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ABSTRACT. We generalise the Riesz representation theorems for positive linear
functionals on Cc(X ) and C0(X ), where X is a locally compact Hausdorff space,
to positive linear operators from these spaces into a partially ordered vector
space E. The representing measures are defined on the Borel σ-algebra of X
and take their values in the extended positive cone of E. The corresponding
integrals are order integrals. We give explicit formulas for the values of the
representing measures at open and at compact subsets of X .
Results are included where the space E need not be a vector lattice, nor a
normed space. Representing measures exist, for example, for positive linear
operators into Banach lattices with order continuous norms, into the regular
operators on KB-spaces, into the self-adjoint linear operators on complex
Hilbert spaces, and into JBW-algebras.

1. INTRODUCTION AND OVERVIEW

Let X be a locally compact Hausdorff space, and let π : Cc(X )→R be a positive
linear functional. The Riesz representation theorem asserts that there is a unique
regular Borel measure on the Borel σ-algebra of X , such that

(1.1) π( f ) =

∫

X
f dµ
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2 RIESZ REPRESENTATION THEOREMS FOR POSITIVE LINEAR OPERATORS

for all f in Cc(X ).
In this paper, we establish analogous representation theorems for positive

linear operators π : Cc(X ) → E and π : C0(X ) → E, where E is a (suitable)
partially ordered vector space, while giving explicit formulas for the measures of
open and of compact subsets of X .1 Results are included where the space E need
not be a vector lattice, nor a normed space. As will become clear, representing
measures exist for, e.g., positive linear operators into Banach lattices with order
continuous norms, into the regular operators on KB-spaces, into the self-adjoint
operators on complex Hilbert spaces, and into JBW-algebras. When E =R, the
results specialise to the classical Riesz representation theorems.

In the general setting of the present paper, the measure µ in equation (1.1)
takes its values in the (extended) positive cone of E, and the integral in question
is an order integral. Such measures and their order integrals are the subject
of [10], which extends earlier work by Wright. The results for the order integral
in [10] are fairly complete and also include convergence theorems that can be
of use in applications, with the existence theorems in the present paper as a
starting point.

A possible multiplicativity of the linear operator π is not an issue in the current
paper: being positive and linear is enough. In the sequel [12], we shall consider
positive algebra homomorphisms from Cc(X ) or C0(X ) into partially ordered
algebras. The representing measures from the current paper can then be shown
to be spectral measures that take values in the algebras. It will be seen in [12]
that the ensuing existence theorems for abstract spectral measures immediately
imply the classical ones for representations of (the complexification of) C0(X ) on
complex Hilbert spaces, and for positive representations of C0(X ) on KB-spaces
in [13]. The up-down theorems that are established in [12] for general partially
ordered algebras yield the familiar results for Hilbert spaces as special cases.
In [11], which is another sequel to the present paper, we shall be concerned
with representation theorems for vector lattices (resp. Banach lattices) of regular
operators from Cc(X ) and C0(X ) into Dedekind complete vector lattices (resp.
Banach lattices with order continuous norms) in the spirit of [4, Theorem 38.7].

We shall discuss the relation between the present paper and existing rep-
resentation theorems for positive linear operators in the literature at the end
of this introduction. There appears to be no previous work in the vein of the
sequels [11] or [12] to the present paper.

This paper is organised as follows.
Section 2 contains the necessary prerequisites from [10], including those on

measures and the order integral, and can serve as a summary thereof.

1In the course of the present paper, its prequel [10], and its sequels [11,12], we shall encounter
maps with Cc(X ) or C0(X ) as domains that are sometimes positive linear operators, sometimes
vector lattice homomorphisms, and sometimes positive algebra homomorphisms. For each of
these contexts, a canonical symbol for such maps could be chosen. However, since our results for
these contexts are related, we have chosen to use the same symbol π throughout, thus keeping
the notation as uniform as possible.
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In the preparatory Section 3, we introduce various types of regularity of
measures on the Borel σ-algebra of a locally compact Hausdorff space that take
their values in the extended positive cones of partially ordered vector spaces. A
few auxiliary results for the remainder of the paper are also established,

Section 4 contains the proof of a representation theorem (see Theorem 4.2) for
positive linear operators π : Cc(X )→ E, where E is (for all practical purposes)
a Banach lattice with an order continuous norm. It is one of the essential
ingredients for the sequel [11]. The possibly infinite representing measure in it
is always regular.

Since spaces of operators will only rarely satisfy the conditions on the space E
in Section 4, other results are needed that do apply (at least) when E is a space
of operators. Such results are to be found in Section 5, where representation
theorems (see Theorems 5.4 and 5.6) are established when the codomain of
the positive linear operator π : Cc(X )→ E is a monotone complete and normal
space. The class of such spaces E is quite varied. We refer to Examples 2.5 and
also to [10, Section 3] for examples, some of which were already mentioned
above. When E consists of the regular operators on a Banach lattice with an
order continuous norm, or of the self-adjoint operators in a strongly closed
complex linear subspace of the bounded linear operators on a complex Hilbert
space, then the representing measure in Theorem 5.4 has the familiar property
of being σ-additive in the strong operator topology. The representing measures
in Theorem 5.4 are finite (by assumption) and regular. Those in Theorem 5.6
can be infinite, but regularity need then hold only locally. In Remark 5.8, we
compare the applicability of the main representation theorems (Theorems 4.2,
5.4, and 5.6) for positive linear operators π : C0(X )→ E.

The final Section 6 is concerned with positive linear operators π : C0(X )→ E.
The domain C0(X ) is now a Banach lattice, and we can then exploit automatic
continuity to derive representation theorems for such linear operators from those
for their restrictions to Cc(X ). The representing measures thus obtained are all
finite. Theorem 6.2 covers the case where E is a KB-space, and Theorem 6.8
applies to the larger class of quasi-perfect partially ordered vector spaces. In The-
orems 6.10 and 6.12, the space E consists of the regular operators on a KB-space
and of the self-adjoint operators in a strongly closed complex linear subspace of
the bounded linear operators on a complex Hilbert space, respectively. In both
cases, the representing measures are strongly σ-additive again. Furthermore, a
number of SOT-closed subspaces of E that are naturally associated with π can
be seen to coincide. As a consequence, the representing measure takes its values
in the coinciding bicommutants of π(Cc(X )) and π(C0(X )).

We now give an overview of earlier work that we are aware of on Riesz represent-
ation theorems for positive linear operators from spaces of continuous functions
into various types of partially ordered vector spaces. The space X is always a
locally compact Hausdorff space, unless otherwise stated. As will become clear,
one can hardly speak of ‘the’ Riesz representation theorem for positive linear
operators from Cc(X ) or C0(X ) into partially ordered vector spaces.



4 RIESZ REPRESENTATION THEOREMS FOR POSITIVE LINEAR OPERATORS

To start with, there is the seminal paper by Wright [23]. It has a representation
theorem for a positive linear operator from C(X ), where X is compact, into a
Stone algebra. A second paper [24] by the same author covers the case of a
positive linear operator from C(X ), where X is compact, into a σ-Dedekind
complete vector lattice. A third paper [25] contains a representation theorem
for a positive linear operator from Cc(X ) into a Dedekind complete vector lattice.
In a fourth [26], the existence is established of a representing Baire measure for
a positive linear operator from C(X ), where X is compact, into a σ-monotone
complete partially ordered vector space. When comparing the latter result to
our Theorem 5.4, both have their strong points. Wright’s conditions on E are
more lenient, but the space X has to be compact, which is essential to the proofs.
Theorem 5.4, on the other hand, is valid for locally compact spaces, and also
gives explicit formulas for the measure of open and of compact subsets.

In [16], one of Khurana’s papers in this direction, it is shown that a positive
linear operator from Cc(X ) into a monotone complete partially ordered vector
space can be extended to a σ-order continuous linear operator defined on the
bounded Borel functions with compact support; this goes in the direction of a
Riesz representation theorem. In a second paper [17], a representation theorem
is established, under certain additional conditions, for a positive linear operator
from the bounded continuous functions on a completely regular Hausdorff space
into a monotone complete partially ordered vector space. In [18], he proves
a representation theorem for a positive linear operator from the continuous
functions on a completely regular T1-space into a Stone algebra.

In [19], Lipecki shows the existence of a representing finitely additive measure
for positive linear operators from the bounded continuous functions on an
arbitrary topological space into a monotone complete partially ordered vector
space; there is a second result for the bounded continuous functions when the
topological space is normal.

In [8], Coquand gives a new proof of Wright’s result in [26].
The results cited above also include regularity properties of the representing

measures, but not always the same properties. In cases where several results
apply, it is, therefore, not clear whether the representing measures are necessarily
equal.

The results in the present paper have the advantage that the space X need not
be compact and that they apply, amongst others, when E is a monotone complete
normal space. This is a fairly large class of spaces, containing many spaces that
are not vector lattices. Moreover, explicit formulas for the measures of open and
of compact subsets of X are given. We are not aware of a similar combination of a
reasonably wide range of applicability and concrete formulas in the literature on
partially ordered vector spaces. The usefulness of this combination can be seen
in, e.g, Theorems 6.10 and 6.12, which, though in two rather different contexts,
are both virtually immediate consequences of one underlying general result. It
will become even more pronounced in the sequel [12] when considering positive
algebra homomorphisms from Cc(X ) and C0(X ) into monotone complete normal
partially ordered algebras with monotone continuous multiplications.



RIESZ REPRESENTATION THEOREMS FOR POSITIVE LINEAR OPERATORS 5

2. PRELIMINARIES

In this section, we collect some conventions, definition, notations, and preparat-
ory results that will be used in the sequel.

The indicator function of a subset S of a set X is denoted by χS. We shall also
write 0 for χ; and 1 for χX . When X is a topological space, then we let Cc(X ),
resp. C0(X ), denote the continuous real-valued functions on X that have compact
support, resp. vanish at infinity.

2.1. Partially ordered vector spaces. All vector spaces we shall consider are
over the real numbers, unless otherwise indicated. An operator between two
vector spaces and a functional are always supposed to be linear, but—when this
notion is applicable—need not be bounded. We do not require that the positive
cone E+ of a partially ordered vector space E be generating. Equivalently, we
do not require that E be directed. We do require, however, that E+ be proper,
i.e., that E+ ∩ (−E+) = {0}. All vector lattices are supposed to be Archimedean.

Definition 2.1. A partially ordered vector space E is called
(1) σ-monotone complete if every increasing sequence {xn}∞n=1 in E that is

bounded from above has a supremum in E;
(2) monotone complete if every increasing net {xλ}λ∈Λ in E that is bounded

from above has a supremum in E;
(3) σ-Dedekind complete if every non-empty at most countably infinite subset

S of E that is bounded from above has a supremum in E;
(4) Dedekind complete if every non-empty subset S that is bounded from

above has a supremum in E.

We shall employ the usual notation in which xλ ↓ means that {xλ}λ∈Λ is a
decreasing net, and in which xλ ↓ x means that {xλ}λ∈Λ is a decreasing net with
infimum x . The notations xλ ↑ and xλ ↑ x are similarly defined.

It was observed in [26, Lemma 1.1] that every σ-monotone complete partially
ordered vector space E (and then also every monotone complete, σ-Dedekind
complete, or Dedekind complete partially order vector space) is Archimedean,
i.e.,
∧

{ϵx : ϵ > 0}= 0 for all x ∈ E+. We shall use this a number of times.

Vector spaces of operators between partially ordered vector spaces can inherit
completeness properties from the codomains. In order to formulate this, we first
introduce some notation and terminology.

When E and F are vector spaces, then L(E, F) denotes the vector space of
operators from E into F . An operator T ∈ L(E, F) between two partially ordered
vector spaces is positive if T (E+) ⊆ F+, and regular if it is the difference of two
positive operators. The regular operators from E into F form a vector space
that is denoted by Lr(E, F). When E+ is directed, then every linear subspace
of L(E, F) that contains Lr(E, F) is naturally partially ordered with the regular
positive operators from E into F , denoted by Lr(E, F)+, as its positive cone. We
shall write L(E) for L(E, E), Lr(E) for Lr(E, E), and Es for Lr(E,R). When E
is a Banach lattice, then Es coincides with the norm dual E∗ of E.
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We can now state how completeness is hereditary. When E is a directed
partially ordered vector space, and F is a partially ordered vector space that is
monotone complete (resp. σ-monotone complete), then any linear subspace of
L(E, F) containing Lr(E, F) is monotone complete (resp.σ-monotone complete);
see [10, Proposition 3.1].

The monotone complete partially ordered vector spaces that are also normal will
play an important part in this paper. We now proceed to define the latter notion.

