
Embedding Information onto a Dynamical System

G. Manjunath
Department of Mathematics & Applied Mathematics, University of Pretoria, Pretoria 0028

Email: manjunath.gandhi@up.ac.za

“This is an author-created, un-copyedited version of an article produced/published in
Nonlinearity. IOP Publishing Ltd is not responsible for any errors or omissions in this
version of the manuscript or any version derived from it. The Version of Record is
available online at https:doi.org/10.1088/1361-6544/ac4817 and an Arxiv version
is available at https://arxiv.org/abs/2105.10766.

Abstract

The celebrated Takens’ embedding theorem concerns embedding an attractor
of a dynamical system in a Euclidean space of appropriate dimension through a
generic delay-observation map. The embedding also establishes a topological con-
jugacy. In this paper, we show how an arbitrary sequence can be mapped into
another space as an attractive solution of a nonautonomous dynamical system.
Such mapping also entails a topological conjugacy and an embedding between the
sequence and the attractive solution spaces. This result is not a generalization of
Takens embedding theorem but helps us understand what exactly is required by
discrete-time state space models widely used in applications to embed an external
stimulus onto its solution space. Our results settle another basic problem con-
cerning the perturbation of an autonomous dynamical system. We describe what
exactly happens to the dynamics when exogenous noise perturbs continuously a
local irreducible attracting set (such as a stable fixed point) of a discrete-time
autonomous dynamical system.

2020 MSC Subject Classification: 37B55, 37B35, 37C60, 37B99.

1 Introduction

Scientists have been hard-pressed to explain how a cell or an organism could exhibit the
necessary responsiveness and precision while responding to external stimuli. Long before
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scientists could explain such cryptic phenomena, engineers had developed control systems
that keep our automated systems on course. Researchers have now been endeavoring
to build systems that mimic some of the human brain’s functionalities. A system of
that kind to respond precisely should capture the sequential or temporal information
presented to it without distortion. In this work, a system’s ability to contract its states,
a notion that can be made mathematically accurate, is found to be the fundamental
principle behind capturing sequential information without distortion in many natural
and artificial systems.

Discrete-time state space models of the form
xn+1 = g(un, xn) (1)
yn+1 = f(xn+1), (2)

where n ∈ Z, un belongs to an input space U and state xn belonging to a state space
X, g : U ×X → X, and a measurement f : X → Y have been used with great success
in control theory applications in industrial and scientific applications mainly owing to
the rich theory in the particular case of linear systems (e.g. [1, 2]). The dynamics
obtained from (1) is not limited to modelling of artificial systems, but also relevant
to computation in natural systems, for instance a neutrophil, a single white blood cell
chasing a bacterium [3, movie recorded by David Rogers] can be modeled as a single
cell updating or computing its current position xn in the next time-step to xn+1 after it
receives a stimulus un from the bacterium. In another context, the dynamics in (1) can
also be viewed as that of a noise-perturbed autonomous system.

Newly, inspired by computation in the human brain, the model in (1)–(2) with some
select properties on the map g have been popularised for information processing tasks
in the field of reservoir computing since the heavily cited works of [4], and [5]. Such
processing of data involves mapping of the sequential information onto usually a higher-
dimensional space, and it is empirically found that their representations in the higher
dimensional space (e.g. [4, 6]) have certain exaggerated features. One of the other
great advantages of mapping temporal data is that it can be mapped as an attractor of a
nonautonomous system (e.g., [7, 8]), and such attractivity gives numerical stability while
processing (e.g., [4, 9, 10, 11, 12]). The reservoir computing framework is also suited for
multitasking that accomplishes information processing tasks such as predicting, filtering,
classification of sequential input or data streams. The multitasking is attributed to the
possibility of designing different task-specific read-outs f in (2) while the hardware that
implements (1) remains task-independent. When such multi-tasking applications are
required, the map g in (1) needs to satisfy an asymptotic state contraction property [4],
and a rigorous treatment as to why multitasking is indeed possible can be found in [13,
Theorem II.4]. This paper aims to analyse such mapping of sequential data through
the dynamics defined by g. The findings in this paper cast new and sharp light on how
such sequential information can be mapped or embedded onto another space. Here and
throughout we say a topological space X is embedded in another space Y if there exists
a function f : X → Y such that f : X → f(X) is a homeomorphism.
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For every bi-infinite sequence ū = {un}n∈Z, the map g, which we call a driven system
henceforth generates a non-autonomous dynamical system defined by a family of self-
maps {g(un, ·)}n∈Z on X. We say a driven system g has the unique solution property
(USP) if for each input ū there exists exactly one solution which is a bi-infinite sequence
{xn} that satisfies (1). In other words, g has the USP if there exists a well-defined
solution-map Ψ between the infinite product space U and X (here Y denotes

∏∞
i=−∞ Yi

when Yi ≡ Y ) so that Ψ(ū) denotes the unique solution obtained from the input ū. We
note that the phrase “unique” in the USP does not imply that the solution-map Ψ is
injective. For instance, for the driven system, g(u, x) = ux/2, where U = [0, 1] and
X = [0, 1], g has the USP since Ψ(ū) is identically equal to the sequence with only
0’s. The USP property in the neural network literature is equivalent to the echo state
property (e.g., [14]). We prefer to use the unique solution property terminology since the
results here are not confined to the literature on neural networks. We note that when g
has the USP, and X has more than a single point, it would follow that g(u, ·) : X → X
is not surjective for any u ∈ U (see Section 2) and the non-autonomous dynamics, in
general, does not approach a single-set, but a sequence of sets – that can be described
through a certain topological contraction (see Remark 1). We also note that the USP
property depends on the input space in addition to the mapping g. We use the USP as
the central notion of interest and connect it to other notions of the uniform attraction
property, causal mapping, and causal embedding that we introduce.

Each nonautonomous dynamical system {g(un, ·)}n∈Z induced by ū can be rewritten (see
Section 2) in a process formulation – the process is a two-parameter semigroup formalism
(e.g., [15, 16])

ϕū(n,m, x) :=

{
x if n = m,
gun−1 ◦ · · · ◦ gum+1 ◦ gum(x) if m < n,

(3)

for all integers m ≥ n, and where gu(·) = g(u, ·).

We say g has the uniform attraction property (UAP) if for each ū ∈ U the process ϕū

is such that there exists a sequence of singleton subsets {Ak(ū)} of X so that ϕū(k +
1, k, Ak(ū)) = Ak+1(ū) for all k ∈ Z and

lim
j→∞

sup
k

sup
ū

dist
(
ϕū(k, k − j,X), Ak(ū)

)
= 0, (4)

where dist denotes the Hausdorff semi-distance. More details behind the definition is
available in Section 3. In Theorem 1 we show that the UAP is equivalent to the USP.
When UAP holds it also follows that Ψ(ū) is a uniform attractor (definition of nonau-
tonomous attractors in (15)) for each ū. Previously, Ψ(ū) was known to be a pullback
attractor (e.g., [15, 8]). Uniform attractors are stronger versions of nonautonomous at-
tractors like pullback (forward) attractors that are not necessarily attractive when time
is run in the negative (positive) direction (for, e.g., [17]). We also remark that it turns
out the UAP that we have defined is equivalent to having a uniform attractor with fibres
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that are singleton subsets in the skew-product formalism (see Remark 3 and Remark 4).
Under some contraction conditions, existence of uniform attractors in the skew-product
formalism can be found in [7] and also what are called uniform attracting solutions in
[18]. There are other contractive conditions that guarantee USP like the uniform in-
put forgetting property [10, Theorem 6] and the uniform state contracting property [6,
Proposition 5]) but without reference to non-autonomous attractors.

The UAP is not a mere technical point, though. In the scenario where solutions of g are
to be computed for information processing, we initialize the driven system g satisfying
the UAP with an arbitrary initial value zm ∈ X, then the sequence zm+1, zm+2, zm+3, ...
satisfying zk+1 = g(uk, zk) for k ≥ m evolves to get within the ϵ distance of a component
of the solution in less than N(ϵ) time units. Thus when a solution needs to be computed,
by omitting a few values of zi (referred to as washing out initial conditions in the literature
e.g., [4]), for practical purposes the succeeding values of zi are indistinguishable from the
actual solution components. The UAP condition also gives rise to numerical stability in
an application involving forecasting [11].

