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Noncommunicable diseases, such as type 2 diabetes (T2D), place a burden on healthcare
systems worldwide. The rising prevalence of obesity, a major risk factor for T2D, is mainly
attributed to the adoption of Westernized diets and lifestyle, which cause metabolic
dysfunction and insulin resistance. Moreover, diet may also induce changes in the
microbiota composition, thereby affecting intestinal immunity. The critical role of
intestinal immunity and intestinal barrier function in the development of T2D is
increasingly acknowledged, however, limited studies have investigated the link between
intestinal function and metabolic disease. In this review, studies reporting specific roles of
the intestinal immune system and intestinal epithelial cells (IECs) in metabolic disease are
highlighted. Innate chemokine signaling, eosinophils, immunoglobulin A (IgA), T helper (Th)
17 cells and their cytokines were associated with obesity and/or dysregulated glucose
homeostasis. Intestinal epithelial cells (IECs) emerged as critical modulators of obesity and
glucose homeostasis through their effect on lipopolysaccharide (LPS) signaling
and decontamination. Furthermore, IECs create a link between microbial metabolites
and whole-body metabolic function. Future in depth studies of the intestinal immune
system and IECs may provide new opportunities and targets to develop treatments and
prevention strategies for obesity and T2D.

Keywords: intestinal immune system, intestinal barrier function, type 2 diabetes, obesity, leaky gut, intestinal
epithelial cells
1 INTRODUCTION

Non-communicable diseases (NCDs) such as type 2 diabetes (T2D), are a leading cause of morbidity
and mortality, with increasing incidence in the developing world (1). In 2019, approximately 463
million adults were living with diabetes worldwide, and this number is said to increase to 700
million by 2045 (2). Sub-Saharan Africa has the highest proportion of undiagnosed diabetes cases in
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the world (~60%) and it is estimated that 73% of deaths due to
diabetes occur in individuals younger than 60 years. Projections
indicate that diabetes prevalence in Africa will increase by 143%
over the next 24 years (2), the most significant increase globally.

The rising T2D prevalence in Africa is mainly attributed to
obesity and rapid urbanization, which is associated with the
adoption of unhealthy lifestyles, characterized by energy-dense
diets and physical inactivity. The fundamental role that diet plays
in human health and well-being is appropriately expressed by the
phrase “We are what we eat”, derived from the original quote in
French “Dis-moi ce que tu manges et je te dirai qui tu es” (“Tell
me what you eat: I tell you who you are”) that has been traced
back to Jean Anthelme Brillat-Savarin and a book, which was
first published in 1826 (3, 4). An unhealthy diet is arguably the
greatest modifiable risk factor for obesity and T2D (5, 6). The
westernized diet, which is a high caloric diet characterized by a
high fat and high sugar content (7), leads to chronic subclinical
inflammation, which, in turn, has been associated with obesity
and T2D (8–11). Several lines of evidence demonstrate that
overnutrition leads to adipocyte dysfunction and inflammation,
which are considered primary mechanisms linking diet to
metabolic disease (6, 12, 13).

In recent years, the role of the intestine in the development of
obesity and T2D is increasingly recognized. Studies conducted in
various animal models provide convincing evidence that
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inflammation originates in the intestine due to the modulation
of gut barrier function leading to metabolic endotoxemia (14–18).
Metabolic endotoxemia refers to a diet-induced 2-3 fold increase
in gut-derived plasma lipopolysaccharide (LPS) level (14), which
may result in low-grade systemic and tissue inflammation,
contributing to a metabolic disease phenotype (14, 15, 19–22).
Metabolic endotoxemia is indicative of decreased intestinal
epithelial barrier function, also referred to as “leaky gut”
syndrome (Figure 1), which allows undesirable luminal
immunogens, such as LPS, but also bacterial DNA and RNA
and to some degree viable bacteria, to cross into the blood and
lymphatic system (14, 29). Accordingly, studies have detected
high levels of gut-derived bacterial products in the blood of obese
and diabetic patients (30, 31). The intestinal barrier has since
proved to be altered by additional factors including food
additives (such as emulsifiers and artificial sweeteners), and
contaminants (such as mycotoxins), which may in addition
affect and/or change microbiota composition (32, 33).