Definition 2.2. Let E and F be partially ordered vector spaces, and let T :
E→ F be a positive operator. Then T is called order continuous (resp. σ-order
continuous) if T xλ ↓ 0 in F whenever xλ ↓ 0 in E (resp. if T xn ↓ 0 in F whenever
xn ↓ 0 in E). A general operator in Lr(E, F) is called order continuous (resp.
σ-order continuous) if it is the difference of two positive order continuous
operators. We let Loc(E, F) (resp. Lσoc(E, F)) denote the order continuous (resp.
σ-order continuous) operators from E into F ; we shall write Esoc for Loc(E,R)
and Esσoc for Lσoc(E,R).2

It is easy to see that Loc(E, F) and Lσoc(E, F) are linear subspaces of Lr(E, F).
When E is directed, then they are partially ordered vector spaces with the positive
order continuous operators (resp. the positive σ-order continuous operators)
from E into F as positive cones, which are generating by definition.

Definition 2.3. Let E be a partially ordered vector space. Then E is called
normal when, for x ∈ E, (x , x ′)≥ 0 for all x ′ ∈ (Esoc)

+ if and only if x ∈ E+. We
say that E is σ-normal when, for x ∈ E, (x , x ′) ≥ 0 for all x ′ ∈ (Esσoc)

+ if and
only if x ∈ E+.3

The importance of normality for our work lies in the following result (see [10,
Proposition 3.8]) that will be used quite a few times in the present paper.

Proposition 2.4. Let E be a normal partially ordered vector space. Suppose that
{xλ}λ∈Λ is a net in E, and that x ∈ E.

(1) If xλ ↓, then xλ ↓ x if and only if (x , x ′) = infλ∈Λ(xλ, x ′) for all x ′ ∈
(Esoc)

+.
(2) If xλ ↑, then xλ ↑ x if and only if (x , x ′) = supλ∈Λ(xλ, x ′) for all x ′ ∈
(Esoc)

+.

In the presence of monotone completeness, normality of a codomain is a
hereditary property: when E is a directed partially ordered vector space, and
F is a monotone complete and normal partially ordered vector space, then

2When E and F are vector lattices, where F is Dedekind complete, then the notions of order
continuous and σ-order continuous operators in Definition 2.2 agree with the usual ones in the
literature as on [27, p. 123]; see [10, Remark 3.5] for this.

3When E is a vector lattice, then the notion of normality in Definition 2.3 coincides with
the usual one in the literature (see [1, p. 21], for example) that Esoc separates the points of E;
see [10, Lemma 3.7] for this. It also follows from [10, Lemma 3.7] that a vector lattice E is
σ-normal as in Definition 2.3 if and only if Es

σoc separates the points of E.
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any linear subspace of L(E, F) containing Lr(E, F) is monotone complete and
normal; see [10, Proposition 3.11].

Since both (σ-)monotone completeness and normality are properties that are
inherited by partially ordered vector spaces of operators, it is easy to construct
examples of monotone complete and normal spaces once one has such a space
to begin with.

Examples 2.5. In [10, Section 3] we have included a number of examples of
partially ordered vector spaces that are monotone complete and normal. These
include (but are not limited to):

(1) Banach lattices with order continuous norms;
(2) for partially ordered vector spaces E and F such that E is directed and

F is monotone complete and normal: every linear subspace of L(E, F)
that contains Lr(E, F);

(3) as a special case of part (2): the regular operators on a Banach lattice
with an order continuous norm;

(4) the real vector space that consists of the self-adjoint operators in a
strongly closed complex linear subspace of the bounded operators on a
complex Hilbert space;

(5) JBW-algebras.4

2.2. Measures and order integrals. In this section, we shall briefly summarise
the relevant definitions and results for measures and order integrals from [10,
Sections 4 and 6]. This extends earlier work by Wright and contains the usual
Lebesgue integral as a special case. We refer to [10] for a discussion of the
relation with Wright’s work.

We refrain from mentioning here in any detail the material on outer measures
in [10, Section 5]. It is indispensable in the proof of Theorem 4.2, but it occurs
only as an intermediate step and does not reappear.

Let E be a partially ordered vector space. As the case of the Lebesgue integral
on the real line already shows, one cannot expect a representing measure for
a positive operator π : Cc(X ) → E to be finite. This is why we extend E by
introducing the set E := E ∪ {∞} as a disjoint union, and extend the partial
ordering from E to E by declaring that x ≤ ∞ for all x ∈ E. Then E+ :=
E+ ∪ {∞} is the set of positive elements of E. The elements of E that are in E
are called finite. One makes E into an abelian monoid by retaining the addition
on E and defining∞+ x :=∞ and x +∞ :=∞ for all x ∈ E. Then E+ is a
sub-monoid of E. When x , y ∈ E are such that x ≤ y , then x + z ≤ y + z for all
z ∈ E. We keep the action ofR on E, and define r ·∞ :=∞ for all r ∈R+ \{0}
and 0 ·∞ := 0. Then r x ≤ r y for all r, s ∈R+ and x , y ∈ E such that r ≤ s and
x ≤ y . Furthermore, r(x + y) = r x + r y , (r + s)x = r x + sx , and (rs)x = r(sx)

4We shall use [2,3] references for JBW-algebras. In these books, a JBW-algebra is supposed to
have an identity element; see [3, Definitions 1.5 and 2.2]. In other sources, this is not supposed.
However, as [15, Lemma 4.1.7] shows, the existence of an identity element is, in fact, automatic.
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for all r, s ∈R+ and x , y ∈ E+. Such relations will be used in the sequel without
further reference.

When being used to working with the extended real numbers, which are
still linearly ordered, it may be relatively easy to make mistakes when arguing
with the ordering of and the operations on E and E. It is for this reason that a
fair number of technical tools have been collected in [10, Lemmas 2.3 to 2.5]
that will be used repeatedly in the present paper and its sequels. Whenever
necessary, we shall be careful to indicate whether we are working in E or in E
when speaking of order bounds, suprema, or infima.

Now that we have the extended space E available, it is possible to define
the measures that concern us. It was Wright who first observed in [23] that
equation (2.1), below, is the proper way to generalise the notion of σ-additivity
from the real numbers to more general partially ordered vector spaces.

A measurable space is a pair (X ,Ω), where X is a set and Ω is an algebra of
subsets of X ; i.e., Ω is a non-empty collection of subsets of X that is closed under
taking complements and under taking finite unions. For the moment, we can
still work with algebras of subsets, rather than σ-algebras.

Definition 2.6. Let (X ,Ω) be a measurable space, and let E be a σ-monotone
complete partially ordered vector space. A positive E-valued measure is a map
µ : Ω→ E+ such that:

(1) µ(;) = 0;
(2) (σ-additivity) whenever {∆n}∞n=1 is a pairwise disjoint sequence in Ω

with
⋃∞

n=1∆n ∈ Ω, then

(2.1) µ

�∞
⋃

n=1

∆n

�

=
∞
∨

N=1

N
∑

n=1

µ(∆n)

in E.

Since µ is E+-valued, it follows from the σ-monotone completeness of E that
the supremum in the right hand side of equation (2.1) exists in E; see part (1)
of [10, Lemma 2.5]. When µ(X ) ∈ E+, then we say that µ is finite, or that it is E-
valued; when µ(X ) =∞, then µ is said to be infinite. As [10, Section 4] shows, a
good number of the properties of positiveR-valued measures hold in the general
case as well, including even the Borel–Cantelli lemmas (see [10, Lemma 4.7]).

Next, we introduce the integral with respect to a measure. From now on, we
suppose that Ω is a σ-algebra.

A measurable function ϕ : X →R+ is an elementary function if it takes only
finitely many (finite) values. It can be written as a finite sum ϕ =

∑n
i=1 riχ∆i

for some r1, . . . , rn ∈ R+ and ∆1, . . . ,∆n ∈ Ω. Here the ri are all finite, but it
is allowed that µ(∆i) =∞ for some of the ∆i. We define its (order) integral,
which is an element of E+, by setting

∫ o

X
ϕ dµ :=

n
∑

i=1

riµ(∆i).
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This definition is independent of the above expression for ϕ as a finite sum.
When f : X →R+ is measurable, we choose a sequence {ϕn}∞n=1 of elementary
functions such that ϕn ↑ f pointwise in R+. We define the order integral of f ,
which is an element of E+, by

∫ o

X
f dµ :=

∞
∨

n=1

∫ o

X
ϕn dµ.

Since
∫ o

Xϕn dµ ↑, the σ-monotone completeness of E guarantees that this su-

premum exists in E+. It is independent of the choice of the sequence {ϕn}∞n=1.
We let L 1(X ,Ω,µ;R) denote the set of all (finite-valued) measurable func-

tions f : X → R such that
∫ o

X | f |dµ is finite. By splitting a function into its
positive and negative parts, the order integral is then defined on L 1(X ,Ω,µ;R).
We let B(X ,Ω;R) denote the bounded measurable functions on X . For a finite
measure µ, B(X ,Ω;R) ⊆L 1(X ,Ω,µ;R).

In [10, Section 6.2], the monotone convergence theorem for the order integral
is established. When E is σ-Dedekind complete, then Fatou’s lemma and the
dominated convergence theorem are also valid.

The space L 1(X ,Ω,µ;R) is a σ-Dedekind complete vector lattice, and the
order integral is a σ-order continuous positive operator from L 1(X ,Ω,µ;R)
into E; see [10, Proposition 6.14]. According to [10, Theorem 6.17], the space
L1(X ,Ω,µ;R), where elements of L 1(X ,Ω,µ;R) have been identified when
they agree µ-almost everywhere, is likewise a σ-Dedekind complete vector
lattice, and the order integral induces a strictly positive σ-order continuous
operator Iµ from L1(X ,Ω,µ;R) into E. When E is monotone complete and has
the countable sup property, then L1(X ,Ω,µ;R) is a Dedekind complete vector
lattice with the countable sup property, and Iµ is order continuous.5

Remark 2.7.
(1) When E is a partially ordered Banach space with a closed positive cone,

then every positive vector measure is a measure in the sense of Defin-
ition 2.6, but not conversely. Even when a measure falls into both
categories, the domain of the order integral can properly contain that of
any reasonably defined integral with respect to the vector measure using
Banach space methods. We refer to [10, Section 7] for this discussion.

(2) When E consists of the regular operators on a Banach lattice with an
order continuous norm, or when E consists of the self-adjoint operators
in a strongly closed complex linear subspace of the bounded operator
on a complex Hilbert space, then the finite measures in the sense of
Definition 2.6 are precisely the set maps µ : Ω → E+ with µ(;) = 0

5As in [10, Section 6], we say that a partially ordered vector space E has the countable sup
property when, for every net {xλ}λ∈Λ ⊆ E+ and x ∈ E+ such that xλ ↑ x , there exists an at most
countably infinite set of indices {λn : n ≥ 1} such that x = supn≥1 xλn

. In this case, there also
always exist indices λ1 ≤ λ2 ≤ · · · such that xλn

↑ x . For vector lattices, this definition coincides
with the usual one as can be found on, e.g., [5, p. 103].
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that are σ-additive with respect to the strong operator topology on E;
see [10, Lemmas 4.2 and 4.3].

3. MEASURES ON LOCALLY COMPACT HAUSDORFF SPACES

There may be several measures on the Borel σ-algebra of a locally compact
Hausdorff space X that represent a given positive functional π : Cc(X )→R, but
there is only one that is a regular Borel measure. In our vector-valued context,
we shall have similar results. In this section, we shall define and investigate
the pertinent regularity properties. The general situation is somewhat more
involved than the real case.

When X is a locally compact Hausdorff space, then we let B denote its Borel
σ-algebra, i.e., B is the σ-algebra that is generated by the open subsets of X .

When E is a σ-monotone complete partially ordered vector space, then we let
M(X ,B; E+) denote the collection of all positive E-valued measures µ : B→ E+.

We distinguish the following regularity properties.

Definition 3.1. Let X be a locally compact Hausdorff space, let E be a monotone
complete partially ordered vector space, and let µ ∈ M(X ,B; E+). Then µ is
called:

(1) a Borel measure (on X ) when µ(K) ∈ E for all compact subsets K of X ;
(2) inner regular at ∆ ∈ B when µ(∆) =

∨

{µ(K) : K is compact and K ⊆
∆} in E;

(3) weakly inner regular at∆ ∈B when µ(∆) =
∨

{µ(∆∩K) : K is compact}
in E;

(4) outer regular at ∆ ∈B if µ(∆) =
∧

{µ(V ) : V is open and ∆ ⊆ V} in E;
(5) a regular Borel measure (on X ) when it is a Borel measure on X that is

inner regular at all open subsets of X and outer regular at all Borel sets;
(6) a quasi-regular Borel measure (on X ) when it is a Borel measure on X

that is inner regular at all open subsets of X and weakly inner regular
at all Borel sets.

