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In this numerical work, the cooling performance of water–Al2O3 nanofluid (NF) in a novel
microchannel heat sink with wavy walls (WMH-S) is investigated. The focus of this article is
on the effect of NP diameter on the cooling efficiency of the heat sink. The heat sink has four
inlets and four outlets, and it receives a constant heat flux from the bottom. CATIA and
CAMSOL software were used to design the model and simulate the NF flow and heat
transfer, respectively. The effects of the Reynolds number (Re) and volume percentage of
nanoparticles (Fi) on the outcomes are investigated. One of the most significant results of
this work was the reduction in the maximum and average temperatures of the H-S by
increasing both the Re and Fi. In addition, the lowest Tmax and pumping power belong to
the state of low NP diameter and higher Fi. The addition of nanoparticles reduces the heat
sink maximum temperature by 3.8 and 2.5% at the Reynolds numbers of 300 and 1800,
respectively. Furthermore, the highest figure of merit (FOM) was approximately 1.25, which
occurred at Re � 1800 and Fi � 5%. Eventually, it was revealed that the best performance
of the WMH-S was observed in the case of Re � 807.87, volume percentage of 0.0437%,
and NP diameter of 20 nm.
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INTRODUCTION

Advances in technology and electronic devices have posed a formidable challenge for related
industries. Increasing the power of electronic devices in many cases causes them to heat up; in some
cases it reduces the performance of the devices and, in certain circumstances, causes the electronic
devices to fail. Hence, it is of absolute necessity to cool this equipment properly. The application of
electronic equipment in devices such as cellphones and tablets in a small space has caused heat
transfer to occur in a tiny space. CPUs are one of these electronic devices and cooling them is
required in all of the abovementioned devices. As their computing power enhances, the generated
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heat increases, and as a result, they need to be cooled down by
heat sinks (H-Ss) to prevent the reduction in their performance
(Ghani et al., 2017; Sohel Murshed and Nieto de Castro, 2017;
Bahiraei and Heshmatian, 2018a; Ahmed et al., 2018; Pordanjani
et al., 2021). Owing to the tiny size of the CPUs, it is necessary to
employ micro-heat sinks (MH-Ss) in this regard. In MH-Ss, the
fluid flows in the microchannels and cools the H-S and
consequently the electronic equipment. The growing needs of
industries for MH-Ss with increased cooling capacities has led to
an increment in studies in recent decades (Tullius et al., 2011;

Shalchi–Tabrizi and Seyf, 2012; Mohammed Adham et al., 2013;
Sohel et al., 2015; Kumar et al., 2018). So far, particularly in recent
years, several researchers have conducted various studies on the
analysis of cooling devices (Bagherzadeh et al., 2019; Ahmadi
et al., 2020a; Peng et al., 2020; Shadloo et al., 2020; Safdari
Shadloo, 2021). In one of these studies, Kumar and Singh
(2019) numerically inspected the influence of inlet and outlet
on the thermal performance of an H-S. They studied an H-S
comprising some parallel microchannels and utilizedH2O to cool
it. Their simulation results demonstrated that augmenting the Re

FIGURE 1 | General scheme of the problem.

FIGURE 2 | Boundary conditions applied to the problem geometry and thermophysical properties of H2O and Al2O3 NPs.

Frontiers in Energy Research | www.frontiersin.org November 2021 | Volume 9 | Article 7693742

Khetib et al. Simulation of Alumina–Water Nanofluid

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


raises the pressure drop (ΔP) in the H-S. Furthermore, they also
found that increasing the volumetric flow rate of the fluid
decreased the thermal resistance of the H-S.

In general, researchers have used both numerical and
experimental methods for their studies in the field of fluid
mechanics (Kalbasi et al., 2019; Guan et al., 2020; Hu et al.,
2020; Giwa et al., 2021; Hu et al., 2021). The use of experimental
methods is reliable, but costly. In many numerical studies,
validation has been done by the comparison of the numerical
results with experimental data, and as a result, experimental work
has been expanded (Esfe et al., 2018; Hemmat Esfe et al., 2018;
Bahrami et al., 2019; Pordanjani et al., 2019; Zheng et al., 2020).
Numerical research is less expensive than laboratory work and
can be done in less time (Afrand et al., 2014; Osman et al., 2019;
Ahmadi et al., 2020b; Sokhal et al., 2021).

