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Reconstructing faulty measurements at a
tailings treatment surge tank
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Abstract: Measurement faults in processing plants can cause the performance of a process to
deteriorate. Once the failure of a sensor is identified, it is possible to reconstruct the missing
measurement using the measurements of other sensors. Plant operators or controllers can use
the reconstructed measurement to make informed decisions. Although the theory to reconstruct
faulty measurements is well-developed, various issues remain when applying the method in
practice. In this study, a tailings treatment surge tank, which is a very simple process, is
used to investigate issues surrounding measurement reconstruction using Principal Component
Analysis. Different sets of faulty and correct sensors were created to investigate measurement
reconstruction accuracy. The state observability of the surge tank model states was compared
to the ability to reconstruct faulty measurements. It was found that the system does not
necessarily need to be observable in terms of the available correct measurements for successful
reconstruction. In addition, a fault in the measurement of the volume of slurry in the tank could
not be reconstructed, even if it was the only faulty measurement. This indicates that the success
of measurement reconstruction by Principal Component Analysis may depend on the dynamics
of the process and the associated model.
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1. INTRODUCTION

To achieve the optimal economic benefits through ad-
vanced process control in mineral processing plants, ac-
curate and reliable measurements are necessary. Although
there is an array of sensors taking measurements, the
sensors are subject to various faults. Since these measure-
ments are used in subsequent advanced process control
strategies, any faulty measurements will reduce the perfor-
mance of the plant. Fault Detection and Isolation (FDI)
and reconstruction are mandatory prerequisites before
the measurements are used for advanced process control.
The progression from fault detection to fault isolation to
fault reconstruction can be regarded as sensor validation
(Hodouin, 2011; Brooks and Bauer, 2018).

Common measurement faults in mineral processing indus-
tries include: bias, precision degradation, drift or complete
failure of the sensor. There are various methods to detect
these faults which include univariate control charts, model
residuals, or multivariate statistical analysis. Multivariate
statistical analyses include Principal Component Analy-
sis (PCA), parity equations, minimal mean square error
estimation, and independent component analysis. Fault
isolation can be achieved through contribution analysis,
missing variable approach, or probability quantification.
Once a fault is detected and isolated, the sensor fault can
be reconstructed or corrected through optimisation-based,
regression-based, or machine learning methods (Kerschen
et al., 2005; Kullaa, 2010; Qin, 2012; Yi et al., 2017).
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Although the methodology to reconstruct faulty measure-
ments has been available for many decades, Brooks and
Bauer (2018) report that few commercial solutions are
available. Of those available, Brooks and Bauer (2018)
used a package which uses a PCA approach based on
the work of Qin and Weihua (1999) (cf. Qin and Guiver
(2003)). The package solution is applied to operating
data from a mineral processing plant with persistent sen-
sor problems. Very poor measurement reconstruction was
achieved even after numerous attempts to improve recon-
structability. Brooks and Bauer (2018) conclude that it
is not necessarily the algorithm, but rather the choices
surrounding data selection and appropriate filtering which
influence the measurement reconstruction performance.

The aim of this study is to investigate the relation be-
tween the available correct measurements at a plant and
the reconstruction of faulty measurements. A static PCA
reconstruction method is applied to reconstruct multiple
faults (Qin and Weihua, 1999; Dunia and Qin, 1998; Qin
and Guiver, 2003). The method is applied to a tailings
treatment surge tank. A simulation model of the surge
tank is used to generate data. The state-observability of
the surge tank model is analysed to evaluate if observ-
ability provides insight into which measurements can be
reconstructed. For the purposes of this study, it is assumed
that faults were already detected and the faulty sensors
were already identified.

This paper is organised as follows: Section 2 details the
surge tank model, Section 3 describes the observability
analysis of the surge tank model, Section 4 explains recon-
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Fig. 1. Flowsheet of the BTT plant.

Fig. 2. Surge tank schematic.

struction by means of PCA, Section 5 outlines the mea-
surement reconstruction experiments, Section 6 provides
a brief discussion of results, and Section 7 concludes the
paper.