Note that the three subsets of E occurring in the above definitions are all
directed in the appropriate directions, so that the two suprema and the infimum
exist in E as a consequence of the monotone completeness of E; σ-monotone
completeness would not have sufficed here. In the sequel, there will be similar
cases where the fact that a set is directed guarantees that a supremum or infimum
exists, but we refrain from observing this explicitly each and every time.

To be entirely consistent with the terminology in Section 2, we would have to
speak of, for example, a quasi-regular E+-valued Borel measure, but we shall
consider the codomains of the measures in the remainder of this paper to be
tacitly understood from the context.

We let Υ denote the collection of relatively compact open subsets of X , i.e.,
the collection of open subsets of X with compact closure. Then Υ is closed under
finite intersections and finite unions. Since every relatively compact open subset
of X is contained in a compact one, and every compact subset of X is contained
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in a relatively compact open set, it is easy to see that µ is weakly inner regular
at a Borel set ∆ if and only if µ(∆) =

∨

{µ(∆∩ V ) : V ∈ Υ } in E.
The next small result relates the two regularity properties of a quasi-regular

Borel measure. Its easy proof is omitted.

Lemma 3.2. Let X be a locally compact Hausdorff space, let E be a monotone
complete partially ordered vector space, let µ ∈M(X ,B; E+), and let ∆ ∈B. If µ
is inner regular at ∆, then µ is weakly inner regular at ∆.

Remark 3.3. The terminology ‘quasi-regular’ is admittedly not very descriptive,
but it is hard to find a more appealing nomenclature. It is also used in [23, p. 108]
as well as in [25, p. 195] by the same author. It denotes different notions in
these two papers, and these are also both different from ours.

We shall write MB(X ,B; E+) for the Borel measures on X , MrB(X ,B; E+) for
the regular Borel measures on X , MqrB(X ,B; E+) for the quasi-regular Borel
measures on X , MrB(X ,B; E+) for the finite regular (Borel) measures on X , and
MqrB(X ,B; E+) for the finite quasi-regular (Borel) measures on X . Every finite
measure is, of course, a Borel measure.

If U is an open subset of X , then U is a locally compact Hausdorff space in
the induced topology. We shall denote its Borel σ-algebra by BU . It is then easy
to see that BU = {∆ ∈B :∆ ⊆ U}, so that we can identify BU with a subset of
B. If µ ∈M(X ,B; E+), then we let µU denote the restriction of µ to the subset
BU of B. It is then a positive E-valued measure on BU .

We collect a few technical observations in the following result. The proofs
are elementary.

Lemma 3.4. Let X be a locally compact Hausdorff space, let E be a monotone
complete partially ordered vector space, let µ ∈M(X ,B; E+), and let U be an open
subset of X .

(1) If µ is a Borel measure on X , then µU is a Borel measure on U.
(2) If µ is inner regular at ∆ ∈BU , then so is µU ; and conversely.
(3) If µ is outer regular at ∆ ∈BU , then so is µU ; and conversely.
(4) If µ is a Borel measure on X and if U ∈ Υ , then µU is a finite Borel measure

on U.
(5) If µ is a Borel measure on U for all U ∈ Υ , then µ is a finite Borel measure

on U for all U ∈ Υ .

The following is then clear.

Lemma 3.5. Let X be a locally compact Hausdorff space and let E be a monotone
complete partially ordered vector space.

If µ ∈M(X ,B; E+) is a regular Borel measure on X , then, for all open subsets U
of X , µU is a regular Borel measure on U.

If E = R, then every regular Borel measure on X is inner regular at the
σ-finite Borel sets; see [14, Proposition 7.5]. If E is normal, an analogous result
holds in our case for Borel sets of finite measure. The step from the case of
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finite measure to the σ-finite case as in the proof of [14, Proposition 7.5] uses
the linear ordering of R and does not seem to have an obvious analogue in the
general situation.

Proposition 3.6. Let X be a locally compact Hausdorff space, let E be a monotone
complete and normal partially ordered vector space, and let µ ∈MrB(X ,B; E+).

Then µ is inner regular at all Borel sets of finite measure.

Proof. Let ∆ ∈B be such that µ(∆) ∈ E. We are to prove that

µ(∆) =
∨

{µ(K) : K is compact and K ⊆∆}.

It is clear that µ(∆) is an upper bound of {µ(K) : K is compact and K ⊆∆}.
Using the normality of E, we shall show that it is the least upper bound.

Choose and fix x ′ ∈ (Esoc)
+ and ϵ > 0.

Since µ(∆) ∈ E, the outer regularity of µ at ∆ can be written as

µ(∆) =
∧

{µ(V ) : V is open, ∆ ⊆ V , and µ(V ) ∈ E}.

Proposition 2.4 then shows that

(µ(∆), x ′) = inf{(µ(V ), x ′) : V is open, ∆ ⊆ V , and µ(V ) ∈ E}.

We can then choose and fix an open subset V such that ∆ ⊆ V , µ(V ) ∈ E, and

(µ(V ), x ′)< (µ(∆), x ′) + ϵ/3.

Using the outer regularity of µ at V \∆, which also has finite measure, we can
likewise choose and fix an open subset W such that V \∆ ⊆W , µ(W ) ∈ E, and

(µ(W ), x ′)< (µ(V \∆), x ′) + ϵ/3.

By replacing W with the open subset W ∩ V we may and shall suppose that
W ⊆ V . We have

(µ(W ), x ′)< (µ(V \∆), x ′) + ϵ/3= (µ(V ), x ′)− (µ(∆), x ′) + ϵ/3< 2ϵ/3.

Using the inner regularity of µ at the open subset V and the normality of E, an
application of Proposition 2.4 enables us to choose and fix a compact subset K1
such that K1 ⊆ V and

(µ(V ), x ′)< (µ(K1), x ′) + ϵ/3.

Set K2 := K1 \W . Then K2 is compact and

K2 = K1 ∩W c

⊆ K1 ∩ (V \∆)c

= (K1 ∩ V c)∪ (K1 ∩∆)
= K1 ∩∆
⊆∆.

We also have

V \ K2 = V ∩ (Kc
1 ∪W )

= (V ∩ Kc
1)∪ (V ∩W )
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= (V \ K1)∪W.

Combining all of the above, we see that

(µ(∆)−µ(K2), x ′) = (µ(∆ \ K2), x ′)

≤ (µ(V \ K2), x ′)

= (µ [(V \ K1)∪W ] , x ′)

≤ (µ(V \ K1), x ′) + (µ(W ), x ′)

= (µ(V ), x ′)− (µ(K1), x ′) + (µ(W ), x ′)

< ϵ + 2ϵ/3

= ϵ.

All in all, we have found a compact subset K2 of∆ (depending on x ′ and ϵ) such
that (µ(∆), x ′)< (µ(K2), x ′)+3ε. Hence we conclude, for our fixed x ′ ∈ (Esoc)

+,
that

(µ(∆), x ′) = sup{(µ(K), x ′) : K is compact and K ⊆∆}.
Since this is true for all x ′ ∈ (Esoc)

+, an appeal to Proposition 2.4 completes the
proof. □

We can use this to prove our next result.

Corollary 3.7. Let X be a locally compact Hausdorff space, let E be a monotone
complete and normal partially ordered vector space, and let µ ∈M(X ,B; E+) be
such that, for all U ∈ Υ , the restricted measure µU is a regular Borel measure on
U.

Suppose that ∆ is a Borel set such that µ is weakly inner regular at ∆. Then µ
is inner regular at ∆.

Proof. If U ∈ Υ , then ∆∩ U ∈ BU has finite measure. Hence an application of
Proposition 3.6 to the regular Borel measure µU on U shows that

µ(∆∩ U) =
∨

{µ(K) : K is compact and K ⊆∆∩ U}.
Hence

µ(∆) =
∨

{µ(∆∩ U) : U ∈ Υ }

=
∨

{µ(K) : K is compact and K ⊆∆∩ U for some U ∈ Υ }

=
∨

{µ(K) : K is compact and K ⊆∆}

in E. The last equation holds since the local compactness of X implies that, for
any compact subset K with K ⊆∆, there exists a relatively compact open subset
U such that K ⊆ U , and then K ⊆∆∩ U . □

This has the following consequence.

Corollary 3.8. Let X be a locally compact Hausdorff space, let E be a monotone
complete and normal partially ordered vector space, and let µ ∈M(X ,B; E+) be
such that, for all U ∈ Υ , the restricted measure µU is a regular Borel measure on
U.
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(1) If µ is weakly inner regular at all Borel sets, then µ is inner regular at all
Borel sets.

(2) If µ is a finite measure that is weakly inner regular at all Borel sets, then
µ is both inner regular and outer regular at all Borel sets.

Proof. Part (1) is immediate from Corollary 3.7. In part (2), the inner regularity
of µ at all Borel sets is clear from part (1). For the outer regularity, let ∆ ∈B.
Then the inner regularity of µ at ∆c yields that

µ(∆) = µ(X )−µ(∆c)

= µ(X )−
∨

{µ(K) : K is compact and K ⊆∆c}

= µ(X )−
∨

{µ(X )−µ(Kc) : K is compact and K ⊆∆c}

=
∧

{µ(Kc) : K is compact and ∆ ⊆ Kc}

≥
∧

{µ(U) : U is open and ∆ ⊆ U}
≥ µ(∆).

Hence µ is outer regular at ∆. □

4. RIESZ REPRESENTATION THEOREM FOR Cc(X ): NORMED CASE

In this section, we establish our first analogue of the classical Riesz representa-
tion theorem for Cc(X ). As in the classical result, the representing measure in it
can be infinite. It applies when the codomain of the positive operator is a suitable
normed space; every Banach lattice with an order continuous norm will do. The
proof relies on the material on vector-valued outer measures in [10, Section 5],
to which we refer for details.

We shall employ the following customary notation.

Definition 4.1. If X is a locally compact Hausdorff space and S is an subset of
X , then we shall write f ≺ S to denote that f ∈ Cc(X ), that 0≤ f (x)≤ 1 for all
x ∈ X , and that supp ( f ) ⊆ S. We shall write S ≺ f to denote that f ∈ Cc(X ),
that 0≤ f (x)≤ 1 for all x ∈ X , and that f (x) = 1 for all x ∈ S.

Theorem 4.2 (Riesz representation theorem for Cc(X ): normed case). Let E be
a monotone complete partially ordered vector space that is also a normed space.
Suppose that E has the following properties:

(1) if xλ ↓ 0 in E, then ∥xλ∥ → 0;
(2) if {xn}∞n=1 ⊂ E+ is such that

∑∞
n=1 ∥xn∥<∞, then

∨∞
N=1

∑N
n=1 xn, which

exists in E, is actually finite.
(3) if x ∈ E is such that (x , x ′) ≥ 0 for all norm bounded positive σ-order

continuous functionals on E, then x ∈ E+.

Let X be a non-empty locally compact Hausdorff space, and let π : Cc(X )→ E be a
positive operator.
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Then there exists a unique regular Borel measure µ : B → E+ on the Borel
σ-algebra B of X such that

π( f ) =

∫ o

X
f dµ

for all f ∈ Cc(X ). If V is a non-empty open subset of X , then

(4.1) µ(V ) =
∨

{π( f ) : f ≺ V}

in E. If K is a compact subset of X , then

(4.2) µ(K) =
∧

{π( f ) : K ≺ f }

in E. Hence µ is a finite measure if and only if {π( f ) : f ∈ Cc(X )+, ∥ f ∥ ≤ 1} is
bounded above in E; this is automatically the case if X is compact.

If µ is a finite measure and if the norm of E is monotone on E+, then π is
continuous with respect to the supremum norm topology on Cc(X ) and the norm
topology on E. In this case, ∥π∥ ≤ 2∥µ(X )∥. If E is a normed vector lattice, then it
is a Banach lattice with an order continuous norm, and ∥π∥= ∥µ(X )∥.

Let us mention explicitly that under (1) it is not required that ∥xλ∥ ↓ 0.
In the context of a normed vector lattice E, the requirement under (2) is the

so-called Riesz-Fischer property. It characterises the Banach lattices among the
normed vector lattices; see [28, Theorem 16.2], for example.

Before we embark on the lengthy proof, let us note that not only the real
numbers satisfy all requirements in the theorem, but that this is, in fact, the
case for every Banach lattice with an order continuous norm. Indeed, the first
requirement is then satisfied by definition, and the second one is a consequence
of the fact that the sum of a convergent series with positive terms in a normed
vector lattice is also the supremum of the sequence of its partial sums; see,
e.g., [28, Theorem 15.3]. The well-known validity of the third requirement and
the Dedekind completeness were already observed in [10, Proposition 3.10].