In a myriad of conducted studies, NFs have been used to cool
down different types of heat devices (Aybar et al., 2015;
Ghodsinezhad et al., 2016; Sharifpur et al., 2016; Awais and
Kim, 2020; Irandoost Shahrestani et al., 2020). NFs exhibit
higher thermal conductivity than simple fluids (Toghyani
et al., 2019; Vahedi et al., 2019; Ghalandari et al., 2020; Yan
et al., 2020; Pordanjani and Aghakhani, 2021). Numerous articles
have recommended the application of nanotechnology in the
industry (Hajatzadeh Pordanjani et al., 2019; Zhang et al., 2020;
Handschuh–Wang et al., 2021; Tian et al., 2021; Wang et al.,
2021). In this regard, studies by Ambreen and Kim (2020), Wu
et al. (2016), Alfaryjat et al. (2018), and Arani et al. (2017) can be
referred. In one of these research studies, Bahiraei and
Heshmatian (2018b) examined the influence of the presence of
hybrid NFs on the performance of a rectangular H-S. They
examined a heat sink comprising four similar sections, each
containing five microchannels ,and a fixed thermal flux of
100W/cm2 applied on the bottom of the H-S. Their
simulation results demonstrated that increasing the NF
velocity from 1 to 3 m/s decreased the TMax of the H-S to
approximately 313 K. However, they indicated that increasing
the velocity greatly increased the power required to pump the
fluid. In several studies, wavy walls have been used instead of
smooth walls for micro-channels. Using this type of wall can
enhance heat transfer (Arani et al., 2017; Nguyen et al., 2019;
Alihosseini et al., 2020).

Nanoparticles (NPs) can be made in different dimensions in
nanoscale. Many NPs have different dimensions. Alumina
NPs, one of the most widely used NPs, are produced in
various dimensions. The dimensions of the NPs can affect
the thermal conductivity and viscosity of the NF. However, few
researchers have considered the effect of the NP diameter on
heat transfer, especially in heat sinks. Owing to the importance
of cooling electronic devices, particularly CPUs in various
functional devices, this article numerically studied a new
H-S. This H-S had four similar sections where the fluid
entered through 4 inlets and exited out of 4 outlets. In
order to improve heat transfer, NFs were employed for
cooling, and microchannels with wavy walls (WW) were
also considered. The model used for single-phase viscosity
and thermal conductivity also depended on the diameter of the
nanoparticles (NPs),and its influence on the thermal
performance of the WW in H-S has also been investigated.
An innovation of this study is to use wavy channel walls in the
heat sink and to assess the effect of the nanoparticle diameter
on the thermal efficiency of a heat sink .

PROBLEM DEFINITION

The studied WMH-S, presented in Figure 1, had four inlets and
four outlets. This aluminum WMH-S comprised of four similar
sections. The height of the WMH-S was 0.5 mm and its overall
dimension was 18 × 6.2 mm. The dimensions of the heat sink
inlet are 1.8 mm, and the height of microchannels is 0.4 mm. A
0.2-mm-thick aluminum door is placed on the heat sink. Within
the WMH-S, nanomaterials, Al2O3/H2O NF with volume
percentages ranging from 0 to 5% flowed in a Re of 300, 800,
1,300, and 1,800. A constant heat flux, from the operation of an
electronic device, was applied on the bottom of the WMH-S. The
aluminum used in the heat sink has a thermal conductivity of
179.96W/m.K, a density of 2,712.6 kg/m3, and a heat capacity of
0.96 kJ/kg K (Kant et al., 2017).

GOVERNING EQUATIONS

The general equations governing the fluid flow within the H-S in
the single-phase form are as follows. These equations include the
conservation of mass, momentum, and energy. The fluid flow is
laminar and steady, and the fluid is an incompressible Newtonian
(Akbari et al., 2011).

