treatment plant is derived. The model was
subsequently linearised. Three controllers were presented
for control of the plant: a local de-coupled PI controller, a
simple inverse controller, and a nonlinear MPC controller.
A cloud platform to facilitate the competition between
various controllers was presented and a scenario given
where the three controllers compete to control the surge
tank process. It was shown that: 1) a simple de-coupled PI
control structure, which would typically be employed on
an industrial plant, performs relatively poorly, 2) that suf-
ficient control can be achieved with the inverse controller
which is probably the cheapest possible multivariable con-
troller, and 3) the nonlinear MPC controller provided the
best overall performance. The cloud platform, shown to
perform similarly to the nonlinear MPC controller on its
own, provides the plant with access to a controller that
performs better than what is available locally. In addition,
the platform could possibly provide a supervisory control
solution at a lower cost than when locally employing a
single solution such as the nonlinear MPC controller.
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