The global layout of the following proof of Theorem 4.2 is modelled after that
of [4, Theorem 38.3] for the real case; the part where it is established that the
measure as constructed actually represents the positive operator is essentially
that of [6, Proposition 7.2.11] for the real case. Although our statement is a
little stronger, the proof of equation (4.2) is essentially that of the corresponding
statement in the real case in [14, Theorem 7.2].

The arguments in the proof rather resemble those for the real case, but there
are certainly modifications. For example, the proof that the set map µ∗ in the
proof below is an outer measure requires a special argument in the vector-valued
case. Furthermore, we shall use the fact that the space is Archimedean a few
times. In the real case it is not always so obvious in the various proofs in the
literature that this is a property of the real numbers that is crucial for the Riesz
representation theorem. For example, the part of the proof of [14, Theorem 7.2]
where it is shown that the measure represents the integral, concludes with an
argument invoking the lattice structure of R. That does not apply in the more
general context. To circumvent this the Archimedean property is used.



16 RIESZ REPRESENTATION THEOREMS FOR POSITIVE LINEAR OPERATORS

Proof of Theorem 4.2. We define a set map µ∗ : 2X → E as follows. Set µ(;) := 0,
and set

(4.3) µ(V ) :=
∨

{π( f ) : f ≺ V}

in E for all non-empty open subsets of X . Note that the set in the right hand
side of this equation is upward directed as a consequence of the positivity of
π, so that its supremum exists in E. Indeed, if f1, f2 ≺ V , then f1 ∨ f2 ≺ V , and
π( f1 ∨ f2)≥ π( f1) and π( f1 ∨ f2)≥ π( f2).

Evidently, µ(V )≥ 0 for all open subsets V of X , and µ(V1)≤ µ(V2) if V1 and
V2 are open subsets of X such that V1 ⊆ V2.

For an arbitrary subset ∆ of X , we set

(4.4) µ∗(∆) :=
∧

{µ(V ) : V is open and ∆ ⊆ V}.

in E. Note that the set in the right hand side of this equation is downward
directed, so that the infimum indeed exists in E. Indeed, if V1, V2 are open
subsets of X such that ∆ ⊆ V1, V2, then ∆ ⊆ V1 ∩ V2, and µ∗(V1 ∩ V2) ≤ µ∗(V1)
and µ∗(V1∩V2)≤ µ∗(V2) as a consequence of the monotonicity of µ on the open
subsets of X that we have already observed. This monotonicity on the open
subsets of X also shows that µ(V ) = µ∗(V ) for all open subsets V of X . When V
is an open subset of X , then we shall write µ(V ) for this common element of E+.

Evidently, µ∗(∆)≥ 0 for all subsets ∆ of X , and µ∗(∆1)≤ µ∗(∆2) if ∆1 and
∆2 are subsets of X such that ∆1 ⊆∆2.

The first main step in the proof consists of showing that µ∗ is an E+-valued outer
measure in the sense of [10, Definition 5.1].

We shall now proceed to show this.
Since µ∗(;) = 0 and since the monotonicity of µ∗ has already been established,

we are left with the σ-sub-additivity.
We first establish the σ-sub-additivity of µ∗ for open subsets of X , on which it

coincides with µ. Let {Vn}∞n=1 be a sequence of open subsets of X . Then
⋃∞

n=1 Vn

is open, and we are to show that µ
�⋃∞

n=1 Vn

�

≤
∨∞

N=1

∑N
n=1µ(Vn) in E. In doing

so, we may and shall suppose that all Vn are non-empty.
Suppose that f ≺

⋃∞
n=1 Vn. Since supp ( f ) is compact, there exists m ≥ 1

such that supp ( f ) ⊆
⋃m

n=1 Vn. Then [21, Theorem 2.13] furnishes f1, . . . , fm in
Cc(X ) such that fn ≺ Vn for n = 1, . . . , m and

∑m
n=1 fn(x) = 1 for all x ∈ supp ( f ).

Then clearly f ≤
∑m

n=1 fn, so

π( f )≤
m
∑

n=1

π( fn)≤
m
∑

n=1

µ(Vn)≤
∞
∨

N=1

N
∑

n=1

µ(Vn).

in E. This is true for all f ≺
⋃∞

n=1 Vn, so we have

µ

�∞
⋃

n=1

Vn

�

≤
∞
∨

N=1

N
∑

n=1

µ(Vn)

in E. Hence µ∗ is σ-sub-additive on the open subsets of X .
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We shall now establish the σ-sub-additivity of µ∗ on arbitrary subsets of X .
Let {∆n}∞n=1 be sequence of subsets of X . We show that µ∗(

⋃∞
n=1∆n) ≤

∨∞
N=1

∑N
n=1µ

∗(∆n) in E. In doing so, we may and shall suppose that

x :=
∞
∨

N=1

N
∑

n=1

µ∗(∆n)

is actually an element of E. Then µ∗(∆n) is also finite for n ≥ 1, so that, by
part (3) of [10, Lemma 2.3],

µ∗(∆n) =
∧

{µ(V ) : V is open, ∆n ⊆ V , and µ(V ) ∈ E}.

That is, (µ(V )−µ∗(∆n)) ↓ 0 as V runs over the open neighbourhoods of ∆n. By
the assumption under (1) in the theorem, we also have ∥µ(V )−µ∗(∆n)∥ → 0.

After these preparations, we fix a norm bounded positive σ-order continuous
functional x ′ on E and ϵ > 0.

For each n ≥ 1, we can then find an open neigbourhood Vn of ∆n such
that µ(Vn) is finite and ∥µ(Vn)−µ∗(∆n)∥ < ϵ/2n. As a consequence of the
assumption under (2) in the theorem, we can set

y :=
∞
∨

N=1

N
∑

n=1

(µ(Vn)−µ∗(∆n))

as an element of E.
Let N ≥ 1. Then

� N
∑

n=1

µ(Vn)

�

− x ≤
N
∑

n=1

µ(Vn)−
N
∑

n=1

µ∗(∆n)

=
N
∑

n=1

(µ(Vn)−µ∗(∆n))

≤ y,

so that
N
∑

n=1

µ(Vn)≤ x + y.

We conclude that
∨∞

N=1

∑N
n=1µ(Vn) is finite, and that

∞
∨

N=1

N
∑

n=1

µ(Vn)≤ x + y.

Since
⋃∞

n=1∆n ⊆
⋃∞

n=1 Vn, we then see, using the monotonicity of µ∗ and the
σ-sub-additivity of µ on the open subsets of X , that

µ∗
�∞
⋃

n=1

∆n

�

≤ µ∗
�∞
⋃

n=1

Vn

�

= µ

�∞
⋃

n=1

Vn

�

≤
∞
∨

N=1

N
∑

n=1

µ(Vn)≤ x + y.
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In particular, µ∗
�⋃∞

n=1∆n

�

is finite. Hence we see, using the σ-order continuity
of x ′ in the second step, that
�

µ∗
�∞
⋃

n=1

∆n

�

, x ′
�

≤ (x + y, x ′)

= (x , x ′) +
∞
∑

n=1

(µ(Vn)−µ∗(∆n), x ′)

≤ (x , x ′) +
∞
∑

n=1

∥µ(Vn)−µ∗(∆n)∥∥x ′∥

≤ (x , x ′) + ϵ∥x ′∥.

Letting ϵ ↓ 0, we conclude that
�

µ∗
�∞
⋃

n=1

∆n

�

, x ′
�

≤ (x , x ′).

Since this is true for all norm bounded positive σ-order continuous functionals
x ′, the assumption under (3) in the theorem implies that

µ∗
�∞
⋃

n=1

∆n

�

≤ x =
∞
∨

N=1

N
∑

n=1

µ(∆n).

We have now shown that µ∗ is an outer measure in the sense of [10, Defini-
tion 5.1].

We recall from [10, Definition 5.2] that a subset∆ of X is called µ∗-measurable
if µ∗(Γ ) = µ∗(Γ ∩∆) + µ∗(Γ ∩∆c) in E for all Γ ⊆ X . According to [10, The-
orem 5.5], the µ∗-measurable subsets of X form a σ-algebra, and the restriction
of µ∗ to this σ-algebra is an E+-valued measure.

The next step is to show that every Borel set is µ∗-measurable. The fact that
the restriction of µ∗ to the Borel σ-algebra is even a regular Borel measure will
simultaneously be established during the process.

This step is itself broken up into a number of intermediate results.
We claim that µ∗(K) is finite for every compact subset K of X .
To see this, suppose that K is a compact subset X . Using [20, Theorem 2.7],

we can choose a relatively open subset V of X such that K ⊆ V . By Urysohn’s
Lemma (see [20, Theorem 2.12]), there exists g ∈ Cc(X ) such that V ≺ g. From
this, we see that

µ∗(K)≤ µ∗(V ) = µ(V ) =
∨

{π( f ) : f ≺ V} ≤ π(g),

so that µ∗(K) is finite.
We claim that µ∗ is finitely additive on the compact subsets of X .
To see this, it is sufficient to show that µ∗(K1 ∪ K2)≥ µ∗(K1) +µ∗(K2) for any

two disjoint compact subsets K1 and K2 of X . Since X is a Hausdorff space, there
exist open subsets U1 and U2 of X such that K1 ⊆ U1, K2 ⊆ U2, and U1 ∩ U2 = ;.
Let V be an arbitrary open neighbourhood of K1 ∪ K2. Then K1 ⊆ V ∩ U1,
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K2 ⊆ V ∩ U2, and (V ∩ U1)∩ (V ∩ U2) = ;. The latter disjointness implies that
f1 + f2 ≺ V whenever f1 ≺ V ∩ U1 and f ≺ V ∩ U2. Using this, we see that

µ∗(K1) +µ
∗(K2)≤ µ(V ∩ V1) +µ(V ∩ V2)

=
2
∑

i=1

∨

{π( fi) : fi ≺ V ∩ Vi}

=
∨

{π( f1) +π( f2) : f1 ≺ V ∩ U1 and f2 ≺ V ∩ U2}

=
∨

{π( f1 + f2) : f1 ≺ V ∩ U1 and f2 ≺ V ∩ U2}

≤
∨

{π( f ) : f ≺ V}
= µ(V ).

Recalling the defining equation (4.4), we see that µ∗(K1)+µ(K2)≤ µ∗(K1∪K2),
as required.

We claim that µ∗(supp ( f ))≥ π( f ) whenever f ≺ X .
Indeed, if V is any open neighbourhood of supp ( f ), then f ≺ V , so that

π( f )≤ µ(V ). Recalling the defining equation (4.4), we see that µ∗(supp ( f ))≥
π( f ), as required.

We claim that

(4.5) µ(V ) =
∨

{µ∗(K) : K is compact and K ⊆ V}

in E for every open subset V of X .
To see this, we may suppose that V ̸= ;. In that case, using the previous result

and the monotonicity of µ∗, we have

µ(V ) =
∨

{π( f ) : f ≺ V}

≤
∨

{µ∗(supp f ) : f ≺ V}

≤
∨

{µ∗(K) : K is compact and K ⊆ V}
≤ µ∗(V )
= µ(V ).

This establishes our claim.
We claim that µ∗(K ∪ V ) = µ∗(K) +µ(V ) whenever K is a compact subset of X ,

V is an open subset of X , and K ∩ V = ;.
To see this, we use equation (4.5) and the finite additivity of µ∗ on the compact

subsets of X to justify that

µ∗(K ∪ V )≤ µ∗(K) +µ(V )

= µ∗(K) +
∨

{µ∗(KV ) : KV is compact and KV ⊆ V}

=
∨

{µ∗(K) +µ∗(KV ) : KV is compact and KV ⊆ V}

=
∨

{µ∗(K ∪ KV ) : KV is compact and KV ⊆ V}
≤ µ∗(K ∪ V ).
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This establishes our claim.
We claim that every Borel set is µ∗-measurable.
To see this, it is sufficient to show that every open subset of X is µ∗-measurable.

Let V be an open subset of X . In order to show that V is µ∗-measurable, it is
sufficient to show that µ∗(Γ )≥ µ∗(Γ ∩ V ) +µ∗(Γ ∩ V c) whenever Γ is a subset of
X such that µ∗(Γ ) is finite.

We first show this when Γ is an open subset of X . In that case, let K be a
compact subset of Γ ∩ V . Then Γ = K ∪ (Γ \ K) as a disjoint union. Since Γ \ K is
an open subset of X , our previous result shows that

µ(Γ ) = µ∗(K) +µ(Γ \ K).

Since Γ ∩ V c ⊆ Γ ∩ Kc, this implies that

µ∗(K) +µ∗(Γ ∩ V c)≤ µ∗(K) +µ(Γ \ K) = µ(Γ ).