∇.(ρ �v) � 0, (1)

ρ �v.∇ �v � −∇P + ∇.(μ∇ �v), (2)

TABLE 1 | Average temperature changes of heat sink for different elements at Re � 300 for Fi � 5%.

Number of Meshes×10−3 370 980 1,145 1,310 1,550 1820 2014

Heat sink average temperature 306.89 304.55 303.31 302.44 301.95 301.93 301.93

TABLE 2 | Average Nusselt number along the channel for the present work and
Ho and Chen (2013).

Re 135 390 655 915 1,300 1,530

Ho and Chen (2013) 6.07 7.71 10.12 12.14 13.15 13.63
Present work 5.88 7.43 9.72 11.83 12.82 13.43
%Err 3.1 3.6 3.9 2.5 2.5 1.4

Frontiers in Energy Research | www.frontiersin.org November 2021 | Volume 9 | Article 7693743

Khetib et al. Simulation of Alumina–Water Nanofluid

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


∇.(ρ �vcpT) � ∇.(k∇T), (3)

0 � ∇.(kaluminum∇T), (4)

where �v, T, and P are velocity, temperature, and pressure,
respectively. In the above equations, ρ represents density, k
thermal conductivity, cp specific heat, and μ viscosity of NF.
These properties are related to the NF and the following
equations are employed to calculate them

ρ � Fiρp + (1 − Fi)ρf , (5)

ρcp � (1 − Fi)(ρcp)f + Fi(ρcp)p. (6)

In the above-mentioned equations, the indices p and f refer to
the NPs and the base fluid, respectively. The NF viscosity was
calculated using the following equation, which is specific to the
Al2O3/H2O NF (Khanafer and Vafai, 2011).

μ � −0.4491 + 28.837
T

+ 0.574Fi − 0.1634Fi2 + 23.053
Fi2

T2

+ 0.0132Fi3 − 2354.735
Fi

T3
+ 23.498

Fi2

d2
− 3.0185

Fi3

d2
, (7)

where d is the diameter of the NPs in nanometers Fi is the
volumetric percentage of the NPs. The relationship of thermal
conductivity, which depends on the diameter of the NPs, was as
follows (Teng et al., 2010).

k

kf
� 0.991 + 0.253(100ω) − 0.001 T − 0.002d − 0.189(100ω)2 + 6.190

× 10−5T2 + 1.317 × 10−5d2 + 0.049(100ω)3 − 7.66 × 10−7T3, (8)

where ω is the mass percentage of NPs, and T is the temperature
in degree Celsius. The other properties of the fluid andAl2O3 NPs
are provided in Figure 2.

BOUNDARY CONDITIONS

Figure 3 shows the boundary condition of the problem. The
temperature values and boundary conditions at the inlet and
outlet of the heat sink are displayed in Figure 2. The properties of
water and NPs are also present in this figure. A constant flux of
100W/cm2 is applied to the bottom of the heat sink as shown.
According to Figure 2, the upper, front, and left walls of the heat

FIGURE 3 | Temperature contour of the H-S in for H2O and NF 2% in dissimilar Re.
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sink are insulated, and the symmetry boundary condition is
applied to the back and right walls.

NUMERICAL METHOD AND VALIDATION

For simulating the problem model, its geometry was first drawn
in CATIA software. In the next step, the mentioned geometry
was transferred to CAMSOL software. Next, an all-hexagonal
mesh was applied to the geometry. Then, by entering the
properties of NFs and other boundary conditions in this
software, the equations were solved and the necessary
simulations were performed using the finite element method.
The convergence criterion for Eqs 7–10 is considered. To
achieve a proper grid for geometry, many changes were made
to the number of elements. Finally it was found that these yield
the best results in terms of the solution time as well as the
accuracy of the results for the number of 1,550,000 elements.
The average temperature changes of the heat sink for the
number of different elements are given in Table 1 in the Re
� 300 for 5% nanofluid. The trend of the changes in the heat sink
average temperature shows the accuracy of selecting this
number of elements.