To explain the importance of the second main result (Theorem 2) in the work, we con-
sider the following fundamental question: is the ‘temporal complexity of the solution of
g solely determined by the ‘complexity of the input’? In other words, would the sequence
of mappings {gun(·)} not contribute to the complexity in the solution. Continuing to
explain the question further, we consider a numerical experiment. An example of a nu-
merical simulation of a solution of a driven system (as in Example 2) with two different
parameters (see Fig. 1) so that g has the USP for only one of the parameters. A coor-
dinate of a simulated solution is plotted in red and blue for the two parameters and the
input sequence is shown in black. As it may be observed, the coordinate of the solution
shown in red (when g has the USP) “locks” onto a trajectory due to the UAP, and seems
to just follow the input in its temporal variation, while that in blue (when g does not
have the USP) has wild behaviour with an oscillatory envelope. We observe that the
driven system has introduced new additional complexity to the solution indicated in blue
that was not there in the input.

So to make the above question formal through the notion of semi-conjugacy, we first
consider the reachable set of the driven system g to be the union of all the elements of
all the solutions, i.e.,

XU :=
{
x ∈ X : x = xk where {xn} is a solution for some ū

}
.

We then next consider the space of left-infinite sequences ←−U (notation: ←−Y :=
∏−1

i=−∞ Yi,
where Yi ≡ Y and is equipped with the product topology).

We consider ⃗un := (. . . , un−2, un−1) ∈
←−
U an input up to time n − 1, and define the

operation of appending a new input value v ∈ U at time n by the map σv : ⃗un 7→ ⃗unv,
where symbolically ⃗unv := (. . . , un−2, un−1, v), and then ask a fundamental question as
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Figure 1: A coordinate of a simulated solution (x0, x1, . . . , x5000) of a driven system in
(10) in Example 2 plotted in red (with parameter α = 0.99 (where g has the USP) and
blue (α = 1.05 where g does not have the USP) while the matrices A and B are randomly
generated.

to what exactly is required for the dynamics of the driven system to be topologically
semi-conjugate to σv (so that the solution has no new additional new ’complexity)? This
is equivalent to asking what exactly g should satisfy for the existence of a continuous
surjective map h :

←−
U → XU (when XU inherits the subspace topology) so that the

following diagram commutes for any v ∈ U :
←−
U

←−
U

XU XU

σv

h h
g(v,·)

. (5)

We call any such h a universal semi-conjugacy. It can be established that the USP
implies the existence of a function h in a more straightforward way (e.g., [19]), but in
Lemma 5 we show that the existence of a universal semi-conjugacy is equivalent to the
USP. We also observe that h( ⃗uk) = xk, where xk is the value of the solution {xn} at the
kth instant for any input ū whose left-infinite segment is ⃗uk. The positive feature of this
result is that we can not only show that we can embed a left-infinite input in ←−XU but
also prove the existence of a map H :

←−
U →

←−
XU when (←−XU has the product topology)

have the following diagram commute if and only if g has the USP (Theorem 2):
←−
U

←−
U

←−
XU

←−
XU .

σv

H H
g̃v (6)

Here g̃v : (· · · , x−2, x−1) 7→ (· · · , x−2, x−1, g(v, x−1)). We find in our results that H( ⃗un) =

(. . . , h( ⃗un−1), h( ⃗un))). We call H a causal mapping, and if in addition it also embeds ←−U
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in←−X as a causal embedding. Thus when a causal embedding H exists we have embedded
the (left-infinite) input space←−U onto the (left-infinite) solution space←−XU and this is not
just an embedding, but the temporal information in the input is inherited in the solution
due to the commutativity in (6). A summary of the action of the mappings h and H when
g has the USP is illustrated in Fig. 2. During the review of this paper, an interesting
question from a referee motivated us to prove (see Lemma 5 and Proposition 1) that if
suppose the commutativity in (5) and (6) holds without assuming the continuity of h
and H, then such h and H have to be discontinuous when g does not have the USP.
This gives a plausible explanation to the empirical sensitivity of solutions to a very small
amount of noise in the input in driven systems without the USP. Such an experiment
can be found in [12, Figure 3].

We remark out that in systems where time flows continuously rather than discretely
as we have considered here, then there are analogs of the functions h and H, and are
respectively called the functionals and operators in [20, Section 2.1]. In particular, the
commutativity in (6) without reference to the surjectivity is called time-invariance, and
when X = R approximations to the operator can be obtained by what is called a
Volterra series operator [20].

In practice, inputs are often restricted to subsets of ←−U . As an application of causal em-
bedding for forecasting dynamical systems [11], we point out the finite set of components
functions H2( ⃗un) := (h( ⃗un−1), h( ⃗un)) can be used to embed such subsets into X×X (see
Remark 5 for details).

Our results on the driven system do not deal with reconstructing hidden information as
in the Takens embedding theorem, but we point out that we can find a g with the USP
to implement the delay coordinates Φ2d,θ in the Takens embedding theorem. We do that
after restating the Takens embedding theorem from [21]:

Theorem. Let W be a compact manifold of dimension m, and d ≥ m so that 2d is an
integer. It is a generic property for the pair (T, θ), where T : W → W is a smooth
diffeomorphism, and θ : W → R a smooth function, the map Φ2d,θ : W → R2d+1 defined
on W by Φ2d,θ(w) := (θ(T−2dw) . . . , θ(T−1w), θ(w)) is a diffeomorphic embedding; by
‘smooth’ we mean at least C2. Consequently, there exists a map Fθ : Φ2d,θ(W ) →
Φ2d,θ(W ) defined by

Fθ : (θ(T
−2dw), . . . , θ(T−1w), θ(w)) 7→ (θ(T−2d+1w), . . . , θ(w), θ(Tw))

so that (W,T ) is topologically conjugate to (Φ2d,θ(W ), Fθ).

We next recall a “linear” driven system as in [22] with U = θ(W ) and X = Φ2d,θ(W ) and
g(u, x) := uC +Ax, where A is a lower shift matrix (a binary matrix with ones only on
the subdiagonal) of dimension 2d+ 1, and C is the transpose of the vector [1, 0, · · · , 0].
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Then after initializing the system with any initial condition x0, the system’s states are
identical to that of the delay-coordinates Φ2d,θ(w) in not more than 2d + 1 time-steps.
Such a system has the USP since Ψ({θ(wi)}) = {Φ2d,θ(wi)}, where wi+1 = T (wi).

In the final main result in Theorem 3, we show that in the case of g having the USP, the
solution-map Ψ is a continuous mapping (embedding) whenever H is a causal mapping
(embedding). We go beyond the study of the continuity of a single-valued mapping like
h or H and study how a collection of solutions behave as a function of the input as in
[12]. Towards that end, we consider the reachable states at a given time as a set-valued
function of ⃗u. With the space of subsets of such reachable states being equipped with the
Hausdorff metric, we describe the continuity of such a set-valued function at a given time
as a notion of stability which we call the global-input related stability property (GIRST)
(see Definition 6) and relate it to the USP. In particular, we show (Proposition 2) that
the USP implies GIRST, and conversely, if g has the GIRST we show that if for some
input ū there exists only one solution, then g should have the USP.