Using equation (4.5) for the open subset Γ ∩ V of X , we see that

µ(Γ ∩ V ) +µ∗(Γ ∩ V c)≤ µ(Γ )

for all open subsets Γ of X , as desired.
Suppose now that Γ is an arbitrary subset of X such that µ∗(Γ ) is finite. If U is

an open neighbourhood of Γ such that µ(U) is finite, then, using what we have
just established in the first step, we see that

µ(U)≥ µ(U ∩ V ) +µ∗(U ∩ V c)≥ µ∗(Γ ∩ V ) +µ∗(Γ ∩ V c).

Since this is evidently also true if µ(U) =∞, the defining equation (4.4) shows
that

µ∗(Γ )≥ µ∗(Γ ∩ V ) +µ∗(Γ ∩ V c).

This concludes the proof that all Borel sets are µ∗-measurable.
In the remainder of the proof, we shall write µ for the restriction of µ∗ to the

Borel σ-algebra of X .
We have already seen that µ is finite on the compact subsets of X . Furthermore,

inner regularity at all open subsets of X was established in equation (4.5), and
outer regularity at all Borel sets was built in by the defining equation (4.4).

Hence µ is a regular Borel measure on X .
Equation (4.1) is simply the defining equation (4.3).
We shall now establish equation (4.2).
For this, we need a preparatory result that we shall also use in the sequel of

the proof.
We claim that µ(K)≤ π( f ) whenever K is a compact subset of X and f ∈ Cc(X )

is such that χK ≤ f .
To see this, fix ϵ such that 0 < ϵ < 1, and set Uϵ = {x ∈ X : f (x) > 1− ϵ}.

Then Uϵ is open and K ⊆ Uϵ. If g ≺ Uϵ, then g ≤ (1− ϵ)−1 f , so that

µ(K)≤ µ(Uϵ) =
∨

{π(g) : g ≺ Uϵ} ≤ (1− ϵ)−1π( f ).

Hence µ(K) ≤ π( f ) + ϵµ(K) for all ε > 0. Since µ(K) is finite and E is
Archimedean, this implies that µ(K)≤ π( f ).
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Continuing with the proof of equation (4.2), we see from what we have just
demonstrated that µ(K) ≤

∧

{π( f ) : K ≺ f }. In order to establish the reverse
inequality, let V be an open neighbourhood of K . By Urysohn’s Lemma (see [21,
Theorem 2.7]), there exists a function f such that K ≺ f ≺ V . Then µ(V )≥ π( f ).
Equation (4.4) then implies that

µ(K) =
∧

{µ(V ) : V is open and K ⊆ V} ≥
∧

{π( f ) : K ≺ f }.

This concludes the proof of equation (4.2).
We shall now show that π( f ) =

∫ o
X f dµ for all f ∈ Cc(X ).

For this, we need a final preparatory result.
We claim that µ(K)≥ π( f ) whenever K is a compact subset of X and f ∈ Cc(X )

is such that 0≤ f ≤ χK .
To see this, let V be an open neighbourhood of K. Then f ≺ V , so that

µ(V ) ≥ π( f ) by the defining equation (4.3), and then µ(K) ≥ π( f ) by the
defining equation (4.4).

Continuing with the proof that π( f ) =
∫ o

X f dµ for all f ∈ Cc(X ), we note
that we may clearly suppose that f ∈ Cc(X )+. Fix ϵ > 0. For all n ≥ 1, define
fn : X →R by setting

fn(x) :=







0 if f (x)≤ (n− 1)ϵ;
f (x)− (n− 1)ϵ if (n− 1)ϵ < f (x)≤ nϵ;
ϵ if nϵ < f (x).

A moment’s thought shows that fn ∈ Cc(X )+ and fn(X ) ⊆ [0,ϵ] for all n ≥ 1,
and that
∑∞

n=1 fn(x) = f (x), where the series is a finite sum for every x ∈ X .
There exists N ≥ 1 such that fn = 0 for all n> N , so that actually f =

∑N
n=1 fn

is a finite sum. We set K0 := supp ( f ) and Kn := {x ∈ X : f (x)≥ nϵ} for n≥ 1.
Then ϵχKn

≤ fn ≤ ϵχKn−1
for all n ≥ 1. The first of these inequalities, written

as χKn
≤ fn/ϵ, implies that µ(Kn) ≤ π( fn)/ϵ for n ≥ 1 by one of the claims

established above. The second of these inequalities, written as fn/ϵ ≤ χKn−1
,

implies that µ(Kn−1)≥ π( fn)/ϵ for all n≥ 1 by our most recent auxiliary result.
Thus we have ϵµ(Kn) ≤ π( fn) ≤ ϵµ(Kn−1) for n ≥ 1. It is evident from the
monotonicity of the order integral that ϵµ(Kn)≤

∫ o
X fn dµ≤ ϵµ(Kn−1) for n≥ 1.

Since f =
∑N

n=1 fn, a summation of the inequalities shows that

ϵ

N
∑

i=1

µ(Kn)≤ π( f )≤ ϵ
N
∑

i=1

µ(Kn−1)

and that

ϵ

N
∑

i=1

µ(Kn)≤
∫ o

X
f dµ≤ ϵ

N
∑

i=1

µ(Kn−1).

This implies that π( f )−
∫ o

X f dµ≤ ϵ(µ(K0)−µ(KN ))≤ ϵµ(K0) = ϵµ(supp ( f )).
Since ϵ > 0 is arbitrary and E is Archimedean, we see that π( f )−

∫ o
X f dµ≤ 0.
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The reverse inequality is likewise true by a similar argument, and we conclude
that π( f ) =
∫ o

X f dµ for all f ∈ Cc(X ), as required.
We turn to the uniqueness of µ.
Suppose that µ′ is another regular Borel measure on X such that π( f ) =
∫ o

X f dµ′ for all f ∈ Cc(X ). By regularity, it is sufficient to show that µ(K) = µ′(K)
for all compact subsets K of X .

Let V be a open neighbourhood of K . The Urysohn Lemma furnishes f ∈ Cc(X )
with K ≺ f ≺ V (see [21, Theorem 2.13]), and then

µ′(K) =

∫ o

X
χK dµ′ ≤
∫ o

X
f dµ′ = π( f ) =

∫ o

X
f dµ≤
∫ o

X
χV dµ= µ(V ).

Using the outer regularity of µ at K, we see that µ′(K) ≤ µ(K). The reverse
inequality likewise holds, and we conclude that µ is the unique regular Borel
measure on X that represents π.

Clearly, µ is a finite measure if and only if µ(X ) is finite. If the space X is
compact, then {π( f ) : f ∈ Cc(X )+, ∥ f ∥ ≤ 1} is obviously bounded above in E,
since it has π(1) as an upper bound.

We prove the statements in the final paragraph of the theorem.
Suppose that µ(X ) is finite and that the norm of E is monotone on its positive

cone. Take f ∈ Cc(X ) such that ∥ f ∥ ≤ 1. Then ∥π( f )∥ ≤ ∥π( f +)∥+ ∥π( f −)∥ ≤
2∥π(| f |)∥ ≤ 2∥µ(X )∥. Henceπ is continuous with norm at most 2∥µ(X )∥. When
E is a vector lattice, then, as already observed preceding the proof, it is a Banach
lattice as a consequence of the assumption under (2) in the theorem; its norm
is order continuous by assumption (1). Take f ∈ Cc(X ) such that ∥ f ∥ ≤ 1.
Since π is positive, we have ∥π( f )∥ = ∥|π( f )|∥ ≤ ∥π| f |∥ ≤ ∥µ(X )∥. Hence
∥π∥ ≤ ∥µ(X )∥. The order continuity of the norm on E implies that equality
holds. □

Also for other E than the real numbers, it is easy to give examples of positive
operators π : Cc(X )→ E where Theorem 4.2 applies and where the representing
measure µ is infinite. Indeed, let X be a locally compact Hausdorff space
and let E be a Banach lattice with an order continuous norm. Suppose that
(ρ, e) is a pair where ρ is a regular Borel measure ρ : B → R+, and where
e ∈ E+ \ {0}. Set πρ,e( f ) :=

∫

X f dρ · e for f ∈ Cc(X ). Then πρ,e : Cc(X )→ E
is positive, and its representing measure µρ,e is given by µρ,e(∆) = ρ(∆) ·
e for ∆ ∈ B. Hence µρ,e is infinite precisely when ρ is infinite. Although
this yields examples where the representing measures are infinite, these are
hardly interesting. However, one can use such operators as building blocks for
others. Indeed, if (ρ1, e1), . . . , (ρn, en) are n such pairs and ρ1 is infinite, then
∨n

i=1πρi ,ei
∈ Lr(Cc(X ), E)+, and its representing measure is again infinite. The

latter is immediate from the fact that
∨n

i=1πρi ,ei
≥ πρ1,e1

and equation (4.1).
Subsequently, one can take positive linear combinations of such finite suprema
to obtain a non-zero cone of positive operators from Cc(X ) into E such that every
non-zero element of this cone has an infinite representing measure.
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5. RIESZ REPRESENTATION THEOREMS FOR Cc(X ): NORMAL CASE

In this section, we establish two representation theorems for positive operators
π : Cc(X )→ E in the case where E is a monotone complete and normal partially
ordered vector space. As can be seen from Examples 2.5, such spaces are quite
common and diverse. Some of the given examples are algebras, but that plays
no role for the representation theorems in this section. The positive operator π
need merely be linear.

The idea is to use the classical Riesz representation theorem (a special case
of Theorem 4.2) as a stepping stone by invoking the positive order continuous
functionals on E and exploiting the normality of E.

Of course, functionals can act only on finite elements of E, and this is the
reason that we first prove a representation theorem when the set {π( f ) : f ≺
X } is supposed to be bounded above in E. This will serve to guarantee that
everything in sight is a finite element of E. It is thus that Theorem 5.4 is
established, where the representing measure is finite (by assumption) and regular.
The second representation theorem, valid for the general case, is then obtained
from the finite case; see Theorem 5.6. Here the representing measure can be
infinite, but regularity may then hold only locally. This should be compared to
Theorem 4.2, where the also possibly infinite representing measure is always
regular.

We shall have additional use for Theorem 5.4 for the finite case later on; see,
e.g., the proofs of Theorems 6.8 and 6.12.

We start by introducing a notation.
Suppose that (X ,Ω) is a measurable space, that E is a σ-monotone complete

partially ordered vector space, and that µ : Ω → E+ is a (finite-valued) set
map. If x ′ : E→R is a positive functional, we define µx ′ : Ω→R+ by setting
µx ′(∆) :=
�

µ(∆), x ′
�

for ∆ ∈ Ω.
The following is immediate from the definitions and [10, Proposition 3.9].

Lemma 5.1. Let (X ,Ω) be a measurable space, let E be a σ-monotone complete
partially ordered vector space, and let µ : Ω→ E+ be a set map.

(1) If µ : Ω→ E+ is a measure, then µx ′ : Ω→R+ is a finite measure for all
x ′ ∈ (Esσoc)

+.
(2) If E is σ-normal, then the following are equivalent:

(a) µ : Ω→ E+ is a finite measure;
(b) µx ′ : Ω→R+ is a finite measure for all x ′ ∈ (Esσoc)

+.

Likewise, the following follows directly from the definitions and Proposi-
tion 2.4.

Lemma 5.2. Let X be a locally compact Hausdorff space with Borel σ-algebra B,
let E be a monotone complete and normal partially ordered vector space, and let
µ : Ω→ E+ be a set map.

Then the following are equivalent:
(1) µ : Ω→ E+ is a finite measure;
(2) µx ′ : Ω→R+ is a finite measure for all x ′ ∈ (Esoc)

+.
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If this is the case, then the following are equivalent for a Borel set ∆:

(a) µ : Ω→ E+ is inner regular (resp. outer regular, resp. weakly inner regular)
at ∆;

(b) µx ′ : Ω → R+ is inner regular (resp. outer regular, resp. weakly inner
regular) at ∆ for all x ′ ∈ Esoc.

We shall have use for the following immediate consequence of the above two
results. Of course, finite measures are always Borel measures, but we have still
included the redundant adjective for reasons of uniformity.

Corollary 5.3. Let X be a locally compact Hausdorff space with Borel σ-algebra
B, let E be a monotone complete and normal partially ordered vector space, and
let µ : Ω→ E+ be a set map.

Then the following are equivalent:

(1) µ : Ω→ E+ is a finite regular (resp. quasi-regular) Borel measure on X ;
(2) µx ′ : Ω→R+ is a finite regular (resp. quasi-regular) Borel measure on X

for all x ′ ∈ (Esoc)
+.

After these preparations, we can now establish our first representation theorem
for monotone complete and normal partially ordered vector spaces. As may be
clear from Examples 2.5, this is a rather large and varied class of spaces.

