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1 COMBINATORIAL FIXED POINT THEORY
Sperner’s lemma presented in the seminal work [Sperner (1928)] can be considered as the combinatorial
analog of fixed point theory. The discrete Sperner’s lemma [Sperner (1928)] can be connected to traditional
fixed point theories such as Brouwer’s fixed point theorem [Brouwer (1911)] as shown for example in the
proof contained in [Henle (1979)]. Recently there have been several developments in the extension of this
lemma generalising the theorem to more sapces. A major advancement was accomplished by De Loera,
Peterson and Su [De Loera et al. (2002)] where they proved the Atanassov conjecture [Atanassov (1996)]
which states that for any polytope with N vertices there are N − n simplices that receive a complete
set of Sperner labels. Meunier et. al. [Meunier (2006)] further extended this theorem and more recently
Musin [Musin (2015)] extended the theorems to a large class of manifolds with or without boundary. The
theorems by Meunier and Musin allow us to extend Sperner’s lemma to a simplicial complex built in a
(n+ 1)-dimensional non-euclidean space. The relation between the smooth and discrete fixed point theories
is demonstrated visually in Fig. S1.

2 THEORY OF SIMPLICIAL HOMOLOGY GLOBAL OPTIMIZATION
The recently developed simplicial homology global optimization (SHGO) method allows us to apply
powerful theorems from the field of algebraic topology to the numerical field of global optimization
[Endres et al. (2018)] in order to provide insights into understanding both the topology and rigid geometry
of objective function hypersurfaces. In this context we define a general optimization problem of the form:

min
x

f(x)

s.t. g(x) ≥ 0 (S1)

the Lipschitz continuous real objective function f : Rn → R maps a vector of dimension n to a scalar
value. The parameter set x (also called decision variables in this context) are assumed to be bounded. The
vector-valued function g maps the set of constraints g : [l,u]n → Rm, for example if lower and upper
bounds li and ui are implemented for each variable then we have an initially defined hyperrectangle

x ∈ Ω ⊆ [l,u]n = [l1, u1] × [l2, u2] × . . . × [ln, un] ⊆ Rn (S2)

where Ω is the limited feasible subset excluding points outside the bounds and constraints.

Ω = {x ∈ [l,u]n | gi(x) ≥ 0, ∀i = 1, . . . ,m} (S3)

A key construction involves a simplicial complex approximationH of the objective function hypersurface
f : Rn → R found using a triangulation K of (arbitrary, but intelligently chosen) sampling points P on
the objective function hypersurface. This construction maps a special directed simplicial complex defined
by a composition mapping h ◦ f : P → H. We can then use the construction H in two key applications
involving (i) the Invariance of the objective function surface which describes a homological group (and in
particular the rank of the homology groups Hi(H)) and (ii) the computation of locally convex sub-domains
containing one or more minima of the objective function which allows for the generation of sub-problems
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that can be solved using local optimization methods. These concepts are used in order to understand both
the topology and the geometry of the problem described in S1 which in turn leads to efficient algorithms
for computing the global minima f∗ and the optimal parameter set x∗. An overview of how these concepts
are related can be demonstrated in the following diagram:

Hi(H),Hi(S) Invariance

f H S f∗,x∗

{x|∀xi ≤ ∂C(Hk)(Hi(x) ≥ 0)} ∇f(X) = 0̄

h◦f :P→H

Sperner ∂Ci(H)

H∼=K
k:K→S

Simplicial homology

Eilenberg-Steenrod Axioms[1]

Finite cardinality

DEC[2]

MVT[3]

∀i(Hi(H)∼=Hi(S))

Sets of solutions

1. Eilenberg-Steenrod Axioms Eilenberg and Steenrod (1952)
2. Discrete Exterior Calculus
3. (Discrete) Mean Value Theorem

The mapping h ◦ f The mapping h defines the constructions used to build the simplicial complex
H on the hypersurface f from which we compute the cardinality of the homology groups. The set
of all 0-chains H0 := P is the set of all vertices of H built from the set of feasible sampling points
P = {x ∈ X | g(x) ≥ 0}. The simplicial complexH is constructed by a triangulation connecting every
vertex in H0. The set H1 is constructed by directing every edge. The edge is directed as vivj from vi
to vj iff f(vi) < f(vj) so that ∂ (vivj) = vj − vi. Similarly an edge is directed as vjvi from vj to vi iff
f(vi) > f(vj) so that ∂ (vjvi) = vi−vj . We let the higher dimensional simplices ofHk, k = 2, 3, . . . n+1
be directed in any arbitrary direction (it is only important they are assigned some direction) which completes
the construction of the complex h ◦ f : P → H. We can now useH to find the minimiser pool for the local
minimisation starting points used by the algorithm:

DEFINITION 1. A vertex vi is a minimiser iff every edge connected to vi is directed away from vi, that is
∂ (vivj) = (vj 6=i − vi) ∨ 0 ∀vj 6=i ∈ H0. The minimiser poolM is the set of all minimisers.