We finally point out that the results in this paper can also be interpreted in a study
of the perturbation of an autonomous dynamical system. Suppose U were to contain
a single point, g as in (1) represents an autonomous dynamical system. The basin
of a stable fixed point of an autonomous dynamical system under small perturbations
often persists as an attractive neighborhood of a stable or attracting set, although the
stable fixed point may not exist any longer in the perturbed system. In this case, we
can model the resultant dynamics by expanding U to be a set with more than one
value in (1) to allow the perturbation to be sequences in U . Without the description of
attractors in nonautonomous systems (e.g., [7]), the folklore understanding remains that
when the perturbation is small in amplitude, the dynamics remains close to the fixed
point that existed in the absence of the perturbation. The same lack of understanding
holds when a local irreducible attractor (precisely, an attractor contained in the chain-
recurrent set (e.g., [23]) of an autonomous system is perturbed. Since the dynamics in
the neighborhood of an attracting set is contracting, the USP is a natural assumption
on the perturbed system. With the USP assumption, we infer from Theorem 1 that
the nonautonomous trajectory in the perturbed system is a uniform attractor, while
Theorem 2 and Theorem 3 imply that the complexity of the non-autonomous dynamics
cannot be more than that in the perturbation and also there is a one-to-one mapping
between the input and the nonautonomous dynamics.

The paper is organized as follows. In Section 2, we present the mathematical definitions
and some basic results. In Section 3, we show that the UAP and the USP are equivalent.
In Section 4, we present the results connecting the USP to the notions of causal mapping
and causal embedding. In Section 5, we discuss the global input-related stability notion.
In Section 6, we present a short summary of the results.
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Figure 2: Commutating ladder to explain the causal mapping.

2 Preliminaries

Setting. A driven system would comprise an input metric space (U, dU), a compact
metric (state) space (X, d) and a continuous function g : U ×X → X. For brevity, we
refer to g as a driven system with all underlying entities quietly understood. When U is
compact, we call g a compactly driven system.

Notation. We denote the collection of all nonempty closed subsets of the metric space
X by HX . When A and B belong to HX , the quantity dist(A,B) := inf{ϵ : A ⊂ Bϵ(B)}
is the Hausdorff semi-distance between A and B, where Bϵ(B) := {x ∈ X : d(x,B) < ϵ}
is the open ϵ-neighborhood of B. On HX we employ the Hausdorff metric defined by
dH(A,B) := max(dist(A,B), dist(B,A)) := inf{ϵ : A ⊂ Bϵ(B) & B ⊂ Bϵ(A)}. It is well
known that whenever X is a compact metric space, HX is also a compact metric space.
The subspace of HX that contains the singleton subsets of X is denoted by SX . We also
define the mapping i : X → SX by i : x 7→ {x}. Slightly abusing notations, when f is
any function defined on a space Y , then for an A ⊂ Y , we denote f(A) =

⋃
x∈A f(x).

All subspaces of a topological space are equipped with the subspace topology. If Y is a
topological space then we denote the spaces of countable products Y :=

∏∞
i=−∞ Zi and

←−
Y :=

∏−1
i=−∞ Zi where Zi ≡ Y and always equip these spaces with the product topology.

Given a bi-infinite sequence ū, we define ⃗un := (. . . , un−2, un−1) for each n ∈ Z. Also we
represent the concatenation of ⃗un and v by ⃗unv := (. . . , un−2, un−1, v).
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Maps on the product spaces: The map r :
←−
U →

←−
U denotes the right-shift map,

i.e., r : (· · · , y−2, y−1) 7→ (· · · , y−3, y−2). Given v ∈ U define σv :
←−
U →

←−
U by

σv : (· · · , u−2, u−1) 7→ (· · · , u−2, u−1, v). Given v ∈ U , the map g̃v :
←−
X →

←−
X is de-

fined by g̃v : (· · · , x−2, x−1) 7→ (· · · , x−2, x−1, gv(x−1)).

Continuity of set-valued functions. Let X be a topological space and let PX denote
the power set of X. Let Z be another topological space. A function f : Z → PX is said
to be upper semicontinuous at z if for every open set V in X containing f(z) there exists
an open neighborhood W of z such that f(W ) ⊂ V . A function f : Z → PX is said to be
lower semicontinuous at z if for every open set V in X such that f(z)∩V 6= ∅, then the set
{z : f(z)∩V 6= ∅} is an open neighborhood of x. A map f that is upper semicontinuous
for all z ∈ Z is called upper semicontinuous. A map f that is lower-semicontinuous
for all z ∈ Z is called lower semicontinuous. A map that is simultaneously both upper
semicontinuous and lower semicontinuous at a point z ∈ Z is said to be continuous at
z. We use the fact (e.g.[24]) that if a map is upper semicontinuous at z and is single-
valued, i.e., f(z) is single-valued, i.e., a singleton subset of X, then f is continuous at
z. While X is a compact metric space, a set-valued function f can instead be treated as
a regular function taking values in the space of nonempty compact subsets HX . In this
case, the continuity of f defined using upper semicontinuity and lower semicontinuity
above coincides with the continuity of the HX-valued function f , with of course HX being
equipped with the Hausdorff metric (e.g., [24, Theorem 1, p. 126]). Given a sequence
of subsets {An} of a metric space X the collection of those x for which each open ball
centered at x intersects An eventually is called the Kuratowski limit-inferior (the set
described on the right-hand side of described in (7)). The collection of those x for
which each open ball centered at x intersects infinitely many An is called the Kuratowski
limit-superior. The Kuratowski-limit of the sequence {An} is said to exist when the limit-
superior is identical [25] and equal to the limit-inferior – so Kuratowski-limit Limn→∞An

while it exists can be thus written as

Lim
n→∞

An =

{
x ∈ X

∣∣∣∣ lim sup
n→∞

d(x,An) = 0

}
,

=

{
x ∈ X

∣∣∣∣ for all open neighbourhoods U of x,
U ∩ An 6= ∅ for large enough n

}
. (7)

The fact that we would make use of in this paper is that when X is compact, and each
An ⊂ X is compact, then Limn→∞An exists if and only if the limit of {An} in the
Hausdorff metric (e.g., [24, 25]) exists, and both these limits are then identical.

Process and Encoding. Given a driven system g, and u ∈ U , we denote gu(x) :=
g(u, x). Clearly gu : X → X. Suppose a driven system g has been “fed” input values
um, um+1, . . . , un−1 in that order starting at time m on all initial values in X. Then the
map g “transports” a state-value x ∈ X at time m to a state-value at time n which is
gun−1 ◦ · · · ◦ gum(x). Formally, for every choice of ū we can define for all m ≤ n, the
function that maps a state at x at time m through the inputs um, um+1, . . . un−1 to the
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state at time n given by the composition-operator called a process by several authors
(e.g.,[15]) by the map ϕū : Z2

≥ ×X → X, where Z2
≥ := {(n,m) : n ≥ m,n,m ∈ Z} and

ϕū(n,m, x) :=

{
x if n = m,
gun−1 ◦ · · · ◦ gum+1 ◦ gum(x) if m < n.

Note that the set inclusion ϕū(m+ 2,m,X) ⊂ ϕū(m+ 2,m+ 1, X) holds for all m since
gum+1 ◦ gum(X) ⊂ gum+1(X). Based on this observation, it follows that ϕū(n,m,X) is a
decreasing sequence of sets, i.e., ϕū(n,m − 1, X) ⊂ ϕū(n,m,X) for an m. Hence, if the
entire left-infinite input {um}m<n had influenced the dynamics of the driven system g,
the system would have evolved at time n to one of the states in the nested intersection

Xn(ū) :=
⋂
m<n

ϕū(n,m,X). (8)

When X is compact, ϕū(n,m,X) is a closed subset of X, and hence Xn(ū) being a nested-
intersection is a nonempty closed subset of X. Thus Xn(ū) belongs to HX and is also the
Kuratowski limit (see (7)) i.e., Xn(ū) = {x ∈ X : limm→∞ d(x, ϕū(n, n −m,X)) = 0}.
Further, the sets ϕū(n, n − m,X) are all compact in the compact space X, this limit
coincides in the Haussdorff metric, i.e.,

Xn(ū) = dH - lim
m→∞

ϕū(n, n−m,X). (9)

The set Xn(ū) being the set of all reachable states at time n has another interesting
feature, it is the union of the nth coordinate projection of all solutions when the input
to the driven system g is ū. A proof of this simple result can be found in the literature
(e.g., [15, Lemma 2.15] or [26, Lemma 2.2]) or [16, Proposition 5.5]). The family of sets
{Xn(ū)} is called the representation of ū in [12]

Lemma 1. Let g be a driven system. Then x ∈ Xk(ū) if and only if there is a solution
{xn} with the input ū such that xk = x.