2. TAILINGS TREATMENT SURGE TANK MODEL

2.1 Process description

The process simulated in this paper is a surge tank which
forms part of an industrial bulk tailings treatment (BTT)
plant. The flowsheet of the BTT plant is depicted in
Fig. 1. The central aim of the BTT plant is to provide
the downstream chrome concentrator with a stable feed
density. The surge tank uses process water to maintain
a stable feed density. If the feed does not have a stable
density, it compromises the efficiency of the downstream
hydrocyclone and thickener (Burchell and Craig, 2019).

2.2 Surge tank process model

A brief description of the model of the BTT surge tank as
shown in Fig. 2 is shown here. The model variables and
their nominal operating condition values for the surge tank
model is given in Table 1.

Table 1. Model variables and nominal operat-
ing values.

Variables Nominal Description

Manipulated Variables
qi [m3/h] 600 Flowrate of slurry from the tailings
qw [m3/h] 150 Flowrate of water into the tank
qo [m3/h] 750 Flowrate of slurry out of the tank
Controlled Variables
v [m3] 10 Volume of the tank
ρ [t/m3] 1.4 Density of slurry in the tank
Disturbances
ρi [t/m3] 1.5 Density of slurry from tailings

Assuming perfect mixing within the surge tank, the dy-
namic process model can be derived from a mass balance
of the surge tank:

dρv

dt
= ρiqi + qw − ρqo, (1)

where ρi is the density of slurry from the tailings, qi is the
flow rate of slurry from the tailings entering the tank, qw
is the flow rate of water entering the tank, ρ is the density
of slurry in the tank, q0 is the flow rate of slurry out of
the tank, and v is the volume of slurry in the tank. (It is
assumed the density of slurry exiting the tank ρo is equal
to ρ.)

Assuming the volume stays constant during mixing, the
volume balance of the surge tank is described as:

dv

dt
= qi + qw − qo. (2)

Eq. (1) can be expanded as:

v
dρ

dt
+ ρ

dv

dt
= ρiqi + qw − ρqo. (3)

Combining (2)-(3) produces a nonlinear state space model:
[
v̇
ρ̇

]
=

[
qi + qw − qo
qiρi − ρ(qi + qw) + qw

v

]
. (4)

The model in (4) is linearised around the nominal oper-
ating condition shown in Table 1 and represented as a
transfer function:
Y (s) = Gp(s)U(s) +Gd(s)D(s)

=

[
1/s 1/s
0.01

s+ 75

−0.04

s+ 75

]
U(s) +

[
0
60

s+ 75

]
D(s),

(5)

where Y (s) = L{[v ρ]T }, U(s) = L{[qw qi]
T }, D(s) =

L{ρi} and L{·} is the Laplace operator.

3. OBSERVABILITY

3.1 Observability for a nonlinear system

A multi-input-multi-output control-affine nonlinear state-
space model with dim(x) = n and dim(y) = m can be
written as:

ẋ = f (t, x) + g (t, x)u
y = h (t, x)

(6)

The system in (6) is said to be locally (weakly) observable
at x0 if there exists a neighbourhood X0 of x0 such that
for every x1 which is an element of the neighbourhood
X1 ⊂ X0 of x0 the indistinguishability of the states x0

and x1 implies that x0 = x1. The two states x1 and x0 are
said to be indistinguishable if for every admissible input u
the output function y of (6) for the initial state x0 and for
the initial state x1 is identical. If the system satisfies the
so called observability rank condition, i.e. the observability
codistribution (Hermann and Krener, 1977):

O = span
{
dhj , dLfhj , . . . , dL

n−1
f hj

}
; j = 1 . . .m, (7)

has dimension n at x0, then the system is locally (weakly)
observable. Note, Lk

fhj refers to the k-th repeated Lie

derivative of the scalar function hj(x) along the vector field
f(x), and d is the exterior derivative. In the linear case,
the observability codistribution corresponds to the observ-
ability matrix OT =

[
CT , ATCT , . . . , (An−1)TCT

]
where

C = ∂h
∂x |x=x0 and A = ∂

∂x (f(t, x) + g(t, x)u) |x=x0, u=u0 .

3.2 Observability analysis of surge tank model

The aim of the observability analysis is to evaluate if
measurements of either the inputs or outputs can be
used to reconstruct missing measurements. Therefore, for
the observability analysis, the inputs are regarded as
additional states with zero dynamics.