Although many studies have reported on the role of
microbiota in obesity and T2D, these mainly focused on
characterization of microbiota composition and diversity in
response to diet, disease and treatment (18, 23–28). Studies
investigating causal relationships between microbiota and
metabolic effects are lacking due to the complexity of host-
microbe interactions (34–36). Emerging evidence, although scant
FIGURE 1 | The role of intestinal barrier dysfunction and leaky gut syndrome in metabolic disease. A high fat and/or westernized diet affects and/or changes
microbiota composition. Microbiota composition was associated with metabolic diseases in a large number of studies that investigated these in conjunction with
metabolic outcomes, such as increased or decreased body weight, changes in glucose metabolism and effects on metabolically active tissues such as adipose
tissue, liver and muscles (grey arrows) (18, 23–28). However, increasingly research is focusing on the role of the leaky gut, particularly investigating the role of the
intestinal barrier and its different layers, including chemical, physical and immunological barriers (see insert), as mediators of interactions with diet and microbiota in
the development of metabolic diseases (red arrows). Studies in this area are relatively limited, but this review summarizes compelling evidence for a leading role of the
gut in development of metabolic disease through modulation of this complex intestinal barrier. IgA, immunoglobulin A; LPS, lipopolysaccharide; Th17, T helper cells
17; Treg, regulatory T cells.
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to date, suggests that the mammalian host may shape and control
their microbiota, a concept described as “ecosystem on a leash”,
which is based on the evolutionary theory that host-microbe and
microbe-microbe interactions play an essential role in the
symbiotic relationship between hosts and their commensal
microbiota (37). It has been postulated that host antimicrobial
secretions, antibodies, such as immunoglobulin A (IgA), as well
as gut antigen surveillance (e.g. through luminal antigen
sampling by intestinal mucosal dendritic cells (DCs) or M
cells), may exert this type of control on microbiota (37).
Considering that the intestinal tract is exposed to an enormous
antigen burden, from commensal microbiota to pathogens to
food derived antigens, it is evident that the intestinal immune
system is a critical role player in creating a tolerogenic milieu and
preventing unwanted inflammatory responses. Thus,
investigating the role of intestinal immune system and its
potential in alleviating and preventing metabolic diseases
through inflammatory, barrier-protective and other pathways
have increasingly become focus of research, which was reviewed
some years ago (38, 39).

Taken together, these studies suggest that gut health, barrier
function and the intestinal immune system play an integral role
in the development of metabolic disease and may place the
intestines at the center and perhaps the beginning of the
pathophysiology of obesity and T2D (Figure 1). The purpose
of this review is to provide an overview of key studies that have
afforded insight into how intestinal immune function,
inflammation and barrier function impact on the development
of obesity and T2D with specific focus on immune function and
intestinal epithelial cells. Studies in animal models and humans
that investigated intestinal immune cells, barrier function and/or
inflammation in intestinal tissues together with effects on
systemic glucose and/or insulin metabolism and/or weight gain
during obesity and T2D were selected. Search terms included
“intestinal barrier function”, “type 2 diabetes”, “intestinal
immune system”, “obesity”, “lipopolysaccharides”, “leaky gut”,
“intestinal epithelial cells”, “glucose intolerance”, “insulin
resistance” and were used.
2 THE ROLE OF THE INTESTINE IN
METABOLIC HOMOEOSTASIS