Remark 1. In view of the definition of USP in Section 1 and Lemma 1, g has the USP
if and only if Xn(ū) is a singleton subset of X for all ū ∈ U and n ∈ Z – the nested
intersection in (8) topologically contracts to a single point. Hence, succinctly, we can
say g has the USP if and only if X0(ū) ∈ SX for all ū ∈ U . This is since if Xn(v̄) is
not a singleton subset for some v̄, then by defining uk = vk−n, then X0(ū) is also not a
singleton subset.

Note that by definition, Xn(ū) is a function of ⃗un alone i.e., (un, un+1, . . .) would not
influence Xn(ū). In particular, for n = 0, i.e.,

⋂
m<0 ϕū(0,m,X) is a function of ⃗u alone.

Henceforth, for convenience, we denote X0(ū) and its “finite-time” approximation (in
view of (9)) by E( ⃗u) and En( ⃗u) = ϕū(0,−n,X) respectively. Without further mention,
whenever ū appears concurrently with ⃗u, ū denotes some fixed right-infinite extension of
⃗u so that the time-indices are preserved, i.e., ⃗u contains elements with all negative indices
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beginning from −1. For the convenience of the reader, we tabulate these as set-valued
functions of the input:

Map Definition Remarks
Xn : U → HX Xn(ū) =

⋂
m<n ϕū(n,m,X) set of reachable states at time n

E :
←−
U → HX E( ⃗u) = X0(ū) set of reachable states at time 0

En :
←−
U → HX En( ⃗u) := ϕū(0,−n,X)

set of all reachable states at time 0
having evolved from time −n
i.e., a finite time approximation of E .

We call the map E the encoding map, and in view of Remark 1, we note that g has the
USP if and only if E( ⃗u) ∈ SX for all ⃗u ∈

←−
U . This equivalence helps us simplify the

arguments in the proofs. We consider the following examples:

Example 1. We borrow an example from [17]. Let g(u, x) = ux
1+|x| with U = [0, 2]

and X = [−2, 2]. Clearly, g is a driven system since g : U × X → X. Consider
⃗u := (. . . , 2, 2). Then E( ⃗u) = [−1,+1] since g2([−1, 1]) = g(2, [−1, 1]) = [−1, 1] since −1

and +1 are fixed points and iterates of g2(x) for x /∈ [−1, 1] converge to one of these
points. Since E( ⃗u) /∈ SX , g does not have the USP. The reader may note that in view
of Lemma 1, there is a solution passing through each point [−1, 1] at any given point in
time as well.

Example 2. Let U ⊂ RK be any compact subset and X = [−1, 1]N (the product of N
copies of [−1, 1]) and g be defined by

g(u, x) = tanh(Au+ αBx), (10)

where A and B are real matrices with dimension N×K and N×N respectively, α > 0 is
a real parameter, and tanh(∗) is (the nonlinear activation) tanh performed component-
wise on ∗. It is proved in [14, Theorem 2] that when the spectral norm of αB < 1, then
g has the USP.

We also note that in general, for any driven system g the encoding map is upper-
semicontinuous. We make use of this fact later, but nevertheless, we provide proof
of it here for completeness.

Lemma 2. Let g be a driven system. Then the input-encoding map E :
←−
U → HX is

upper-semicontinuous.

Proof. Fix ⃗u. Let E(ū) ⊂ V where V is open in X. Fix any choice of ū so that its
left-infinite sequence matches with ⃗u.

Since E(ū) = dH - limj→∞ ϕū(0,−j,X), by the definition of the limit, there exists an n
such that ϕū(0,−n,X) ⊂ V . Fix such an n. To prove the lemma it is sufficient to show
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that there exists a neigbhorhood W of ū such that ϕv̄(0,−n,X) ⊂ V for all v̄ ∈ W since
we know that the sequence obtained by increasing n in ϕū(0,−n,X) is decreasing in X.
Denote U (−n,−1) to be the product space

∏−n
i=−1 Zi, where Zi is U .

Define f(u, ·) := ϕū(0,−n, ·) where u := (u−n, . . . , u−1). Hence f : U (−n,−1) ×X → X.
Since ϕū(0,−n, ·) is continuous as it is a composition of continuous functions due to
its definition in (3), and g is continuous in u, it follows that f is continuous. Since
ϕū(0,−n,X) ⊂ V we have f(u, x) ⊂ V for all x ∈ X. Now since f is continuous for each
x ∈ X, there exists an open set Ex ⊂ X containing x and Wx ⊂ U (−n,−1) containing u
such that f(Wx, Ex) ⊂ V . The collection {Ex} forms an open cover of X, and since X is
compact we can find an open cover {Ex1 , . . . , ExK

} such that f(Wxi
) ⊂ V for all 1 ≤ i ≤

K. The finite intersection W n =
⋂K

i=1Wxi
is open in U (−n,−1). Hence f(W n, Exi

) ⊂ V
for all for all 1 ≤ i ≤ K and since {Ex1 , . . . , ExK

} covers X, f(W n, X) ⊂ V .

Let W = {v̄ ∈ U : (v−n, . . . , v−1) ⊂ W n}. Clearly, W is open in U and since for v̄ ∈ W ,
ϕv̄(0,−n, x) = f((v−n, . . . , v−1), x), we have ϕv̄(0,−n,X) ⊂ V owing to the inclusion
f(W n, Exi

) ⊂ V . ■

Remark 2. When E( ⃗u) is a singleton subset of X, i.e., when E( ⃗u) ∈ SX , it follows easily
(see [12, Theorem 3.1]) that the encoding E is lower semi-continuous as well at ⃗u, and
hence E( ⃗u) is continuous at ⃗u. Thus when the g has the USP, E is continuous.

Remark 3. Some of the results in the paper can also be proved using the skew-product
formalism (e.g., [15, 17]) that comprises an autonomous dynamical system defined by
a dynamical system on a base space, and a cocycle mapping. To implement such a
formalism in our case, one can consider the base space to be U and the dynamical
system defined by the shift map σ : U → U as σ(ū) : {un} 7→ {un+1}. By denoting
π0 : ū 7→ u0 and the n-fold composition of σ by σn, the cocycle mapping can be defined
on N0 × U ×X → X as

φ(n, ū, x) :=

{
x if n = 0,
gπ0(σn−1(ū)) ◦ · · · ◦ gπ0(σ(ū)) ◦ gπ0(ū)(x) if n > 0.

(11)

Specifically {φ(n, ·, ∗)}n∈N0 forms a semi-group of continuous functions since g is contin-
uous, and satisfies the so-called cocycle property: φ(n + k, ū, x) = φ(n, σk(ū), x) for all
k, n ∈ N0, ū ∈ U and x ∈ X.

2.1 Nonautonomous invariant sets and attractors

Each input ū induces a nonautonomous dynamical system which is a sequence of self-
maps {gun}n∈Z, the dynamics of which is obtained by the update equation xn+1 = gun(xn)
or equivalently in the process notation by xn+1 = ϕū(n+1, n, xn). To have a meaningful
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notion of invariant sets and attractors for nonautonomous systems, they are considered
to be a particular collection of time-indexed subsets; see e.g., [15, 16] for a thorough dis-
cussion. Since the state space is compact in our case, we adopt the definitions of different
types of nonautonomous attractors in the framework of a process without reference to
bounded sets.

Definition 1. Given a driven system, let ϕū be the process that is obtained for an input
ū (see (3)). A sequence of subsets A = {An(ū)}n∈Z ⊂ X is said to be a ϕū-invariant set
if it satisfies

ϕū(n+ 1, n, An(ū)) = An+1(ū) for all n ∈ Z.