Consider the nonlinear state space model of the surge tank
in (4). Let x1 = v, x2 = ρ, x3 = qi, x4 = qw, d = ρi and
β = qo. Therefore (4) becomes:



ẋ1

ẋ2

ẋ3

ẋ4


 =




x3 + x4 − β
x3d− x2(x3 + x4) + x4

x1
0
0


 . (8)

The observability of the states x1 through x4 will be
evaluated according to which of these states are measured.
The observability is evaluated at the nominal operating
point as shown in Table 1.

For the first measurement y1 = x1, the Lie derivatives are:

L1 =




Lo
fh1

L1
fh1

L2
fh1

L3
fh1


 =




x1

x3 + x4 − β
0
0


 . (9)

The corresponding observability matrix is:

O =
∂L1

∂x
=



1 0 0 0
0 0 1 1
0 0 0 0
0 0 0 0


 . (10)

For the second measurement y2 = x2, the Lie derivatives
are:

L2 =




x2
E

x1

−E (2D − β)

x1
2

(3DE − 2Eβ)

(
2D − β

x1
3

)



, (11)

where D = x3 + x4 and E = x4 − x2D + dx3. The
corresponding observability matrix as evaluated at the
nominal operating point is:

O =
∂L2

∂x
=



0 1 0 0
0 −75 0.01 −0.04
0 5625 −0.75 3
0 −421875 56.25 −225


 . (12)

Assume the measured vector is y = [x1, x2]
T . The corre-

sponding observability matrix can be represented as:

O =




1 0 0 0
0 1 0 0
0 0 1 1
0 −75 0.01 −0.04
0 0 0 0
0 5625 −0.75 3
0 0 0 0
0 −421875 56.25 −225



. (13)

The rank of the matrix in (13) is 4. This implies that if
x1 = v and x2 = ρ are measured, x3 = qi and x4 = qw

Table 2. Observability for different measure-
ment sets.

Experi-
ment#

Measured
states

Fault
states

Rank of O Observable

1 x1 x2&x3&x4 2 No
2 x2 x1&x3&x4 2 No
3 x3 x1&x2&x4 1 No
4 x4 x1&x2&x3 1 No
5 x1&x2 x3&x4 4 Yes
6 x1&x3 x2&x4 3 No
7 x1&x4 x2&x3 3 No
8 x2&x3 x1&x4 3 No
9 x2&x4 x1&x3 3 No
10 x3&x4 x1&x2 2 No
11 x1&x2&x3 x4 4 Yes
12 x1&x2&x4 x3 4 Yes
13 x1&x3&x4 x2 3 No
14 x2&x3&x4 x1 3 No

can be estimated. However, if only x1 or x2 are measured,
the other states cannot be observed. This is also true if
measurement of either x3 or x4 is used to estimate the
other three states.

The rank of observability matrices for different combina-
tions of measurements are given in Table 2. Specifically it
indicates that unless at least both x1 and x2 are measured,
it is not possible to observe the other states. Thus, it is ex-
pected that unless both these measurements are available,
the other measurements cannot be reconstructed.

4. RECONSTRUCTION USING PCA

The aim is to investigate if the reconstruction using PCA
gives similar results as the observability analysis above.
The process to reconstruct missing measurements using
PCA is summarized below (Dunia and Qin, 1998; Qin and
Weihua, 1999; Qin and Li, 2001; Valle et al., 1999).

Consider a dataset representing normal process operation
exhibiting no sensor faults X ∈ Rn×m where n is the
number of measurements and m is the number of sensors.
Assume the dataset is scaled to zero-mean and unit vari-
ance. Dataset X can be decomposed as:

X = X̂ + X̃ = TPT + T̃ P̃T , (14)

where X̂ = TPT is the model matrix, X̃ = T̃ P̃T is
the residual matrix, and T = [t1, . . . , tl] ∈ Rn×l and
P = [p1, . . . , pl] ∈ Rm×l are the score and loading matrices
respectively. Vectors pi are the principal component (PC)
loadings, i.e., the eigenvectors of the covariance matrix of
X, which represent how variables are related to each other.
Vectors ti are the PC scores which indicate how samples
are related to each other. The cumulative percent variance
(CPV) can be used as a measure to determine the number
of PCs (l) in (14) to represent the most variability in the
data:

CPV =

∑l
i=1 λi∑m
i=1 λi

× 100%, (15)

where λi are the eigenvalues corresponding to the eigen-
vectors pi. A new sample vector x can be decomposed as:

x = x̂+ x̃ = PPTx+ (I − PPT )x = Cx+ C̃x, (16)

where x̂ = Cx and x̃ = C̃x are the projections on the PC
subspace (Sp) and residual subspace (Sr) respectively.
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3.2 Observability analysis of surge tank model

The aim of the observability analysis is to evaluate if
measurements of either the inputs or outputs can be
used to reconstruct missing measurements. Therefore, for
the observability analysis, the inputs are regarded as
additional states with zero dynamics.