Theorem 5.4 (Riesz representation theorem for Cc(X ): finite normal case). Let
X be a locally compact Hausdorff space, let E be a monotone complete and normal
partially ordered vector space, and let π : Cc(X )→ E be a positive operator such
that {π( f ) : f ∈ Cc(X )+, ∥ f ∥ ≤ 1} is bounded above in E; this is automatically
the case if X is compact.

Then there exists a unique regular Borel measure µ : B → E+ on the Borel
σ-algebra B of X such that

π( f ) =

∫ o

X
f dµ

for all f ∈ Cc(X ). The measure µ is finite. If V is a non-empty open subset of X ,
then

(5.1) µ(V ) =
∨

{π( f ) : f ≺ V}

in E. If K is a compact subset of X , then

(5.2) µ(K) =
∧

{π( f ) : K ≺ f }

in E.

Remark 5.5. As noted in part (2) of Remark 2.7, when the space E in Theorem 5.4
consists of the regular operators on a Banach lattice with an order continuous
norm, or of the self-adjoint operators in a strongly closed complex linear subspace
of the bounded operators on a complex Hilbert space, then µ is strongly σ-
additive.
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Proof of Theorem 5.4. If X is compact, then {π( f ) : f ∈ Cc(X )+, ∥ f ∥ ≤ 1} is
obviously bounded above in E by π(1).

For general locally compact X , suppose that {π( f ) : f ∈ Cc(X )+, ∥ f ∥ ≤ 1} is
bounded above in E. Motivated by the proof of Theorem 4.2, we define the set
map µ : B→ E+ by setting µ(;) := 0,

µ(V ) :=
∨

{π( f ) : f ≺ V}(5.3)

in E for every non-empty open subset V of X , and

µ(∆) :=
∧

{µ(V ) : V is open and ∆ ⊆ V}(5.4)

(5.5)

in E for every Borel set ∆. The remarks that were made in the beginning of the
proof of Theorem 4.2 apply here as well, showing that both µ(V ) and µ(∆) are
well-defined, and that the two definitions agree on the open subsets of X . It is
clear from the hypotheses that µ(∆) is, in fact, a finite element of E for every
Borel set ∆, so that we can let functionals on E act on the range of µ.

We shall show that the set map µ has all required properties.
To this end, we define, for every x ′ ∈ (Esoc)

+, the functional πx ′ : Cc(X )→R
by setting

πx ′( f ) := (π( f ), x ′)

for f ∈ Cc(X ). Then πx ′ is a positive functional on Cc(X ). The classical Riesz
representation theorem (the case where E =R in Theorem 5.4) informs us that,
for all x ′ ∈ (Esoc)

+, there exists a unique regular Borel measure νx ′ : B→ R+
such that

(5.6) πx ′( f ) =

∫ o

X
f dνx ′

for all f ∈ Cc(X ). Since {πx ′( f ) : f ≺ X } is evidently bounded above in R,
Theorem 4.2 shows that νx ′ is, in fact, a finite regular Borel measure on X for
all x ′ ∈ (Esoc)

+.
For each x ′ ∈ (Esoc)

+, we know from equation (4.1) that

νx ′(V ) = sup{πx ′( f ) : f ≺ V}

for all non-empty open subsets V of X . On the other hand, we see from the
defining equation (5.3) that

µx ′(V ) = sup{πx ′( f ) : f ≺ V}

for all x ′ ∈ (Esoc)
+ and all non-empty open subsets V of X . Hence µx ′(V ) = νx ′(V )

for all non-empty open subsets V of X and all x ′ ∈ (Esoc)
+; this is trivially true

for the empty subset.
Furthermore, the outer regularity of νx ′ means that, for every Borel set ∆,

νx ′(∆) = inf{νx ′(V ) : V is open and ∆ ⊆ V}.
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Using the defining equation (5.3) and what we have just observed for the open
subsets of X , we therefore see that, for every Borel set ∆,

µx ′(∆) = inf{µx ′(V ) : V is open and ∆ ⊆ V}
= inf{νx ′(V ) : V is open and ∆ ⊆ V}
= νx ′(∆).

We conclude that µx ′ = νx ′ for all x ′ ∈ (Esoc)
+. Since we know that νx ′ is a

regular Borel measure on X for all x ′, it now follows from Corollary 5.3 that µ
is a regular Borel measure on X .

It is clear from equation (5.3) that µ is a finite measure.
Equation (5.1) holds by construction.
If K is a compact subset of X , then equation (4.2) shows that

µx ′(K) = νx ′(K) =
∧

{πx ′( f ) : K ≺ f }.

It then follows from Proposition 2.4 that

µ(K) =
∧

{π( f ) : K ≺ f },

which is equation (5.2).
Let f ∈ Cc(X )+, and choose a sequence {ϕn}∞n=1 in E (X ,B;R+) such that

ϕn ↑ f in E pointwise. Fix x ′ ∈ (Esoc)
+. Using the definition and equation (5.6),

where we already know that µx ′ = νx ′ , we see that
∫ o

X
ϕn dµx ′ ↑
∫ o

X
f dµx ′ = πx ′( f ).

On the other hand, it is clear from the definition of the integral of elementary
functions that

∫ o

X
ϕn dµx ′ =

�∫ o

X
ϕn dµ, x ′
�

for all n ≥ 1. Since
∫ o

Xϕn dµ ↑
∫ o

X f dµ by definition, the σ-order continuity of
x ′ therefore implies that

∫ o

X
ϕn dµx ′ =

�∫ o

X
ϕn dµ, x ′
�

↑
�∫ o

X
f dµ, x ′
�

.

We conclude that πx ′( f ) =
�∫ o

X f dµ, x ′
�

. Since this holds for all x ′ ∈ (Esoc)
+ and

E is normal, it follows that π( f ) =
∫ o

X f dµ for all f ∈ Cc(X )+. By linearity, this
is then also true for general f ∈ Cc(X ).

The uniqueness of µ as an a priori possibly infinite regular Borel measure
representing π follows as in the conclusion of the proof of Theorem 4.2. □

We can now also obtain a representation theorem when {π( f ) : f ≺ X } need
not be bounded above in E. The idea is to start by using Theorem 5.4 locally. If
U ∈ Υ (that is: if U is an open relatively compact subset of X ), then there exists
ef ∈ Cc(X ) such that U ≺ ef . This implies that f ≤ ef whenever f ≺ U , so that
π( f ) ≤ π(ef ) whenever f ≺ U . We are now in the finite case that is covered
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by Theorem 5.4, so that there exists a unique regular Borel measure µU on U
such that π( f ) =

∫ o
U f dµU for all f ∈ Cc(X ) that are supported in U . These local

measures µU on U can then seen to be the restrictions of a global measure on X
using a technique that is also employed in [25, proof of Theorem 1].

The details are contained in the proof of the following theorem. As The-
orem 5.4, it applies to the variety of spaces in Examples 2.5.

Theorem 5.6 (Riesz representation theorem for Cc(X ): normal case). Let X
be a locally compact Hausdorff space, let E be a monotone complete and normal
partially ordered vector space, and let π : Cc(X )→ E be a positive operator.

Then there exists a unique measure µ : B→ E+ such that:
(1) For every U ∈ Υ , the restriction µU of µ to BU is a regular Borel measure

on U;
(2) µ is weakly inner regular at all Borel sets;
(3) π( f ) =
∫ o

X f dµ for all f ∈ Cc(X ).
This measure µ is a quasi-regular Borel measure.

If eµ is a regular Borel measure on X such that π( f ) =
∫ o

X f dµ for all f ∈ Cc(X ),
then eµ≥ µ. Furthermore, eµ and µ agree at all open subsets of X ; at all compact
subsets of X ; at all Borel sets with finite eµ-measure; and at all Borel sets with
infinite µ-measure.

Remark 5.7.
(1) For a partially ordered vector space of operators, it is not at all un-

common—see Examples 2.5 and also [10, Section 3]—to be monotone
complete and normal, so that Theorem 5.6 applies.

(2) As noted in part (2) of Remark 2.7, when the space E in Theorem 5.6
consists of the regular operators on a Banach lattice with an order
continuous norm, or of the self-adjoint operators in a strongly closed
complex linear subspace of the bounded operators on a complex Hilbert
space, and when the measure µ is finite, then µ is strongly σ-additive.

(3) We mention the following consequence of the last part of Theorem 5.6:
if ∆ is a Borel set such that eµ(∆) ̸= µ(∆), then ∆ is neither open nor
compact, eµ(∆) =∞, and µ(∆) is finite. It also follows that, if π is
represented by a finite regular Borel measure eµ, then it must be the case
that eµ= µ.

Proof of Theorem 5.6. The uniqueness is easily taken care of. For this, we take
a non-empty open subset U of X , and we view Cc(U) as a linear subspace of
Cc(X ) by extending an f in Cc(U) to an element f ′ of Cc(X ) that is zero outside
U . We obtain a positive operator πU : Cc(U) → E by setting πU( f ) := π( f ′)
for f ∈ Cc(U), and then πU( f ) = π( f ′) =

∫ o
X f ′ dµ =
∫ o

U f dµU for f ∈ Cc(U).
Because µU is supposed to be a regular Borel measure on U , the uniqueness
statement in Theorem 5.4 implies that µU is uniquely determined. Since µ is
weakly inner regular at all Borel sets, i.e., since

µ(∆) =
∨

{µ(∆∩ U) : U ∈ Υ }=
∨

{µU(∆∩ U) : U ∈ Υ },
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for every Borel set ∆, we see that µ itself is unique.
This proof of the uniqueness also shows how to find µ, as follows. If U ∈ Υ ,

then, as explained preceding the theorem, there exists a unique regular Borel
measure µU on U such that π( f ) =

∫ o
U f dµU for all f ∈ Cc(U).

We shall now patch these µU together to obtain a measure on X .
As a preparation for this, we note the following.
If U , V ∈ Υ and U ∩ V ̸= ;, then the restriction of µU to U ∩ V is a regular

Borel measure on U ∩ V that represents the restriction of π to Cc(U ∩ V ). Since
the same holds for µV , the uniqueness statement of Theorem 5.4 shows that the
restrictions of µU and µV to U ∩ V coincide.

We can now define a set function on B that will turn out to have the desired
properties. If ∆ is Borel set, we set

(5.7) µ(∆) :=
∨

{µU(∆∩ U) : U ∈ Υ }

in E. The supremum in the right hand side of this equation exists in E, since the
set is upward directed. Indeed, if U , V ∈ Υ , then µU(∆∩ U) = µU∪V (∆∩ U)≤
µU∪V (∆∩ (U ∪ V )), and likewise µV (∆∩ V )≤ µU∪V (∆∩ (U ∪ V )).

We claim that µ(∆) = µU0
(∆) whenever ∆ is a Borel set and U0 ∈ Υ is such

that ∆ ⊆ U0.
To see this, note that certainly µ(∆)≥ µU0

(∆∩ U0) = µU0
(∆). Furthermore,

if U ∈ Υ , then µU(∆∩U) = µU(∆∩U0 ∩U) = µU0
(∆∩U0 ∩U)≤ µU0

(∆). This
implies that µ(∆)≤ µU0

(∆). We conclude that µ(∆) = µU0
(∆), as required.

We shall now show that µ is a measure.
It is clear that µ(;) = 0. The first step towards σ-additivity is to show that µ

is finitely additive. Let ∆1 and ∆2 be disjoint Borel sets. Then

µ(∆1 ∪∆2) =
∨

{µU((∆1 ∪∆2)∩ U) : U ∈ Υ }

=
∨

{µU((∆1 ∩ U)∪ (∆2 ∩ U)) : U ∈ Υ }

=
∨

{µU(∆1 ∩ U) +µU(∆2 ∩ U) : U ∈ Υ }
≤ µ(∆1) +µ(∆2)

=
∨

{µU(∆1 ∩ U) : U ∈ Υ }+
∨

{µV (∆2 ∩ V ) : V ∈ Υ }

=
∨

{µU(∆1 ∩ U) +µV (∆2 ∩ V ) : U , V ∈ Υ }

=
∨

{µU∪V (∆1 ∩ U) +µU∪V (∆2 ∩ V ) : U , V ∈ Υ }

=
∨

{µU∪V ((∆1 ∩ U)∪ (∆2 ∩ V )) : U , V ∈ Υ }

≤
∨

{µU∪V ((∆1 ∪∆2)∩ (U ∪ V ) : U , V ∈ Υ }

=
∨

{µU((∆1 ∪∆2)∩ U) : U ∈ Υ }
= µ(∆1 ∪∆2).