Nonempty invariant sets always exist when X is compact for a nonautonomous system
[15]. For driven systems, it can be shown that (see Lemma 3) for any process ϕū, the
representation {Xn(ū)} of ū is an ϕū-invariant set.
Nonautonomous attractors for a process obtained by a driven system and an input ū are
a special type of ϕū-invariant sets. There are different types of nonautonomous attractors
for processes depending upon the attractivity from the distant past (pullback attractors)
or attractivity into the distant future (forward attractors) is considered, and they are
not equivalent in general [15]. The attractivity is described by the closeness of sets as
measured by the Hausdorff semi-metric dist.

Definition 2. Given a driven system, let ϕū be the process that is obtained for an input
ū and A = {An(ū)} be a ϕū-invariant set such that each An is compact and ⊂ Xn(ū). If
the following conditions

lim
j→∞

dist(ϕū(n, n− j,X), An(ū)) = 0 for all n, (12)

lim
j→∞

dist(ϕū(n+ j, n,X), An+j(ū)) = 0 for all n, (13)

lim
j→∞

sup
n

dist(ϕū(n, n− j,X), An(ū)) = 0, (14)

lim
j→∞

sup
n

dist(ϕū(n+ j, n,X), An+j(ū)) = 0, (15)

holds, then in that order, A(ū) is respectively called a pullback-attractor, forward-
attractor, uniform-pullback-attractor and uniform-forward-attractor of the input ū or
of the process ϕū. In particular, if {An(ū)} is contained in SX then they also called point
attractors of their types.

The following result is known and we prove it here for completeness. The proofs are
adopted from the results in [26] and [15].

Lemma 3. Let g be a driven system. Then the representation {Xn(ū)} of ū is an
ϕū-invariant set. Hence ϕū(n, n − j,Xn−j(ū)) = Xn(ū) for all j, n ∈ Z. Also, the
representation {Xn(ū)} of ū is a pullback attractor.
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Proof. First we make use of the elementary fact: let A1, A2, . . . , be a collection of
nonempty closed subsets of a compact space X such that Ai+1 ⊂ Ai and f : X → X be
a continuous function. Then

f(A) =
∞⋂
i=1

f(Ai), where A :=
∞⋂
i=1

Ai. (16)

This is true since f(A) ⊂
⋂∞

i=1 f(Ai) trivially. When y ∈ f(Ai) for all i =⇒ there exists
xi ∈ Ai such that f(xi) = y for all i. Any limit point x′ of {xi} is contained in A since
A is closed. Hence, x′ ∈ A. By the continuity of f , f(x′) = y, and so

⋂∞
i=1 f(Ai) ⊂

f(A). Next, we prove the ϕū-invariance by deducing ϕū(n + 1, n,Xn(ū)) = ϕū(n +

1, n,
⋂

m<n ϕū(n,m,X))
(16)
=

⋂
m<n ϕū(n + 1, n, ϕū(n,m,X)) =

⋂
m<n ϕū(n + 1,m,X) =⋂

m<n ϕū(n+ 1,m,X) ∩ ϕū(n+ 1, n,X) =
⋂

m<n+1 ϕū(n+ 1,m,X),= Xn+1(ū).

To show that {Xn(ū)} is a pullback attractor, assume on the contrary, i.e., assume
lim supj→∞ dist(ϕū(n, n − j,X), Xn(ū)) > 0 for some fixed n. So there exist sequences
xjk ∈ ϕū(n, n− jk, X) and jk →∞ and dist(xjk , Xn) > ϵ for all k ∈ N. Without loss of
generality assume xjk → x0 since there always exists a subsequence that converges. So
dist(x0, Xn) ≥ ϵ. However, since Xn(ū) =

⋂
j>0 ϕū(n, n− j,X)), it contains the limit x0

as it is a nested intersection in a compact space which implies dist(x0, Xn) = 0, and this
is a contradiction. ■

Conditions on the existence of forward attractors in the process formulation were not
fully known until a recent result in [27]. Next, it also turns out that if (14) holds then
(15) also holds and vice-versa. Hence a uniform-pullback-attractor or a uniform-forward-
attractor is referred only as a uniform attractor.

3 Uniform Attracting Property of a Driven System

Here, we bring out the equivalence between the USP and the uniform attraction property
for compactly driven systems. For a driven system, each solution Ψ(ū) is a pullback
attractor, but for a compactly driven system, it can be shown that it is a uniform
attractor. In fact, we can bring out something in common between the uniform attractors
that arise for different ū, for compactly driven systems. We first define this commonality
between the uniform (point) attractors:

Definition 3. Let g be a driven system. Then g is said to have the uniform attraction
property (UAP) if for each ū ∈

←−
U the process ϕū has a uniform point attractor {Ak(ū)}

and
lim
j→∞

sup
k

sup
ū

dist
(
ϕū(k, k − j,X), Ak(ū)

)
= 0. (17)
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The uniform attraction property in Definition 3 is obviously stronger than having a
uniform point attractor {Ak(ū))} for each ū since one could obtain an integer N so that
every initial condition x evolves to get within the ϵ distance of a component of the point
attractor in less than N time units. In the case of the USP, i.e., when the solution map
Ψ(ū) is well-defined, these point attractors are solutions.

Theorem 1. A compactly driven system g has the USP iff g has the UAP.

Proof. (UAP =⇒ USP). Fix ⃗u. Let {An(ū)} be a uniform point attractor for ϕū. Then
there is no other solution except {i−1(An(ū))} since {An(ū)} is a point attractor.

(USP =⇒ UAP). If g has the USP, then E( ⃗u) ∈ SX ⊂ HX for all ⃗u ∈
←−
U .

Consider the sequence {En( ⃗u)}n≥1 ⊂ HX , where En( ⃗u) = ϕū(0,−n,X). Hence, in view
of (9), E( ⃗u) = dH - limn→∞ En( ⃗u).

Claim. En converges uniformly to E on ←−U , i.e., for all ϵ > 0, there exists N such that

dH(En( ⃗u), E( ⃗u)) < ϵ

for all ⃗u ∈
←−
U and all n ≥ N . Fix ϵ > 0. For each n ∈ N define the subset of ←−U as:

Bn := { ⃗u ∈
←−
U : dH(En( ⃗u), E( ⃗u)) < ϵ}.

Since En( ⃗u) → E( ⃗u) for each ⃗u, Bn is nonempty for some n. The set Bn is open in ←−U
for all n ∈ N in view of the following facts: (i) En( ⃗u) is decreasing to E( ⃗u) for all ⃗u; (ii)
En is continuous for each n ∈ N; (iii) E is continuous owing to taking values in SX (iv)
dH being a metric is continuous. Note that {Bn}n∈N is an open cover of←−U , and since←−U
is compact, we have a finite collection of sets {Bn1 , Bn2 , . . . , Bnm} that covers ←−U . Let
N := max(n1, n2, . . . , nm). Also since, En( ⃗u) is decreasing, Bn ⊂ Bn+1. Therefore BN

covers ←−U . Thus by definition of BN , we have for all n ≥ N , dH(En( ⃗u), E( ⃗u)) < ϵ for all
⃗u ∈
←−
U . Thus the claim is proved.

Recall that g has the UAP if for all ϵ > 0 there exists Jϵ ∈ N and {An(v̄)} ⊂ SX such
that

sup
k

sup
v̄

dist(ϕv̄(k, k − j,X), Ak(v̄)) ≤ ϵ

for all j ≥ Jϵ. Hence to show that g has the UAP, it is sufficient to show given any v̄
and any k ∈ Z, there exists Jϵ and Ak(v̄) ∈ SX such that

dist(ϕv̄(k, k − j,X), Ak(v̄)) ≤ ϵ

for all j > Jϵ. Fix v̄ and k ∈ Z and let Jϵ = N . Now choose ū ∈ U such that ui = vk+i for
all i ∈ Z. Hence (. . . , u−2, u−1) = (. . . , vk−2, vk−1) and thus ϕv̄(k, k−j,X) = ϕū(0,−j,X).
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But ϕū(0,−j,X) = Ej( ⃗u). Now let Ak(v̄) = E( ⃗u). Therefore,

dist(ϕv̄(k, k − j,X), Ak(v̄)) ≤ dH(ϕv̄(k, k − j,X), Ak(v̄))

= dH(Ej( ⃗u), E( ⃗u)).