Consider the nonlinear state space model of the surge tank
in (4). Let x1 = v, x2 = ρ, x3 = qi, x4 = qw, d = ρi and
β = qo. Therefore (4) becomes:



ẋ1

ẋ2

ẋ3

ẋ4


 =




x3 + x4 − β
x3d− x2(x3 + x4) + x4

x1
0
0


 . (8)

The observability of the states x1 through x4 will be
evaluated according to which of these states are measured.
The observability is evaluated at the nominal operating
point as shown in Table 1.

For the first measurement y1 = x1, the Lie derivatives are:

L1 =




Lo
fh1

L1
fh1

L2
fh1

L3
fh1


 =




x1

x3 + x4 − β
0
0


 . (9)

The corresponding observability matrix is:

O =
∂L1

∂x
=



1 0 0 0
0 0 1 1
0 0 0 0
0 0 0 0


 . (10)

For the second measurement y2 = x2, the Lie derivatives
are:

L2 =




x2
E

x1

−E (2D − β)

x1
2

(3DE − 2Eβ)

(
2D − β

x1
3

)



, (11)

where D = x3 + x4 and E = x4 − x2D + dx3. The
corresponding observability matrix as evaluated at the
nominal operating point is:

O =
∂L2

∂x
=



0 1 0 0
0 −75 0.01 −0.04
0 5625 −0.75 3
0 −421875 56.25 −225


 . (12)

Assume the measured vector is y = [x1, x2]
T . The corre-

sponding observability matrix can be represented as:

O =




1 0 0 0
0 1 0 0
0 0 1 1
0 −75 0.01 −0.04
0 0 0 0
0 5625 −0.75 3
0 0 0 0
0 −421875 56.25 −225



. (13)

The rank of the matrix in (13) is 4. This implies that if
x1 = v and x2 = ρ are measured, x3 = qi and x4 = qw

Table 2. Observability for different measure-
ment sets.

Experi-
ment#

Measured
states

Fault
states

Rank of O Observable

1 x1 x2&x3&x4 2 No
2 x2 x1&x3&x4 2 No
3 x3 x1&x2&x4 1 No
4 x4 x1&x2&x3 1 No
5 x1&x2 x3&x4 4 Yes
6 x1&x3 x2&x4 3 No
7 x1&x4 x2&x3 3 No
8 x2&x3 x1&x4 3 No
9 x2&x4 x1&x3 3 No
10 x3&x4 x1&x2 2 No
11 x1&x2&x3 x4 4 Yes
12 x1&x2&x4 x3 4 Yes
13 x1&x3&x4 x2 3 No
14 x2&x3&x4 x1 3 No

can be estimated. However, if only x1 or x2 are measured,
the other states cannot be observed. This is also true if
measurement of either x3 or x4 is used to estimate the
other three states.

The rank of observability matrices for different combina-
tions of measurements are given in Table 2. Specifically it
indicates that unless at least both x1 and x2 are measured,
it is not possible to observe the other states. Thus, it is ex-
pected that unless both these measurements are available,
the other measurements cannot be reconstructed.

4. RECONSTRUCTION USING PCA

The aim is to investigate if the reconstruction using PCA
gives similar results as the observability analysis above.
The process to reconstruct missing measurements using
PCA is summarized below (Dunia and Qin, 1998; Qin and
Weihua, 1999; Qin and Li, 2001; Valle et al., 1999).