It follows that µ is finitely additive.
Now that we know that µ is finitely additive, the σ-additivity is easily seen to

be consequence of the fact that µ
�⋃∞

n=1∆n

�

=
∨∞

n=1µ(∆n) for every increasing
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sequence {∆n}∞n=1 of Borel sets; we shall now show this. Using [10, Proposi-
tion 4.5], we see that

µ

�∞
⋃

n=1

∆n

�

=
∨

�

µU

��∞
⋃

n=1

∆n

�

∩ U

�

: U ∈ Υ
�

=
∨

�∞
∨

n=1

µU(∆n ∩ U) : U ∈ Υ
�

=
∞
∨

n=1

�
∨

{µU(∆n ∩ U) : U ∈ Υ }
�

=
∞
∨

n=1

µ(∆n),

as required.
This concludes the proof that µ is a measure.
The measure µ is weakly inner regular at all Borel sets.
Since we know that the restrictions of µ to the U ∈ Υ are the µU , this is clear

from equation (5.7).
It is now easy to show that π( f ) =

∫ o
X f dµ for all f ∈ Cc(X ).

Indeed, one can choose U ∈ Υ such that f ∈ Cc(U). Since we have already
observed that the restriction of µ to U is µU , we see that

∫ o
X f dµ =
∫ o

U f dµU ,

and
∫ o

U f dµU = π( f ) by construction.
The measure µ is a Borel measure.
Since every compact subset of X is contained in a relatively open compact

subset of X , and since µU is a finite measures for all U ∈ Υ , this is clear.
The measure µ is inner regular at all open sets.
Let V be an open subset of X . Using that, for each U ∈ Υ , µU is inner regular

at all open subsets of U , we see that

µ(V ) =
∨

{µU(V ∩ U) : U ∈ Υ }

=
∨

U∈Υ

�
∨

{µU(K) : K is compact and K ⊆ V ∩ U}
	

=
∨

{µU(K) : K is compact and K ⊆ V ∩ U for some U ∈ Υ }

=
∨

{µ(K) : K is compact and K ⊆ V ∩ U for some U ∈ Υ }

≤
∨

{µ(K) : K is compact and K ⊆ V}
≤ µ(V ).

Since µ is a Borel measure that is inner regular at all open subsets of X and
weakly inner regular at all Borel sets, it is a quasi-regular Borel measure.

We turn to the remaining statements.
Suppose that eµ is a regular Borel measure that also represents π. Then, for

all u ∈ Υ , eµU is a regular Borel measure that represents the restriction of π to
Cc(U). By uniqueness, we see that eµU = µU for all U ∈ Υ . This implies that eµ
and µ agree at all compact subsets of X and then, by inner regularity, also at all
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open subsets of X . Knowing this, and using the outer regularity of eµ, we see
that, for a Borel set ∆,

eµ(∆) =
∧

{eµ(V ) : V is open and ∆ ⊆ V}

=
∧

{µ(V ) : V is open and ∆ ⊆ V}
≥ µ(∆),

so that eµ≥ µ.
Clearly, if µ(∆) =∞, then eµ(∆) =∞ as well.
Finally, suppose∆ is a Borel set such that eµ(∆) is finite. Using Proposition 3.6

in the second step, we see that

µ(∆)≤ eµ(∆)

=
∨

{eµ(K) : K is compact and K ⊆∆}

=
∨

{µ(K) : K is compact and K ⊆∆}
≤ µ(∆).

Hence µ(∆) = eµ(∆). □

Remark 5.8.

(1) We now have three main results at our disposal regarding the exist-
ence of representing measures for positive operators π : C0(X ) → E,
namely, Theorem 4.2, Theorem 5.4, and Theorem 5.6. The proofs of
Theorems 4.2 and 5.6 are somewhat long and technical, and it seems
appropriate to give examples where they give the optimal result.

We start with an example where Theorem 4.2 is optimal. Take X =N
and E = c0, and let π : c00 → c0 be the inclusion operator. Then
Theorem 4.2 is applicable and yields a regular (infinite) representing
measure. Theorem 5.4 is not applicable. Theorem 5.6 does apply, but
does not yield a regular representing measure.

To obtain an example where Theorem 5.6 is optimal, take X =N and
E = ℓ∞, and let π : c00→ ℓ∞ be defined by setting π(en) := nen, where
en is the nth standard unit vector. Then Theorem 5.6 is applicable, but
Theorems 4.2 and 5.4 are not.

(2) Banach lattices of operators will only rarely satisfy the assumption
under (1) in Theorem 4.2, whereas it is not uncommon to fall within
the range of Theorems 5.4 and 5.6.

6. RIESZ REPRESENTATION THEOREMS FOR C0(X )

In this section, we establish representation theorems for positive operators
π : C0(X )→ E that are defined on C0(X ) rather than on Cc(X ). The first one,
Theorem 6.2, is based on Theorem 4.2 for normed spaces E. The remaining ones
are, although norms will still enter the picture, essentially based on Theorem 5.4
for monotone complete normal spaces E.
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The final results of this section, Theorems 6.10 and 6.12, show that represent-
ing measures always exist for positive (not necessarily multiplicative) operators
π from C0(X ) into the regular operators on a KB-space and into the self-adjoint
operators on a complex Hilbert space, respectively. The positive operator π
need not be multiplicative but, as will become apparent, much of what is known
for the multiplicative case (see [13] and [7], respectively) still remains valid,
including the fact that the representing measure takes its values in the coinciding
bicommutants of π(Cc(X )) and π(C0(X )).

Our approach uses automatic continuity to derive results for C0(X ) from those
for Cc(X ). Here is an example in the context of normed vector lattices.

Lemma 6.1. Let X be a locally compact Hausdorff space, let E be a normed vector
lattice, and let π : C0(X )→ E be a positive operator. Suppose that there exists a
measure µ : B→ E+ such that

(6.1) π( f ) =

∫ o

X
f dµ

for all f in Cc(X ) and such that C0(X ) ⊆L 1(X ,B,µ;R).
Then equation (6.1) also holds for all f ∈ C0(X ).

Proof. We have supposed that C0(X ) ⊆L 1(X ,B,µ;R), so that it is possible—this
is the point—to define a positive operator f 7→

∫ o
X f dµ from C0(X ) into E. Since

C0(X ) is a Banach lattice and E is a normed vector lattice, this operator is
automatically continuous; see [5, Theorem 4.3], for example. The operator π
is likewise automatically continuous. Since they agree on the dense subspace
Cc(X ) of C0(X ), they agree on C0(X ). □

Looking at our representation theorems so far, there is indeed one in which
normed spaces (possibly normed vector lattices) E figure, namely, Theorem 4.2.
Lemma 6.1 makes clear that it is relevant to point out cases in which we know
that the representing measure for Cc(X ) from Theorem 4.2 is necessarily finite,
i.e., cases where we know that {π( f ) : f ≺ X } is bounded above in E, once we
have the extra information that π is, in fact, the restriction of a positive operator
from C0(X ) into E. This is indeed possible, as is shown by Theorem 6.2.

As a preparation, we recall (see [5, p. 232], for example) that a Banach lattice
is a KB-space when every increasing norm bounded net in the positive cone is
norm convergent. As is well known, the norm limit is then also the supremum
of the net. In particular, every increasing norm bounded net in the positive cone
of a KB-space is bounded above.

Furthermore, a KB-space satisfies all requirements in Theorem 4.2. Indeed, it
has an order continuous norm (see [22, Theorem 7.1], for example), so that it
is Dedekind complete (see [5, Corollary 4.10], for example). The fact that is a
Banach space, together with the fact that a norm limit of an increasing sequence
in a Banach lattice is also its supremum, shows that the second requirement
is fulfilled. The third follows immediately from the normality of every Banach
lattice with an order continuous norm (see [10, Proposition 3.10], for example).
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After these observations, the next result is easily proved.

Theorem 6.2. Let X be a locally compact Hausdorff space, let E be a KB-space,
and let π : C0(X )→ E be a positive operator.

Then there exists a unique regular Borel measure µ : B → E+ on the Borel
σ-algebra B of X such that

(6.2) π( f ) =

∫ o

X
f dµ

for all f ∈ Cc(X ). The measure µ is finite, and equation (6.2) also holds for all
f ∈ C0(X ). If V is a non-empty open subset of X , then

µ(V ) =
∨

{π( f ) : f ≺ V}

in E. If K is a compact subset of X , then

µ(K) =
∧

{π( f ) : K ≺ f }

in E.

Proof. As observed preceding the theorem, Theorem 4.2 can be applied. The
measure µ that is obtained satisfies µ(X ) = {π( f ) : f ∈ Cc(X )+, ∥ f ∥ ≤ 1}. Since
π is positive, it is continuous, so that the set {π( f ) : f ∈ Cc(X )+, ∥ f ∥ ≤ 1} is
norm bounded. Since it is also upward directed as a consequence of the positivity
of π, the remarks preceding the theorem show that it is bounded above. We
conclude that µ is a finite measure, and then Lemma 6.1 applies to show that
equation (6.2) is valid for all f ∈ C0(X ). □

We now turn to normal spaces, where we have Theorem 5.4 to start from. As
we shall see, we shall actually obtain a generalisation of Theorem 6.2. For these
spaces, we need the following companion result of Lemma 6.1.

Lemma 6.3. Let X be a locally compact Hausdorff space, let E be a σ-monotone
complete partially ordered vector space such that the positive functionals separate
the points of E, and let π : C0(X )→ E be a positive operator. Suppose that there
exists a measure µ : B→ E+ such that

(6.3) π( f ) =

∫ o

X
f dµ

for all f in Cc(X ) and such that C0(X ) ⊆L 1(X ,B,µ;R).
Then equation (6.3) also holds for all f ∈ C0(X ).

Proof. Take a positive functional x ′ on E. Then the maps f 7→ (π( f ), x ′) and
f 7→ (
∫ o

X f dµ, x ′) are both positive functionals on the Banach lattice C0(X ). They
agree on the dense subspace Cc(X ) of C0(X ), so they are equal by continuity.
Since the positive functionals on E separate the points, it follows that π( f ) =
∫ o

X f dµ for all f ∈ C0(X ). □
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Analogously to case above for normed spaces, it is, in view of Lemma 6.3,
relevant to point out cases where we know that the representing measure for
Cc(X ) in Theorem 5.4 is necessarily finite, i.e., that {π( f ) : f ≺ X } is bounded
above, once we have the extra information that π is the restriction of a positive
operator defined on C0(X ).

This is indeed possible again for a class of partially ordered vector spaces that
we now introduce.

Definition 6.4. A partially ordered vector pace E is quasi-perfect when the two
following conditions are both satisfied:

(1) E is normal;
(2) whenever an increasing net {xλ}λ∈Λ in E+ is such that sup(xλ, x ′)<∞

for each x ′ ∈ (Es)+, then this net has a supremum in E.

To motivate the terminology, let us recall that a vector lattice is called perfect if
the natural Riesz homomorphism from E into (Esoc)

s
oc is a surjective isomorphism.

The following alternate characterisation is due to Nakano; see [5, Theorem 1.71].

Theorem 6.5. A vector lattice E is a perfect vector lattice if and only if the following
two conditions hold:

(1) E is normal;
(2) whenever an increasing net {xλ}λ∈Λ in E+ is such that sup(xλ, x ′)<∞

for each x ′ ∈ (Esoc)
+, then this net has a supremum in E.

We see from this that every perfect vector lattice satisfies the more lenient
conditions in Definition 6.4; hence the name ‘quasi-perfect’.

Clearly, a quasi-perfect partially ordered vector space is monotone complete.
We shall collect a number of examples of quasi-perfect partially ordered vector

spaces in Proposition 6.7. As a preparation, we recall that the norm on a Banach
lattice is said to be a Levi norm if every norm bounded increasing net in the
positive cone has a supremum. It is not difficult to see that the KB-spaces are
precisely the Banach lattices with a Levi norm that is order continuous.

Lemma 6.6. The following inclusions between classes of vector lattices hold.

(1) Every KB-space is a normal Banach lattice with a Levi norm;
(2) Every normal Banach lattice with a Levi norm is a quasi-perfect vector

lattice;
(3) Every KB-space is a perfect vector lattice;
(4) Every perfect vector lattice is a quasi-perfect vector lattice.

Proof. We prove part (1). As noted earlier, a KB-space has an order continuous
norm, so that it is normal. If {xλ}λ∈Λ is a norm bounded increasing net in the
positive cone of a KB-space, then it is norm convergent. As mentioned earlier,
the norm limit of the net is then also the supremum of the net.

We prove part (2). Suppose that {xλ}λ∈Λ is an increasing net in the positive
cone of a normal Banach lattice E with a Levi norm such that sup(xλ, x ′)<∞ for
each x ′ ∈ (Es)+. Then {(xλ, x ′) : λ ∈ Λ} is bounded inR for every x ′ ∈ Es = E∗.
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We conclude that {xλ}λ∈Λ is norm bounded. Since the norm is supposed to be a
Levi norm, the increasing net {xλ}λ∈Λ has a supremum in E.