But dH(Ej( ⃗u), E( ⃗u)) < ϵ for j > Jϵ due to the claim above. Hence the UAP follows. ■

We note that in the skew-product formalism as described in Remark 3, the collections
of sets A = {Aū ⊂ X} where each fibre Aū is nonempty, compact, and invariant, i.e.,
Ψ(n, ū, Aū) = Aσn(ū) is called a uniform attractor (e.g., [15]) for the skew-product flow
obtained from the driven system g if

lim
k→∞

sup
ū

dist
(
φ(k, ū,X), Aσk(ū)

)
= 0. (18)

Remark 4. Replacing k by k + j in (17) we can restate the UAP condition by
limj→∞ supk supū dist

(
ϕū(k + j, k,X), Ak+j(ū)

)
= 0. Next, by comparing the definitions

of a process in (3) and the cocycle mapping in (11), we note that ϕū(k + j, k, x) =
φ(j, σk(ū), x). So from (18), we can conclude that the UAP defined through the process
formulation is equivalent to A being a uniform attractor in the skew product formalism
containing only singleton subsets of X as its fibres.

4 Causal Embedding and Conjugacy

Here, we establish the equivalence between the USP and the existence of a causal map-
ping for a compactly driven system in Theorem 2. The key to our results is proving the
existence of a universal semi-conjugacy in Lemma 5. We also establish conditions under
which H is a causal embedding in Theorem 2. Another qualitatively different sufficient
condition that enables embedding inputs as driven system’s states can be found in [10,
Corollary 23]. To the more circumspect reader, we also show in Proposition 1 any func-
tion H that makes (6) commute, i.e., any H that satisfies Definition 4 except that it
need not be continuous would be actually discontinuous when g does not have the USP.

Recall from Section 1, the reachable set for a driven system g is defined as XU =
{
x ∈

X : x = xk where {xn} is a solution for some ū
}
.. Also, recall that Xk(ū) is the union

of all kth component of all solutions obtained with the input ū by Lemma 1. In this
light, we can equivalently define the reachable set XU by:

XU =
⋃

n∈Z, ū∈U

Xn(ū). (19)

We also note that for any x ∈ XU and v ∈ U , g(v, x) ∈ XU . This is since if x ∈ XU ,
there exists a left-infinite input ⃗un such that x ∈ Xn(ū) = E( ⃗un). So by the definition of
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E it follows that x ∈ E( ⃗unv), and hence x ∈ XU . We would use this fact without further
mention.

Definition 4. Consider a driven system g. We say H is a causal mapping if H :
←−
U →

←−
XU

is continuous, surjective and satisfies (the commutativity in the diagram in (6))

g̃v ◦H = H ◦ σv

for all v ∈ ←−U , where σv : ⃗un 7→ ⃗unv and g̃v : (· · · , xn−2, xn−1) 7→ (· · · , xn−2, xn−1, g(v, xn−1)).
If in addition, H is a homeomorphism, we say H is a causal embedding of ←−U in ←−X .

Definition 5. Consider a driven system g. We say h is a universal semi-conjugacy if
h :
←−
U → XU is continuous, surjective and satisfies (the commutativity in the diagram

in (5)):
gv ◦ h = h ◦ σv for all v ∈ U .

Lemma 4. Consider a driven system g and ϕū be the process corresponding to an ū ∈ U .
Then,

∞⋂
j=1

ϕū(n, n− j,X) =
∞⋂
j=1

ϕū(n, n− j,XU).

Proof. Since XU ⊂ X, we have ϕū(n, n− j,XU) ⊂ ϕū(n, n− j,X) for all n, j, and thus
for all n,

∞⋂
j=1

ϕū(n, n− j,XU) ⊂
∞⋂
j=1

ϕū(n, n− j,X). (20)

Next, by (19), we know Xn−j(ū) ⊂ XU ∀j, so we have ϕū(n, n− j,Xn−j(ū)) ⊂ ϕū(n, n−
j,XU) for all j ∈ N. But ϕū(n, n − j,Xn−j(ū)) = Xn(ū) by Lemma 3. Hence, Xn(ū) ⊂
ϕū(n, n − j,XU) for all j ∈ N which implies Xn(ū) ⊂

⋂∞
j=1 ϕū(n, n − j,XU). But

Xn(ū) =
⋂∞

k=1 ϕū(n, n− k,X) by definition. Thus for all n,
∞⋂
k=1

ϕū(n, n− k,X) ⊂
∞⋂
j=1

ϕū(n, n− j,XU). (21)

By (20) and (21), the lemma follows. ■.

We use the hypothesis of invertibility of g(·, x) : U → X for all x ∈ X as a sufficient
condition for a causal mapping H to be a causal embedding in the statement (ii) of
Theorem 2. Also the reader may note that g(·, x) being invertible for all x ∈ XU serves
as a sufficient condition as well.

Example 3. It is also easy to verify for the example of the driven system in (10) if
U ⊂ RN and A has the same dimension as that of B and is invertible, then g(·, x) is also
invertible for all x ∈ [−1, 1]N .

Theorem 2. Consider a compactly driven system g.
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(i). There exists a causal mapping H :
←−
U →

←−
XU if and only if g has the USP; XU

inherits the subspace topology from X. In particular,

H( ⃗u) =
(
· · · , h(r2 ⃗u), h(r ⃗u), h( ⃗u)

)
, (22)

where h = i−1 ◦ E, where E is the encoding map, and i : x 7→ {x}.

(ii). H is a causal embedding when g(·, x) : U → X is invertible for all x ∈ X.

Proof. Proof of (i). Let g have the USP, and let H be as in (22). Clearly, H is
continuous since both h :

←−
U →

←−
XU by Lemma 5 and the right-shift map r :

←−
U →

←−
U are

continuous. Also, H is surjective since h again by Lemma 5 is surjective, and r is also
surjective. The equality g̃v ◦H = H ◦σv holds if and only if the equality πj ◦ g̃v(H( ⃗u)) =
πj ◦ H(σv( ⃗u)) holds for all j ∈ N, where πj for the coordinate projections. Since g has
the USP, by Lemma 5, we note that h ◦ σv = gv ◦ h. Then H :

←−
U →

←−
X is a causal

mapping if the following claim is true.

Claim. h ◦ σv = gv ◦ h =⇒ H ◦ σv = g̃v ◦H (which is the required commutativity in the
diagram in (6)).
Proof of Claim. Suppose H ◦ σv( ⃗u) 6= g̃v ◦ H( ⃗u) for some ⃗u. Then πj(H ◦ σv( ⃗u)) 6=
πj(g̃v ◦h( ⃗u)) for some j ∈ N. Suppose j > 1, and since the composition r−j−2◦r = r−j−1,
and since r ◦ σv( ⃗u) = ⃗u, h(r−j−2( ⃗u)) = h(r−j−1 ◦ σv( ⃗u)) 6= h(r−j−2( ⃗u)) which is absurd.
So j has to be equal to 1. Then π1(H ◦σv( ⃗u)) 6= π1(g̃v ◦h( ⃗u)) means h◦σv( ⃗u) 6= gv ◦h( ⃗u).
The claim is proven.

The converse remains to be proven: that if H :
←−
U →

←−
X is a causal mapping, then g has

the USP and H will be as in (22). Let

H( ⃗u) = (· · · , θ2( ⃗u), θ1( ⃗u)), (23)

where θi :
←−
U → XU is some function that is continuous and surjective. Observe that

g̃v ◦ H = H ◦ σv if and only if πj ◦ g̃v ◦ H = πj ◦ H ◦ σv for all coordinate projections
πj, j ∈ N. With j = 1 and from (23), π1 ◦ g̃v ◦ H = gv ◦ θ1 and π1 ◦ H ◦ σv = θ1 ◦ σv.
So we have gv ◦ θ1 = θ1 ◦ σv. So, if for all ⃗u, gv ◦ θ1( ⃗u) = θ1 ◦ σv( ⃗u) holds, then θ1 is a
universal semiconjugacy, and thus by Lemma 5, g has the USP. Further from Lemma 5,
θ1 = h( ⃗u), where h = i−1 ◦ E . This implies θk+1 = h(rk ⃗u). This completes the proof of
(i).