Apart from its role in nutrient digestion and absorption, the
gastrointestinal tract (GIT) functions as a physical barrier to
prevent undesirable luminal components, such as pathogens,
dietary antigens and microbiota from entering the body (40, 41).
The intestinal barrier is complex and comprises multiple “layers”
(see insert in Figure 1). A mucus layer covering the intestinal
epithelium creates a physical barrier between the lumen and the
tissues. Intestinal epithelial cells (IECs) secrete various
antimicrobial compounds, such as lysozyme and defensins,
which create a chemical barrier to prevent contact between
microbiota and the tissues. The immunological barrier
comprises secreted IgA, which is produced in plasma cells in
the lamina propria, and a full complement of immune cells
Frontiers in Endocrinology | www.frontiersin.org 3
located in the lamina propria and gut-associated lymphoid
tissues (42). Since the GIT is in constant contact with antigens
and microbes, the gut-associated lymphoid tissues form a large
part of the host immune system (43–45). Intestinal mononuclear
phagocytes determine whether tolerance or an immune response
is needed, depending on whether the antigens belong to
commensal microbiota or pathogens (43). Antigen-presenting
cells, such as tissue resident macrophages and DCs, shape the
adaptive immune response (T and B cells) through secretion of
cytokines and lipid mediators, which may have profound effects
on the tissue microenvironment, including decreased epithelial
barrier function and changing commensal microbiota
composition (38, 39).

The role of the intestine in metabolic homeostasis has been
mainly ascribed to enteroendocrine cells, that act as sensors for
nutritional signals and produce and secrete key hormones, such
as glucose-dependent insulinotropic polypeptide (GIP),
glucacon-like peptide 1 (GLP-1) and peptide YY, into the
circulation (46, 47). Of these hormones, GIP and GLP-1,
commonly referred to as incretins, modulate postprandial
glucose concentrations by inducing a rapid and strong
insulinotropic effect after meal ingestion, which is blunted in
patients with T2D (48) and has been widely explored as
pharmaceutical target for T2D. Recently, enteroendocrine cells
have been shown to sense microbial metabolites (49) and may
thus serve as a link between microbiota and their metabolic
effects (50). Further supporting a functional role of the intestinal
tract in T2D is the phenomenon that compounds with low
bioavailability, such as certain plant polyphenols or polyphenol
rich plant extracts, can still elicit significant biological responses
in vivo, such as anti-hyperglycemic effects (51–53). Accordingly,
a recent review hypothesized that effects elicited in the gut might
be the primary mechanism of action of polyphenols, including,
for instance, modulating carbohydrate digestion and uptake,
energy metabolism and interaction with microbiota (54).
Similarly, a delayed-release preparation of the first-line drug
for T2D, metformin was less bioavailable but as effective as
“normal” metformin, suggesting an involvement of the distal
bowel (ileum and colon) in its therapeutic efficacy, presumably
via increased GLP-1 secretion from L cells and enhanced neural
signaling (55).
3 THE INTESTINAL IMMUNOLOGICAL
BARRIER IN OBESITY AND T2D