Consider a dataset representing normal process operation
exhibiting no sensor faults X ∈ Rn×m where n is the
number of measurements and m is the number of sensors.
Assume the dataset is scaled to zero-mean and unit vari-
ance. Dataset X can be decomposed as:

X = X̂ + X̃ = TPT + T̃ P̃T , (14)

where X̂ = TPT is the model matrix, X̃ = T̃ P̃T is
the residual matrix, and T = [t1, . . . , tl] ∈ Rn×l and
P = [p1, . . . , pl] ∈ Rm×l are the score and loading matrices
respectively. Vectors pi are the principal component (PC)
loadings, i.e., the eigenvectors of the covariance matrix of
X, which represent how variables are related to each other.
Vectors ti are the PC scores which indicate how samples
are related to each other. The cumulative percent variance
(CPV) can be used as a measure to determine the number
of PCs (l) in (14) to represent the most variability in the
data:

CPV =

∑l
i=1 λi∑m
i=1 λi

× 100%, (15)

where λi are the eigenvalues corresponding to the eigen-
vectors pi. A new sample vector x can be decomposed as:

x = x̂+ x̃ = PPTx+ (I − PPT )x = Cx+ C̃x, (16)

where x̂ = Cx and x̃ = C̃x are the projections on the PC
subspace (Sp) and residual subspace (Sr) respectively.
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Assume x∗ denotes a sample vector for normal operating
conditions which is unknown when a fault occurs. The
sample vector x, which contains a fault, can be represented
using a normalised fault direction vector ξi which charac-
terises the effect of a fault on the actual measurements:

x = x∗ + fξi, (17)

where the scalar f represents the magnitude of the fault.
For example, ξTi = [1 0 . . . 0] can represent failure in
the first sensor. Fault reconstruction aims to find the
best estimate of x∗ in (17). The reconstruction vector xi

corrects x in the direction ξi such that:

xi = x− fiξi, (18)

where fi is an estimate of the fault magnitude f . The
squared prediction error (SPE) of xi expresses the dis-
placement between xi and Sp:

SPEi =
∥∥∥C̃x− fiC̃ξi

∥∥∥ . (19)

If ξi is known as assumed in this study, xi can be obtained
by solving the minimisation problem:

min
fi

‖SPEi‖ . (20)

5. RECONSTRUCTION OF MEASUREMENT
ERRORS IN THE SURGE TANK

5.1 Simulation of the surge tank

The surge tank in (4) is connected in closed-loop with a
linear controller (Rokebrand, 2020):

Gc(s) = 100

(
G−1

p +

[
33/s 0
33/s 0

])

= 100

[
0.8 + 33/s 20 (s+ 75) /s
0.2 + 33/s −20 (s+ 75) /s

] , (21)

where integral action is added to Gc11 and Gc12 to suppress
steady-state volume errors. The closed-loop system is sim-
ulated using the explicit Runge-Kutta integration method
for a period of 2 h with a sampling rate of 10 s. Note, since
it is a common condition at the industrial plant, q0 is kept
constant at its nominal value throughout the simulation.
Fig. 3 shows the closed-loop response to a series of setpoint
and disturbance step changes. Process and measurement
noise is not included to ensure simulated model responses
are clearly visible.

5.2 PCA model of the surge tank

The PCA model of the surge tank is constructed using the
surge tank simulation data for the full simulation period
of 2 h. The data is first normalized to zero-mean and unit-
variance. Similar to model construction in (8), a sample
measurement for the PCA model is constructed as x =
[v, ρ, qi, qw]

T
. The resulting PC loadings and associated

eigenvalues based on only two principal components are:

P =



−0.43 0.90
−0.52 −0.18
−0.52 −0.30
0.52 0.27


 , λ =

[
3.44
0.44

]
. (22)

Two principal components represent a CPV of 97% of
process variability as per (15). The PCA model accuracy
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Fig. 3. Closed-loop system response.

is determined in terms of a normalized root mean square
error (NRMSE):

NRMSE = 100

(
1− ‖x− x̂‖

‖x‖

)
, (23)

where x is the normalized process data, and x̂ is the PCA
model. The model accuracy is shown in Table 3. This
model is used for all simulations in the next section.

5.3 Reconstructing measurement faults

In this study it is assumed that the faults are identified and
the direction of the faults ξi in (17) is known. As can be
observed from the plant response directions in Fig. 3, the
direction of a fault for x4 (i.e., qw) will be in the opposite
direction as faults in the other states.

The same dataset used in Section 5.2 to construct the
PCA model is used here to analyse fault reconstruction.
This does not follow general practice to use two different
datasets of the same process for modelling and validation
(see e.g. Brooks and Bauer (2018)). However, this is done
so that the PCA model can act as a benchmark to compare
against the fault reconstruction accuracy.