Proof of (ii). Suppose H( ⃗u) = H( ⃗v) for some ⃗u 6= ⃗v. So by (22), h(rk ⃗u) = h(rk ⃗v). Since
rk ⃗u = (. . . , u−k−2, u−k−1) for all k > 0, we have h( ⃗u−k−1) = h( ⃗v−k−1) for all k > 0. Since
⃗u 6= ⃗v, fix an integer m < −1 such that um 6= vm. Also, since h = i−1◦E , by Lemma 5, we

have g(uk, h( ⃗uk)) = h( ⃗uk+1) for all k ≤ −2. Set k = m. Then, g(um, h( ⃗um)) = h( ⃗um+1)
and g(vm, h( ⃗vm)) = h( ⃗vm+1) which is not possible since h( ⃗uk) = h( ⃗vk) for all k ≤ 0 and
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g(·, x) is invertible for all x ∈ X. Therefore H is invertible and a homeomorphism since
it’s a mapping between two compact Hausdorff spaces. Thus H :

←−
U →

←−
XU is a causal

embedding. ■

Remark 5. In applications of driven systems, the inputs are generally restrictive and
they may be drawn only from a subset of the left-infinite sequences←−U . When inputs are
restricted to a subset of←−U , then it may be possible that Hk( ⃗u) =

(
h(r(k−1) ⃗u), · · · , h(r ⃗u), h( ⃗u)

)
embeds the subset of ←−U into Xk

U , where Xk
U is the space obtained by the product of k

copies of XU . An example arises when the input originates from another autonomous
dynamical system, i.e., the input is restricted to be a left-infinite orbit from T : U → U ,
where T is a homeomorphism. In this case, it is shown in [11] the existence of a
causal embedding H along with g(·, x) : U → X being invertible implies that the map
H2( ⃗un) := (h( ⃗un−1), h( ⃗un)) embeds all left-infinite orbits of T in XU×XU , and H2 is also
a topologically conjugacy between the single-delay lag dynamics of the driven system and
T i.e., there exists a map GT : (xn−1, xn) 7→ (xn, xn+1) that is conjugate to T .

Lemma 5. Consider a compactly driven system g. Then g induces a universal semi-
conjugacy h :

←−
U → XU if and only if g has the USP. Further, h = i−1 ◦E, where E is the

encoding map, and i : x 7→ {x}. On the other hand suppose h :
←−
U → XU is a surjective

function so that the diagram in (5) commutes without being necessarily continuous then
such an h is actually not continuous when g does not have the USP.

Proof. Assume g has the USP and then we will show that h = i−1 ◦ E is the
universal semi-conjugacy. Since E takes values in SX , the function i−1 ◦E is well-defined.
Let h( ⃗u) = i−1(E( ⃗u)). By definition of E , we find (the required commutativity in the
diagram in (5)):

gv ◦ i−1 ◦ E( ⃗u) = i−1 ◦ E( ⃗uv),

= i−1 ◦ E(σv( ⃗u)).

By definition of XU , i−1 ◦ E :
←−
U → XU is surjective and E :

←−
U → HX is continuous

whenever g has the USP (see Remark 2). The function i is continuous as it is an
isometry, and therefore i−1 ◦ E is continuous. Hence, i−1 ◦ E :

←−
U → XU is a universal

semi-conjugacy.

We next derive an expression for E( ⃗u) when h :
←−
U → XU is surjective, and is not

necessarily continuous but satisfies h ◦ σv = gv ◦ h (the commutativity in the diagram in
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(5)). For any ⃗u ∈
←−
U fix a ū whose left-infinite sequence is ⃗u. We deduce

E( ⃗u) = dH - lim
j→∞

ϕū(0,−j,X),

(Lemma 4)
= dH - lim

j→∞
ϕū(0,−j,XU),

= dH - lim
j→∞

ϕū(0,−j, h(
←−
U )), (since h is surjective)

= dH - lim
j→∞

gu−1 ◦ · · · ◦ gu−j
◦ h(
←−
U ), (by definition of ϕū)

= dH - lim
j→∞

gu−1 ◦ · · · ◦ gu−j+1
◦ h(
←−
U u−j) (since gu−j

◦ h( ⃗w) = h( ⃗wu−j)),

= dH - lim
j→∞

h(
←−
U u−j · · ·u−1), (applying gu−k

◦ h( ⃗w) = h( ⃗wu−k) repeatedly)

= dH - lim
j→∞

h({( ⃗wu−j · · ·u−1}) : ⃗w ∈
←−
U }). (24)

We note that in the above deduction without assuming the continuity of h, we have
shown that for each j, the set {h( ⃗wu−j · · ·u−1}) : ⃗w ∈

←−
U } is compact since it is equal

to ϕū(0,−j,X). Since the Kuratowski and the Hausdorff limit coincide for a sequence of
compact subsets in a compact space X, by (7), we use that in (24) to obtain

E( ⃗u) =

x ∈ X

∣∣∣∣∣∣ for all open neighbourhoods U of x,
U ∩ h({( ⃗wu−j · · ·u−1) : ⃗w ∈

←−
U }) 6= ∅ for large enough n

 . (25)

Suppose if there are two distinct points x1 and x2 of XU in E( ⃗u). It follows from (25)
that there exist two disjoint neighborhoods of U1 and U2 in XU of x1 and x2 respectively
that intersects h({( ⃗wu−j · · ·u−1 : ⃗w ∈

←−
U )) for all j > J . Now, this is possible only when

h is not continuous at ⃗u. For if, h is continuous, we can find a neighborhood V of h( ⃗w)
that is disjoint from at least one of these neighborhoods U1 and U2 and

h({ ⃗wu−j · · ·u−1 : ⃗w ∈
←−
U }) ⊂ V (26)

for large enough j. Note that the set inclusion in (26) holds for all large j since ←−U is

metrizable (e.g., d( ⃗u, ⃗v) :=
−1∑

i=−∞

dU(ui, vi)/2
|i| is a metric) and { ⃗wu−j · · ·u−1 : ⃗w ∈

←−
U }

can be made to be contained in any open ball of radius δ > 0 centered at ⃗u for all j
sufficiently large. So we have proved if the commutativity in the diagram in (5) holds,
then E( ⃗u) ∈ SX (i.e., g has the USP) if h is continuous, and also suppose E( ⃗u) /∈ SX

(i.e., suppose g does not have the USP) then h is discontinuous. ■.

Proposition 1. Consider a compactly driven system g. Suppose there exists a surjective
mapping H :

←−
U →

←−
XU so that (6) commutes without being necessarily continuous, then

H is actually discontinuous when g does not have the USP.
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Proof. Let
H( ⃗u) = (· · · , θ2( ⃗u), θ1( ⃗u)), (27)

where θi :
←−
U → XU is some function. Since H is surjective, any θi is also surjective. If

the diagram in (6) commutes, then g̃v ◦H = H ◦σv which implies π1 ◦ g̃v ◦H = π1 ◦H ◦σv

for the coordinate projection π1. Using (27), it follows from (6) that π1 ◦ g̃v ◦H = gv ◦ θ1
and π1◦H ◦σv = θ1◦σv. So we have gv ◦θ1 = θ1◦σv. So, if for all ⃗u, gv ◦θ1( ⃗u) = θ1◦σv( ⃗u)
holds, then by setting h = θ1 the commutativity in (5) holds. By Lemma 5, this forces θ1
to be discontinuous since we have assumed that g does not have the USP. When we have
the product topology on←−XU , H is continuous if and only if all of its factor or coordinates
maps are continuous. Here θ1 is discontinuous, and hence H is discontinuous. ■.