3.1 Modulation of LPS and Metabolic
Endotoxemia
As a membrane component of gram-negative bacteria, LPS is
found in copious quantities in the gut as part of commensal
microbiota and pathogens. LPS has a broad spectrum of negative
health effects in the body ranging from inflammation to cancer
promotion (56–58). Its lipid components are responsible for
inducing the strong immune activation (59). LPS signaling,
which is facilitated by pathogen associated molecular pattern
(PAMP) receptors, was identified as a critical feature in intestinal
January 2022 | Volume 12 | Article 833544
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homeostasis (14). The LPS-induced toll-like receptor 4 (TLR4)
signaling cascade involves the co-receptor cluster of
differentiation (CD) 14 as well as intracellular adaptor
molecules such as Myeloid differentiation primary response
gene 88 (MyD88) and TIR-domain-containing adapter-
inducing interferon-b (TRIF) as key components (60–62).
Metabolic endotoxemia, which refers to increased LPS levels in
the blood, occurs when the intestinal barrier function is
compromised (14). Several studies have reported strong
associations between increased LPS levels due to intestinal
barrier dysfunction and metabolic disease (63–66). In animal
studies, increased LPS levels induced systemic and tissue
inflammation similar to studies using high fat diet (HFD)
model (14, 15). For example, when Cani et al. (14) mimicked
HFD-induced endotoxemia by intraperitoneal infusion of LPS,
they found significantly increased expression of inflammatory
cytokines, such as interleukin (IL-) 1 in liver, adipose and muscle
tissues. Furthermore, studies have associated metabolic
endotoxemia with the development of non-alcoholic liver
disease (67–69) as well as adipose tissue inflammation and
dysfunction (58, 70), which are risk factors and/or precursors
for the development of T2D. Accordingly, circulating LPS serves
as a useful biomarker of compromised intestinal barrier function
with augmented LPS levels often reported in obese and diabetic
patients (71–73). It has been suggested that LPS plays an essential
role in the onset of obesity and T2D development (14, 15). In
contrast, Dalby et al. (74) showed that deletion of the TLR4 and
co-receptor CD14, which are involved in LPS signaling (60, 61),
did not prevent diet-induced obesity in mice, suggesting that
obesity may develop independent of LPS and metabolic
endotoxemia. Intriguingly, intestinal permeability and LPS
levels were raised in obese TLR4 and CD14 knockout mice
(74), suggesting that LPS could signal through an unidentified
TLR4-independent pathway (75). Importantly, knockout of
TLR4 in specific cell populations such as intestinal epithelial
cells (IECs) rather than whole-body knockout may be required to
induce metabolic effects (66). Lu et al. (66) recently showed that
intestinal TLR4 could regulate the interaction between host and
microbiota and thus affect metabolic syndrome. Using knockout
of TLR4 specific to IECs or myeloid cells, these authors showed
contrasting effects where deletion in IECs increased body weight
and impaired glucose metabolism, whereas knockout in myeloid
cells decreased body weight. Lu et al. (66) further showed that the
metabolic effects of IEC-specific TLR4 knockout could be
reversed by treating mice with antibiotics, suggesting that
TLR4 expression in IECs play a central role in protective host-
microbe interactions.

Another member of the TLR family, TLR5, plays a critical role
in antigen recognition, specifically bacterial flagellin, while other
roles include preserving barrier function in the gut (76). The
important surveillance function of TLR5 in the intestines is
supported by its location on the basolateral side of IECs, where
it acts as a sensor for increased intestinal permeability (76).
Vijay-Kumar et al. (77) showed that TLR5 knockout mice fed a
standard chow diet developed colitis, mild inflammation and
obesity. These mice also developed hypercholesterolemia, high
Frontiers in Endocrinology | www.frontiersin.org 4
blood pressure, hypertriglyceridemia, hyperinsulinemia and
fasting hyperglycemia. TLR5 knockout mice developed T2D
when these mice were fed an HFD, while food restriction
prevented the increase in body weight although it could not
improve glucose intolerance (77). These authors suggested that
in TLR5 knockout mice, inflammatory mediators such as
cytokines may inhibit the insulin signaling pathway, which
may prevent a complete regain of glucose tolerance during
food restriction. The important role of TLRs in obesity and
metabolic disease is reiterated in that dietary fatty acids,
especially saturated fatty acids supplied by HFDs, can activate
TLRs in addition to LPS (78–80).