Table 3 shows the set of experiments with the measured
states, the faulty states, the fault directions, and the
accuracy of reconstruction of the faulty states. Table 3
includes the observability analysis results of Table 2 for
comparison. For each experiment, faults in states are
simulated by replacing the relevant states with zero-value
readings for the entire simulation period. At each sampling
instant the minimisation problem in (20) is solved using
the Nelder-Mead simplex search method and the state
reconstructed according to (18). The difference between
the reconstructed states and the simulated true process
states is evaluated using (23).

Figs. 4-7 show the reconstruction results for Experiments
5, 7, 8 and 10 in Table 3 respectively. Similarly, Figs. 8 and
9 show results for Experiments 11 and 12 respectively.

Table 3. Model and reconstruction accuracies.

x1 (or v) x2 (or ρ) x3 (or qi) x4 (or qw)

PCA model error (see (23)) 2.5% 24% 19% 14%

Experi-
ment#

Measured
states

Faulty
states

Rank
of O

Observ-
able

Error direction Reconstruction error (see (23))

1 x1 x2&x3&x4 2 No ξT = 1√
3
[0, 1, 1,−1] - 86% 91% 89%

2 x2 x1&x3&x4 2 No ξT = 1√
3
[1, 0, 1,−1] 78% - 41% 34%

3 x3 x1&x2&x4 1 No ξT = 1√
3
[1, 1, 0,−1] 84% 42% - 26%

4 x4 x1&x2&x3 1 No ξT = 1√
3
[1, 1, 1, 0] 80% 34% 25% -

5 x1&x2 x3&x4 4 Yes ξT = 1√
2
[0, 0, 1,−1] - - 43% 36%

6 x1&x3 x2&x4 3 No ξT = 1√
2
[0, 1, 0,−1] - 40% - 24%

7 x1&x4 x2&x3 3 No ξT = 1√
2
[0, 1, 1, 0] - 33% 25% -

8 x2&x3 x1&x4 3 No ξT = 1√
2
[1, 0, 0,−1] 78% - - 22%

9 x2&x4 x1&x3 3 No ξT = 1√
2
[1, 0, 1, 0] 77% - 30% -

10 x3&x4 x1&x2 2 No ξT = 1√
2
[1, 1, 0, 0] 81% 36% - -

11 x1&x2&x3 x4 4 Yes ξT = [0, 0, 0,−1] - - - 22%
12 x1&x2&x4 x3 4 Yes ξT = [0, 0, 1, 0] - - 30% -
13 x1&x3&x4 x2 3 No ξT = [0, 1, 0, 0] - 34% - -
14 x2&x3&x4 x1 3 No ξT = [1, 0, 0, 0] 360% - - -
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Fig. 4. Experiment 5: x1&x2 are measured and x3&x4 are
reconstructed.
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Fig. 5. Experiment 7: x1&x4 are measured and x2&x3 are
reconstructed.

6. DISCUSSION

Table 3 indicates that for the system states to be observ-
able, both x1 and x2 need to be observable. It is interesting
to note that even though the system is not fully observable
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Fig. 6. Experiment 8: x2&x3 are measured and x1&x4 are
reconstructed.
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Fig. 7. Experiment 10: x3&x4 are measured and x1&x2

are reconstructed.

as in Experiments 6, 7, and 13, it is still possible to
achieve reasonable reconstruction accuracy for x2, x3, and
x4 whenever at least x1 is present. Fig. 6 for Experiment 8
and Fig 7 for Experiment 10 show the poor reconstruction
of x1.
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Table 3. Model and reconstruction accuracies.

x1 (or v) x2 (or ρ) x3 (or qi) x4 (or qw)

PCA model error (see (23)) 2.5% 24% 19% 14%

Experi-
ment#

Measured
states

Faulty
states

Rank
of O

Observ-
able

Error direction Reconstruction error (see (23))