In order to validate the numerical solution, the results of the
present study were compared with some articles, one of which is
provided below. Thus, the average Nusselt number obtained from
the present work is compared with the experimental work of Ho
and Chen (2013) for different channel lengths (Table 2). It can be
observed that the amount of error between the present results and
those reported by Ho and Chen (2013) is less than 4%, indicating
that the present simulations are acceptable.

DATA REDUCTION

To assess the thermal performance of the H-S, it was of necessity
to investigate parameters such as the heat transfer coefficient
(HTC) and the pumping power PP. The convective HTC for the
H-S was defined as follows (Bahiraei and Heshmatian, 2017).

h � q″
TAve − Tmid

. (9)

Tmid can be obtained using Tin−Tout
2 , where Tin is the inlet

temperature and Tout is the outlet temperature. TAve is also
the average temperature of the H-S bottom and q″ represents
the thermal flux applied to the WMH-S.

FIGURE 4 | TMax at the bottom of the WMH-S for variations of Re, d, and Fi.
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In the following relations, two increased ratios of HTC and PP
are introduced.

PP � _QΔP, (10)

heff � (h − hf )
hf

× 100. (11)

In the PP relation, _Q indicates the volumetric flow rate of the
fluid and ΔP is the pressure difference on both sides of the H-S.

Other parameters can also be utilized to measure the thermal
performance of H-Ss. Two important parameters in evaluating
the performance of H-Ss are the thermal resistance and
temperature uniformity, the relationships of which are listed
below. The lower the two parameters, the better the
performance of H-Ss.

R � TAve − Tin

q″ , (12)

Theta � TMax − TMin

q″ . (13)

In the above equations, the indices Max and Min represent the
maximumandminimum temperatures on the lower surface of theH-S.

A parameter that is considered when using NFs in various
devices is the figure of merit (FOM), whose relationship is

presented below, indicates the ratio of convective HTC of NF
toH2O to theΔP of NF toH2O (Bahiraei andHeshmatian, 2017).

FOM � h/hf
ΔP/ΔPf

. (14)

RESULTS AND DISCUSSION

Figure 3 demonstrated the temperature contour of the WMH-S for
H2O and NF 2% in different Re. At low velocities of the fluid, it can
be seen that the fluid heated up at the beginning ofWMH-S and had
a low heat transfer in the end. As the fluid velocity increased, the
fluid with lower temperatures moved inside the WMH-S, and as a
result, cooling in the end of the WMH-S increased.

Figure 4 shows the TMax at the bottom of the WMH-S for
variations of Re, d, and Fi. As it can be observed, an intensification in
the Re always decreased the TMax. Faster passage of fluid through the
WMH-S improved cooling, thus, the heat transfer increased and the
WMH-S temperature got closer to the fluid temperature. Hence, the
TMax was also decreased. Increasing the Fi also reduced the TMax of
the WMH-S. The application of NF resulted in a higher thermal
conductivity of the fluid, which increased the heat transfer from the
WMH-S to the fluid. Therefore, it lowered the temperature of the

FIGURE 5 | Average temperature of the bottom of the H-S for variations of Re, d, and Fi.
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WMH-S. In the higher Fi, the TMax obtained using NF containing
small-sized NPs was lower, while in the low volume percentage, NF
containing large-sized NPs generated lower TMax. Both the viscosity
and the thermal conductivity depend on the temperature, the
volumetric percentage of the NPs, and the diameter of the NPs;
hence, in different volume percentages and temperatures, the effect of
NP diameter on the heat transfer could vary.

Figure 5 displays the average temperature of the bottom of the
H-S for variations of Re, d, and Fi. As it can also be observed, an
intensification in the Re diminished the average temperature in the
WMH-S and an intensification in the Fi decreased the average
temperature. As mentioned above, the increase in these two
parameters increased the heat transfer between the WMH-S and
the fluid, thus reducing the overall temperature of WMH-S and
making its temperature closer to the temperature of the fluid. The
changes in the average temperature varied based on the changes in
the NP diameter at different volume percentages. Of course, the
amount of these changes was far less than the temperature changes
with the Fi and Re. The average temperature appeared to be lower in
medium-sized NPs, especially at high volumetric percentages.