5 Solution-Map as an Embedding

When a driven system g induces a causal mapping, then by Theorem 2, g has the USP,
and hence the solution-map Ψ is well-defined. Here, we show that Ψ is a continuous
mapping and an embedding when H is a causal mapping and a causal embedding, re-
spectively. The continuity of Ψ, of course, means close-by inputs are mapped to close-by
solutions – robustness to noise of the driven system when it has the USP. The continuity
of the solution-map Ψ when X is a compact subset of RN is known as the fading memory
property in some literature [20, 9].

Theorem 3. Let g be a compactly driven system that has a causal mapping (see (22)).
Then the solution-map Ψ : U → X is continuous and is given by

Ψ(ū) = (. . . , h( ⃗u−1), h( ⃗u), h( ⃗u1), . . . ), (28)

where h( ⃗ur) is the rth component of Ψ(ū) and h( ⃗u) is the 0th component. If further, a
causal embedding H exists then the solution-map Ψ : U → X is an embedding.

Proof. Fix ū. By Theorem 2, g has the USP since it has a causal mapping. Next, g
has the USP if and only if the encoding map E takes values in SX and hence h = i−1 ◦ E
is well-defined on ←−U . Therefore, h( ⃗uk) = i−1 ◦ E( ⃗uk) is the value of the solution at
time k. Hence Ψ(ū) is as in (28). It is continuous since the coordinate functions are all
continuous in view of Lemma 5.

To show that Ψ is an embedding, we prove that Ψ : U → XU is a homeomorphism. First,
we shall show that Ψ is injective. Suppose Ψ(ū) = Ψ(v̄) for some ū 6= v̄. Since ū 6= v̄
there exists an k ∈ Z such that uk 6= vk. This would imply H( ⃗uk) 6= H( ⃗vk) and this is
a contradiction since H :

←−
U →

←−
XU is a homeomorphism as it is a causal embedding.

Hence Ψ is injective. The causal embedding H :
←−
U →

←−
XU is continuous and surjective.

Note that the solution-map Ψ : U → X is related to H by πk(Ψ(ū)) = π1(H( ⃗uk)).
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Since H and π1 are continuous and surjective, the coordinate maps of Ψ are all both
continuous and surjective. Hence Ψ : U → XU is continuous and surjective as well. Since
a continuous bijection between Hausdorff spaces is a homeomorphism, Ψ : U → XU is a
homeomorphism. ■

We next present a result to bring out another significant role of the USP by examining
a stability notion that can be defined even when g does not have the USP. Here, we are
interested not in how a single-valued mapping like h or H behaves but rather in how the
collection of solutions behave as a function of the input. More precisely, where multiple
solutions can emerge for an input ū, we define the set-valued map ū 7→ {Xn(ū)}. By
Lemma 1, x ∈ Xk(ū) if and only if there exists a solution {xn} for the input ū such that
xk = x. We would be interested in examining the continuity of the mapping ū 7→ {Xn(ū)}
when g does not have the USP. The nth coordinate of this mapping is given by E( ⃗un).
Hence it is sufficient to consider the continuity of the mapping ⃗uk 7→ E( ⃗uk) when the
product topology is employed. So the continuity of E reflects on whether small changes
in ⃗u would result in a ‘proportionate’ response in the ensemble of solution values and
not a single solution – a notion of input related stability as defined next in Definition 6.

Definition 6. Let g be a driven system and E be the encoding map. If E :
←−
U → HX is

continuous (HX is equipped with the topology generated by the Hausdorff metric) then
we say g has the global-input related stability (GIRST).

The local continuity of E is addressed in [12]. Here, we consider the global continuity of
E and show that the USP of g is equivalent to g having the GIRST for a class of systems.
The proof of Proposition 2 is an adoption of the result [12, Theorem 1] but we are able
to show that with fewer hypotheses on g. We also note that we do not need compactness
on U to prove the result.

Proposition 2. Consider a driven system g. Suppose g has the USP, then g has the
GIRST. Conversely, if g has the GIRST and is such that it also has precisely one solution
for at least one input ū ∈ U , then G has the USP. In particular, if g has precisely one
solution for some input ū, then the GIRST and the USP are equivalent.

Proof. (USP =⇒ GIRST). We know that the map E :
←−
U → HX is continuous when

g has the USP since E is upper-semicontinuous (by Lemma 2) and taking values in SX

(by Remark 2).

(GIRST =⇒ USP). When g has the GIRST and has exactly one solution for some input
v̄, then fix v̄. Assume that there exists an input ū that has two different solutions. That
is there exists an k ∈ Z such that E( ⃗uk) contains at least two elements of X. Without
loss of generality, let k = 0. Hence the encoding map E evaluated at ⃗u is bounded away
from all singleton subsets of X, i.e., r := infy∈SX dH(E( ⃗u), y) > 0.

We next define a family of left-infinite sequences { ⃗wn}n∈N using v̄, where each left-infinite
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sequence in the family ⃗wn := (. . . , v−2, v−1, u−n, . . . , u−2, u−1). Since, the first n elements
of ⃗wn are identical to that of ⃗u, ⃗wn → v since ←−U is equipped with the product topology.
Let w̄n and v̄ be any fixed choice of the right-infinite extension of ⃗wn and ⃗v respectively
so that the time-indices are preserved, i.e., the −1th element of v̄ is v−1 and the (−n−1)th

element of w̄n is v−1. Thus,

E( ⃗w−n
n ) =

⋂
j>0

ϕw̄n(−n,−j,X) =
⋂
j>0

ϕv̄(0,−j,X) = E( ⃗v), (29)

By our hypothesis, E( ⃗v) ∈ SX , so in view of (29), E( ⃗w−n
n ) ∈ SX for all n ∈ N.

When E( ⃗wn) ∈ SX it follows from the definition of the positive real r above that
dH(E( ⃗u), E( ⃗wn)) ≥ r > 0 for all n. This implies En( ⃗wn) does not converge to E( ⃗u)
although we had ⃗wn → ⃗u. This contradicts our assumption that E( ⃗u) is continuous at
⃗u, and hence also contradicts the hypothesis that g has the GIRST. ■

6 Conclusions

Often while collecting data from natural systems and in other examples in the human-
made world, one does not have access to the full states of a complicated system. If one has
to forecast data from such systems, one could model the unobserved states as stochastic
quantities. Alternatively, if the data is mapped onto a higher-dimensional space through
a time-delay observation map, the unobserved coordinates of the data source may get
revealed. For instance, if the observed data is a partial scalar observable of motion along
an attractor of a smooth dynamical system, Takens embedding could hold. Discrete-
time state space models that map input data onto a higher dimensional space can also
embed attractors [22] and also help in information processing tasks that involve more
general inputs, and have the state-of-the-art status for many applications. At the heart
of every discrete-time state space model is a driven dynamical system. In this paper, we
have shown that if the input originates from a compact space, and if every input entails
exactly one solution, i.e., if the driven system has the unique solution property, then it
is equivalent to representing information without distortion, which we have formalised
through the existence of the causal mapping. In particular, if the driven system has the
unique solution property and is also invertible for each fixed state-variable, it induces
an infinite-delay observable through which one can obtain the coordinate mappings of
a function (a causal embedding) that embeds sequential data contained in a compact
input space in the solution space of driven system’s state space. Like the essence of a
conjugacy in Takens embedding, the causal embedding ensures that the dynamics on the
nonautonomous attractor in the driven system’s state space is topologically conjugate to
that in the corresponding input sequence. The possibility of a causal embedding sheds a
new and sharp light on the question of whether one could move towards temporal data
processing without loss of information in the field of reservoir computing. When this
happens, we believe the field would be put on a more appropriate foundation than it had
before.
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Also, the results are general, and any driven dynamical system with specific properties
can give rise to a causal mapping. This also answers why random choices of driven
systems actually work in information processing methods in [4, 5], and several thousands
of other publications that have followed.

On a separate front, when a driven system models a continuous perturbation of an
irreducible attracting set of an autonomous dynamical system, we provide sufficient and
necessary conditions for a uniform attractor to emerge. In a future work, we intend
to extend all the results in this paper to the continuous time-setting when actually the
product spaces are not metrizable.
Acknowledgements The author sincerely thanks the referees for several suggestions on
improving the presentation in the paper. The research was supported by the National
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