1 x1 x2&x3&x4 2 No ξT = 1√
3
[0, 1, 1,−1] - 86% 91% 89%

2 x2 x1&x3&x4 2 No ξT = 1√
3
[1, 0, 1,−1] 78% - 41% 34%

3 x3 x1&x2&x4 1 No ξT = 1√
3
[1, 1, 0,−1] 84% 42% - 26%

4 x4 x1&x2&x3 1 No ξT = 1√
3
[1, 1, 1, 0] 80% 34% 25% -

5 x1&x2 x3&x4 4 Yes ξT = 1√
2
[0, 0, 1,−1] - - 43% 36%

6 x1&x3 x2&x4 3 No ξT = 1√
2
[0, 1, 0,−1] - 40% - 24%

7 x1&x4 x2&x3 3 No ξT = 1√
2
[0, 1, 1, 0] - 33% 25% -

8 x2&x3 x1&x4 3 No ξT = 1√
2
[1, 0, 0,−1] 78% - - 22%

9 x2&x4 x1&x3 3 No ξT = 1√
2
[1, 0, 1, 0] 77% - 30% -

10 x3&x4 x1&x2 2 No ξT = 1√
2
[1, 1, 0, 0] 81% 36% - -

11 x1&x2&x3 x4 4 Yes ξT = [0, 0, 0,−1] - - - 22%
12 x1&x2&x4 x3 4 Yes ξT = [0, 0, 1, 0] - - 30% -
13 x1&x3&x4 x2 3 No ξT = [0, 1, 0, 0] - 34% - -
14 x2&x3&x4 x1 3 No ξT = [1, 0, 0, 0] 360% - - -
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Fig. 4. Experiment 5: x1&x2 are measured and x3&x4 are
reconstructed.
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6. DISCUSSION

Table 3 indicates that for the system states to be observ-
able, both x1 and x2 need to be observable. It is interesting
to note that even though the system is not fully observable
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Fig. 6. Experiment 8: x2&x3 are measured and x1&x4 are
reconstructed.
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Fig. 7. Experiment 10: x3&x4 are measured and x1&x2

are reconstructed.

as in Experiments 6, 7, and 13, it is still possible to
achieve reasonable reconstruction accuracy for x2, x3, and
x4 whenever at least x1 is present. Fig. 6 for Experiment 8
and Fig 7 for Experiment 10 show the poor reconstruction
of x1.
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Fig. 8. Experiment 11: x1&x2&x3 are measured and x4 is
reconstructed.
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Fig. 9. Experiment 12: x1&x2&x4 are measured and x3 is
reconstructed.

Table 3 indicate that whenever there is a fault in x1, it
cannot be reconstructed from the other available measure-
ments. Although the PCA model of x1 has the smallest
error, the reconstruction error is greater than 70% for
all cases where x1 is faulty. In the PCA model in (22)
the largest eigenvalue in the PCA model is more or less
equally distributed among all the states, whereas the sec-
ond largest eigenvalue is predominantly associated with
x1.

The largest reconstruction error for x1 occurs for the
univariate case in Experiment 14 where x2, x3, and x4 are
used to reconstruct x1. However, smaller reconstruction
errors occur for the multivariate cases where fewer mea-
surements are used to reconstruct x1. This is in contrast
to the case of Brooks and Bauer (2018) where the uni-
variate case could reconstruct faulty measurements but
the multivariate cases could not be solved. Thus, rather
than an error in the algorithm or approach to reconstruct
faulty measurements, the dynamics of the process which
determine the process models influence the ability to re-
construct faulty measurements.

7. CONCLUSION

Brooks and Bauer (2018) experienced various issues in
their attempts to reconstruct measurements faults on an
industrial plant using a commercially available package.
The package makes use of PCA for measurement recon-
struction (Dunia and Qin, 1998; Qin and Weihua, 1999;
Qin and Guiver, 2003). The aim of this study is to inves-
tigate measurement reconstruction by means of PCA on
a smaller scale by considering a tailings treatment surge
tank. Multiple combinations of faulty and correct mea-
surements were investigated in terms state observability
and reconstruction. It appears that full observability is
not necessarily required to achieve reasonably accurate

reconstruction of faulty measurements. It is interesting to
see that the state which is modelled most accurately by
the PCA model is most difficult to reconstruct even in the
univariate case where all other measurements are available.
Since the problem cannot be attributed to either the algo-
rithm or the reconstruction approach, it is concluded that
it is not only the data used to construct the PCA model
which influences the ability to reconstruct a measurement,
but also the internal dynamics of the process as captured
by the process models.
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