Figure 6 demonstrated the PP required to flow the fluid for
dissimilar values of Re, d, and Fi. The intensification in Re and,
consequently, the escalation in fluid velocity greatly increased the
PP. Increasing the ΔP, as well as the flow rate by increasing the Re,

raised the PP. An increase in the Fi also increased this parameter,
stemming from the increase in ΔP in the WMH-S. It can be seen
that the variations in the PP with the NP diameter were very small;
however, in a high-volume percentage, employing smaller NPs
resulted in the requirement of less PP. The use of smaller NPs
increased the viscosity, and consequently, the shear stress reduced.
As a result, the employment of smaller NPs slightly increased PP.

Figure 7 demonstrates the increase percentage in the HTC for
different values of Re, d, and Fi. Increasing the Re and the Fi
always increased the HTC. It was seen that growing the Fi
maintained the upward trend of increasing the HTC and
always increased it. However, with the intensification of the Re
in the high volume percentages of NPs, the increase in the HTC
was initially low, but in higherRe, the increasing trendwas steeper and
increased significantly; while in the low Fi, the increase in the Re
always created an increasing trend in theHTC. It was also noticed that
in high and low Re, the effect of addingNPs wasmore promising than
that in medium Re. Furthermore, the increase in the HTC was higher
for the average-sized NPs.

Figure 8 demonstrates the temperature uniformity on the
bottom of theWMH-S for dissimilar values of Re, d, and Fi. Here,
the intensification in the Re and the volumetric percentage of the
NPs reduced the Theta, indicating that the temperature at the
bottom of theWMH-S was uniform. The decrease in temperature

FIGURE 6 | PP required to flow the fluid for dissimilar values of Re, d, and Fi.
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FIGURE 7 | Increase in percentage in the HTC for different values of Re, d, and Fi.

FIGURE 8 | Temperature uniformity on the bottom of the WMH-S for dissimilar values of Re, d, and Fi.
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caused the temperature to be uniform in this part, stemming from
better heat transfer between the fluid and the solid walls. In the
average diameters of NPs, Theta was higher, meaning that the
larger diameter of NPs had better temperature uniformity.

Figure 9 shows the FOM for dissimilar values of Re, d, and Fi.
The best case for adding NPs in terms of heat transfer to ΔP was
in high Re such that the highest FOM was approximately 1.25,
which occurred in the Re of 1800 for 5% of the Fi. In higher Re, the
increase in HTC was greater than the increase in ΔP; while in
lower Re (300), the decrease in FOM was less than one, meaning
the ratio of increase in ΔP with the addition of NPs was higher
than the increase in HTC. Investigating the NP diameter
demonstrated that application of NPs with a larger size
resulted in a higher FOM.

CONCLUSION

In this article, a newWMH-S with five microchannels was simulated.
The walls of themicrochannels were wavy.H2O andAl2O3/H2ONF
were employed as the coolant. The model utilized for viscosity and
conductivity of the NF was related to the diameter of the NPs. With
the changes in the Re, the volumetric percentage of the NPs, and their
diameters, the thermal performance of the WMH-S was considered
and the main obtained results are as follows:

1) Increasing the Re and the percentage of NPs reduced the
maximum and minimum temperatures at the bottom of the
WMH-S.

2) Increasing the diameter of the NPs at a higher Fi increased the
TMax of the WMH-S, while those at a low volume percentage
reduced it. The addition of nanoparticles reduces the heat sink
maximum temperature by 3.8 and 2.5% at the Reynolds
numbers of 300 and 1800, respectively.

3) With increasing the Re and volume percentage, more PP was
required. Thus, the cost of PP also increases.

4) In high percentages of NPs, the increase in the size of NPs also
raised the PP.

5) The HTC augmented with increasing Re and Fi.
6) The temperature uniformity increased with the intensification

of Re and the volumetric percentage of NPs, and its thermal
resistance decreased.

7) The highest FOM was approximately 1.25, occurring in high
Res and volume percentages of NPs.
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