This definition of a minimiser in this context is a strictly discrete approximation and should not be
confused with the exact solutions x∗ that are sometimes referred to as minimisers in literature. The
cardinality of the set M has an important equality with the rank of the homology groups Hi(H) as
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described in [Endres et al. (2018)] and can be computed efficiently without the need to explicitly compute
all the homology groups of the surface.

Since the equality described in the previous paragraphs allows for a fast computation of the rank of the
homology groups Hi(H) we can use to invoke Invariance theorems from algebraic topology. A persistent
challenge in optimization is the presence of so-called ”valleys” in non-convex functions epitomised by
the popular Rosenbrock function Rosenbrock (1960). A related issue is the presence of a sub-domain of
containing an infinum of ”equally good” solutions. In our approach we address this issue by relaxing the
assumption that S1 contains a minimum, and instead contains one or more infima (including sub-domains
that possibly contain an infinite number of solutions), this statement is written as follows:

inf
x

f(x)

s.t. g(x) ≥ 0 (S4)

LEMMA 1. The Invariance extends to hypersurfaces containing non-finite sub-domains containing an
infinum of f by replacing 1 with the following definition:

DEFINITION 2. A 1-chain of C(H1) is a minimiser iff it contains a 1-chain C(H1) where for every
alternating vertex vi in the 1-chain, every edge connected to vi is directed away from vi, that is ∂ (vivj) =
(vj 6=i − vi) ∨ 0 ∀vj 6=i ∈ H0. The minimiser poolM is the set of all minimisers.

Proof: Note that the algebraic groups Hk(H) ∼= Hk(K) ∼= Hk(S) ∀k ⊂ Z are closed groups by
definition, therefore only the addition of new elements in the group affect the rank of the groups. The
groups H0(H) ∼= H0(K) ∼= H0(S) are known to contain just two elements (all the cycles with an even
number of vertices and all the cycles with an odd number of vertices) and are therefore homologous to the
groups Theorem 1 (refer main document). Let C(Hk) be a k-chainHk and let C1, C2 ∈ C(H1) be any two
1-chains. Since ∂ (C1 + C2) = ∂ (C1) + ∂ (C2) we do not add additional elements that can increase the
rank of the groups H1(H) ∼= H1(K) ∼= H1(S) by refining either of the chains C1, C2. Similarly groups
with k > 1 remain unchanged and therefore have an equivalent invariance. Thus we have simply extended
the concept of a finite point, or vertex, containing a minimum to a larger sub-domain of higher dimensional
objects. This sub-domain is, in general, still contained in Euclidean Rn space since the star of the chain
contains one or more n-simplices.

3 DIFFUSION COEFFICIENT IN IVIM
One of the motives of IVIM is to improve the estimation of the diffusion coefficient (D) as the diffusion
acquisition is susceptible to both diffusion and blood microcirculation. In this scenario, IVIM can be
perceived as a correction mechanism to improve the fitting of D by disentangling the perfusion (pseudo-
diffusion) effect at lower b-values in the acquisition. It is important to note that, the primary purpose of
IVIM is to focus on the estimation f and D∗ parameter. However, the estimation of D is generally stable
across all methods as depicted in Fig. S2. As it can be seen in the simulated and real data in the results
section of the main text, overfitting for the parameter D leads to fluctuations in the parameters D∗ and f .
TopoPro on the other hand, finds an optimal trade-off in the estimation of all parameters: D, D∗ and f .

4 FIGURES
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Figure S1: A smooth vector field, such as a gradient field, can be approximated by a triangulation of
sampling points in this field. After labeling each vertex to be associated with an n + 1 direction in the
vector field it becomes possible to search for a Sperner labeling. This special type of labeling represents a
combinatorial analogue of a fixed point (local optimum). Within each Sperner labeling a fixed point in the
approximated smooth field is guaranteed to be found through Brouwer’s Theorem.

Figure S2: The above bar chart depicts the normalized root mean squared errors from fitting the phantom at
Signal-to-Noise Ratios 2, 5, 10, 20 and 50 in the estimation of Diffusion Coefficient: D. Note that the errors
across different methods have similar order of 10−2, showing stability for all methods in the estimation of
D. However as we saw in the main document stability for D∗ and f is only guaranteed using TopoPro.

REFERENCES

Atanassov, K. (1996). On sperner’s lemma. Studia Scientiarum Mathematicarum Hungarica 32, 71–74
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