We prove part (3). As noted above, a KB-space is normal. Suppose that
{xλ}λ∈Λ is an increasing net in the positive cone of a KB-space E such that
sup(xλ, x ′)<∞ for each x ′ ∈ (Esoc)

+. This implies that the set {(xλ, x ′) : λ ∈ Λ}
is bounded in R for every x ′ ∈ Esoc = E∗, where the latter equality holds because
E has an order continuous norm. We conclude that {xλ}λ∈Λ is norm bounded.
Since the space is a KB-space, the increasing net {xλ}λ∈Λ has a norm limit in E,
and this norm limit is then also the supremum of the net.

Part (4) is clear. □

Proposition 6.7. The following spaces are quasi-perfect partially ordered vector
spaces:

(1) perfect Riesz spaces;
(2) normal Banach lattices with a Levi norm, such as KB-spaces and, still more

in particular, reflexive Banach lattices;
(3) for SOT-closed complex linear subspaces L of B(H), where H is a com-

plex Hilbert space: the real vector spaces Lsa consisting of all self-adjoint
elements of L;

(4) JBW algebras.

Proof. The parts (1) and (2) are immediate from Proposition 6.7.
We prove part (3). Suppose that {Tλ}λ∈Λ is an increasing net in L+sa such

that sup (Tλ,ϕ)<∞ for all ϕ ∈ (Lsa)soc. Then, in particular, sup 〈Tλx , x〉<∞
for all x ∈ H. Polarisation yields that sup |〈Tλx , y〉| <∞ for all x , y ∈ H. It
follows from this that the net is uniformly bounded, which implies that there
exists an M ≥ 0 such that Tλ ≤ M I for all λ. According to [9, Lemma I.6.4], the
SOT-limit of the net exists in B(H), and this limit is the supremum of the net in
B(H). Since L is SOT-closed, this limit is in Lsa; it is then the supremum of the
net in Lsa.

We prove part (4). The normality a JBW-algebra is stated in [3, Theorem 2.17].
Suppose that {xλ}λ∈Λ is an increasing net in the positive cone M+ of a JBW-
algebra M with the property that sup(xλ, x ′) <∞ for each x ′ ∈ (Ms)+. We
know from [3, Theorem 1.11] that M is a norm complete order unit space,
and then its norm and order dual coincide by [2, Theorem 1.19]. The uniform
boundedness principle then implies that the net is norm bounded, so that it is
also order bounded in the order unit space M. Since JBW-algebras are monotone
complete by definition, the net {xλ}λ∈Λ has a supremum in M. □

With the examples of quasi-perfect partially ordered vector spaces in Propos-
ition 6.7 in mind, we now establish a Riesz representation theorem for such
spaces. It is based on Theorem 5.4 for normal spaces and includes Theorem 6.2
for KB-spaces, the proof of which was based on Theorem 4.2 for normed spaces,
as a special case.

Theorem 6.8. Let X be a locally compact Hausdorff space, let E be a quasi-perfect
partially ordered vector space, and let π : C0(X )→ E be a positive operator.
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Then there exists a unique regular Borel measure µ : B → E+ on the Borel
σ-algebra B of X such that

(6.4) π( f ) =

∫ o

X
f dµ

for all f ∈ Cc(X ). The measure µ is finite, and equation (6.4) also holds for all
f ∈ C0(X ). If V is a non-empty open subset of X , then

µ(V ) =
∨

{π( f ) : f ≺ V}

in E. If K is a compact subset of X , then

µ(K) =
∧

{π( f ) : K ≺ f }

in E.

Proof. We claim that {π( f ) : f ≺ X } is bounded above in E. To see this, take an x ′

in (Es)+, and consider the map f 7→ (π( f ), x ′) from C0(X ) to R. The positivity
of this functional implies that it is continuous. It follows from this continuity
that {(π( f ), x ′) : f ≺ X } is bounded in R. Since the set {π( f ) : f ≺ X } is
upward directed, the fact that E is quasi-perfect now implies that this set has a
supremum in E. Consequently, it is bounded above.

Now that we know this, Theorem 5.4 applies, and then an appeal to Lemma 6.3
completes the proof. □

Theorem 6.8 has a consequence that will become important later on when con-
sidering representations of C0(X ) on KB-spaces in [12]. We need a preparatory
result that seems worth recording explicitly.

Lemma 6.9. Let E be a KB-space. Then the regular norm on Lr(E) is a Levi norm.

Proof. Suppose that 0 ≤ {Tλ}λ∈Λ ↑ in Lr(E) is a net that is bounded in the
regular norm, which coincides with the operator norm on the positive operators.
Choose M ≥ 0 such that ∥Tλ∥ ≤ M for all λ ∈ Λ. If x ∈ E+, then {Tλx}λ∈Λ is an
increasing net in E+. Furthermore, we have ∥Tλx∥ ≤ M∥x∥ for all λ ∈ Λ. Since
E is a KB-space, the supremum of the increasing norm bounded positive net
{Tλx}λ∈Λ exists in E. Hence the net {Tλ}λ∈Λ has a supremum in Lr(E) by [5,
Theorem 1.19] or by the more general [10, Proposition 3.1], for example. □

We can now establish a Riesz representation theorem for positive (not ne-
cessarily multiplicative) operators from C0(X ) into the regular operators on
KB-spaces.

Theorem 6.10. Let X be a locally compact Hausdorff space, let E be a KB-space,
and let π : C0(X )→ Lr(E) be a positive (not necessarily multiplicative) operator.

Then there exists a unique regular Borel measure µ : B→ Lr(E)+ on the Borel
σ-algebra B of X such that

(6.5) π( f ) =

∫ o

X
f dµ
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for all f ∈ Cc(X ). The measure µ is finite, and equation (6.5) also holds for all
f ∈ C0(X ). If V is a non-empty open subset of X , then

(6.6) µ(V ) =
∨

{π( f ) : f ≺ V}

in E. If K is a compact subset of X , then

µ(K) =
∧

{π( f ) : K ≺ f }

in E. Suppose that {∆n}∞n=1 is a pairwise disjoint sequence in B. Then, for x ∈ E,
µ
�⋃∞

n=1∆n

�

x =
∑∞

n=1µ(∆n)x in the norm topology of E.
Define the extension π : L 1(X ,B,µ;R)→ Lr(E) via equation (6.5). For x ∈ E,

x ′ ∈ Es, and ∆ ∈ B, set µx ,x ′(∆) := (µ(∆)x , x ′). Then µx ,x ′ : B → R+ is a
regular Borel measure on X and, for f ∈ L 1(X ,B,µ;R), π( f ) is the unique
element of Lr(E) such that

(π( f )x , x ′) =

∫

X
f dµx ,x ′

for all x ∈ E and x ′ ∈ Es.
Furthermore, the SOT-closed linear subspaces of the bounded (not necessarily

regular) operators on E that are generated by the following sets are equal:

(1) {π( f ) : f ∈ Cc(X )}
(2) {π( f ) : f ∈ C0(X )}
(3) {π( f ) : f ∈B(X ,B;R)}
(4) {π( f ) : f ∈L 1(X ,B,µ;R)}
(5) {µ(V ) : V is an open subset of X };
(6) {µ(K) : K is a compact subset of X };
(7) {µ(∆) :∆ is a Borel subset of X }.

Proof. Since E is a KB-space, part (1) of [10, Theorem 3.14] shows that the order
continuity of the norm on E implies that Lr(E) is a normal partially ordered
vector space. Since we have established in Lemma 6.9 that the regular norm on
Lr(E) is a Levi norm, Theorem 6.8 applies to the partially ordered vector space
Lr(E). On also taking part (2) of Remark 2.7 and [10, Proposition 6.8] into
account, all statements in the theorem follow, except the one on the equality
of the SOT-closed linear subspaces. We shall now establish this. Let L1, . . . , L7
denote the SOT-closed linear subspaces of the bounded operators on E that are
generated by the sets under (1), . . . ,(7), respectively.

We show that L1 ⊇ L5. Suppose that V is an open subset of X . Then equa-
tion (6.6) shows that π( f )x ↑ µ(V )x for all x ∈ E+, where the supremum is the
one of the increasing net {π( f )x ∈ Cc(X ) : f ≺ V}. Since the norm of E is order
continuous, it now follows that µ(V ) is the strong operator limit of the π( f ) for
f ≺ V . Hence µ(V ) ∈ L1. It follows that L1 ⊇ L5.

Using the regularity of µ, a similar argument shows that L5 = L6 = L7.
Using the definition of the order integral, an again similar argument shows

that L7 ⊇ L4. Since it is trivial that L4 ⊇ L3 ⊇ L2 ⊇ L1, the proof is complete. □
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Remark 6.11. It follows from Theorem 6.2 that the commutants and then also
the bicommutants (both in the bounded operators on E) of the seven sets in
Theorem 6.2 are equal. Consequently, µ takes its values in the coinciding
bicommutants of these sets.

We conclude this section with a Riesz representation theorem for positive (not
necessarily multiplicative) operators from C0(X ) into the self-adjoint operators
on a complex Hilbert space.

Theorem 6.12. Let X be a locally compact Hausdorff space, let H be a complex
Hilbert space, and let π : C0(X )→ B(H)sa be a positive (not necessarily multiplic-
ative) operator. Let L be a strongly closed complex linear subspace of B(H) that
contains π(C0(X )), and let Lsa denote be the real vector space that consists of the
self-adjoint operators in L, supplied with the partial ordering that is inherited from
the usual partial ordering on B(H)sa.

Then there exists a unique regular Borel measure µ : B → L+sa on the Borel
σ-algebra B of X such that

(6.7) π( f ) =

∫ o

X
f dµ

for all f ∈ Cc(X ). The measure µ is finite, and equation (6.7) also holds for all
f ∈ C0(X ). If V is a non-empty open subset of X , then

µ(V ) =
∨

{π( f ) : f ≺ V}

in Lsa. If K is a compact subset of X , then

µ(K) =
∧

{π( f ) : K ≺ f }

in Lsa. Suppose that {∆n}∞n=1 is a pairwise disjoint sequence in B. Then, for x ∈ H,
µ
�⋃∞

n=1∆n

�

x =
∑∞

n=1µ(∆n)x in the norm topology of H.
Define the extension π : L 1(X ,B,µ;R)→ Lsa via equation (6.5). For x ∈ H

and ∆ ∈ B, set µx(∆) := 〈µ(∆)x , x〉. Then µx : B → R+ is a regular Borel
measure on X and, for f ∈L 1(X ,B,µ;R), π( f ) is the unique element of B(H)
such that

〈π( f )x , x〉=
∫

X
f dµx

for all x ∈ H.
Furthermore, the SOT-closed real linear subspaces of B(H) that are generated

by the following sets are equal:
(1) {π( f ) : f ∈ Cc(X )}
(2) {π( f ) : f ∈ C0(X )}
(3) {π( f ) : f ∈B(X ,B;R)}
(4) {π( f ) : f ∈L 1(X ,B,µ;R)}
(5) {µ(V ) : V is an open subset of X };
(6) {µ(K) : K is a compact subset of X };
(7) {µ(∆) :∆ is a Borel subset of X }.
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The analogous statement for the equality of seven SOT-closed complex linear sub-
spaces of B(H) is also true.

Proof. In view of part (3) of Proposition 6.7, Theorem 5.4 applies to the positive
operator π : C0(X ) → Lsa. Together with part (2) of Remark 2.7 and [10,
Proposition 6.8], it shows that a measure µ exists that has all the properties in
the theorem, except that we still need to show that equation (6.7) holds for all
f ∈ C0(X ), and that the statement on the equality of seven SOT-closed complex
linear subspaces of B(H) is valid.

For the validity of equation (6.7), we consider, for x ∈ H, the functionals on
C0(X ) that are defined by f 7→ 〈π( f )x , x〉 and f 7→


�∫ o
X f dµ
�

· x , x ,
�

. Being
positive, they are continuous. Since they agree on Cc(X ), they are equal. Hence
〈π( f )x , x〉 =

�∫ o

X f dµ
�

· x , x
�

for all f ∈ C0(X ) and x ∈ H. This implies that
equation (6.7) holds for all f ∈ C0(X ).

For a monotone bounded net of self-adjoint operators on H, its supremum
(or infimum) is its limit in the strong operator topology. Using this as in the
proof of Theorem 6.10, the equality of the SOT-closed real linear subspaces that
are generated by the seven sets follows easily from the regularity of µ and the
definition of the order integral. The analogous statement for the complex linear
subspaces follows from the real case. □

Remark 6.13. As in the case of Theorem 6.10, it follows from Theorem 6.12 that
the commutants and then also the bicommutants in B(H) of the seven sets in
Theorem 6.12 are equal. Consequently, µ takes its values in these coinciding
bicommutants.
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