An enzyme intricately linked to endotoxemia is intestinal
alkaline phosphatase (IAP), as it is involved in the detoxification
of LPS (81). Knockout of IAP in mice leads to decreased
intestinal barrier function and increased circulating levels of
LPS and inflammatory markers (63). These mice also display
glucose intolerance, insulin resistance and hyperinsulinemia.
When IAP activity was diminished with a known inhibitor of
IAP, such as dietary phenylalanine, impaired glucose tolerance
was evident in mice fed an HFD when compared to HFD-fed
control mice, while IAP knockout mice developed T2D when
they were fed an HFD (63). On the other hand, IAP
supplementation improved metabolic syndrome in mice and
prevented LPS uptake via chylomicrons, leading to improved
lipid profiles and liver steatosis scores (63). Malo (81) showed
that fecal IAP levels are lower in diabetic compared to non-
diabetic, obese patients. In contrast to Malo (81), de La Serre
et al. (82) identified IAP as a key player in susceptibility to
obesity. These authors showed that HFD-fed Sprague Dawley
rats displayed altered microbiota composition. However,
reduced IAP activity and increased endotoxemia, ileal TLR4
expression, and inflammation were observed in diet-induced
obese rats compared to non-obese rats on an HFD. These
findings suggest that decreased gut barrier and IAP activity are
associated with obesity and that changes in the microbiota are
independent of obesity, which agrees with other studies (83, 84).
IAP levels decrease with age, and it was shown that
supplementation of IAP in mice increased longevity and
reduced frailty, supporting the notion that lower IAP activity
may contribute to age-related diseases including metabolic
syndrome (73).

3.2 Intestinal Inflammation
A healthy intestinal tract requires efficient tolerance signals to
modulate and suppress inflammatory responses resulting from
exposure to an overwhelming number of commensal bacteria,
potential dietary antigens, and various ubiquitous enteric
pathogens. This is accomplished through suppressor cells,
whose tolerogenic and homeostatic functions are critical to
facilitate effective barrier function and synergisms with
intestinal microbiota. The intestinal immune system, therefore,
requires a certain degree of isolation from the systemic immune
system (85, 86). The effectiveness of this defense system is
demonstrated by studies showing that early metabolic disease
generates low-grade intestinal inflammation (87–89), while
January 2022 | Volume 12 | Article 833544
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evidence of sub-clinical inflammatory changes, such as
macrophage infiltration, has been reported (88, 90).
Inflammatory signals play a crucial role in tight junction
function and assembly (91), thus it is worthwhile to discuss
selected key studies that specifically investigated intestinal
inflammation below.

Kawano et al. (90) showed that in mice, inflammatory
responses in the colon, including monocyte infiltration, loss of
goblet cells as well as a decrease in crypt depth, preceded HFD-
induced inflammatory changes in other tissues, such as the
adipose tissue. Infiltrating colonic macrophages displayed a
pro-inflammatory secretory profile after 4 weeks of HFD
feeding, however, increased expression of inflammatory
markers was only evident in liver and adipose tissue after 8
and 12 weeks, respectively, of HFD feeding (90). Oxidative stress
was increased in the colon after 4 weeks of HFD feeding and
occurred after 8 weeks in the epididymal fat depot. Intestinal
inflammation preceded the development of obesity in HFD fed
mice also in a study by Ding et al. (92). TNFa expression was
increased in the ileum of these mice and was associated with
higher body weight, fat mass and insulin resistance and 2 weeks
of HFD feeding increased nuclear factor kappa B (NFkB)
expression in these mice. In contrast, HFD feeding did not
induce obesity and inflammation in germ-free mice, however,
the inflammatory phenotype observed in conventional mice was
transferrable to germ-free mice using fecal transplants (92).
Taken together, these results suggest that the inflammatory
effect observed in response to HFD feeding was associated
with microbiota.

Changes in microbiota composition can affect LPS-induced
signaling pathways including TLRs (15). In this regard, Kim et al.
(19) showed that HFD-feeding in mice induced TLR4
expression, decreased intestinal barrier function and induced
intestinal and systemic inflammation via increased pro-
inflammatory cytokine production, increased cyclooxygenase-2
(COX-2) and inducible nitric oxide synthase expression. That
pro-inflammatory cytokine levels were not affected by the HFD
in TLR4 deficient animals (19) provided evidence for a role of gut-
derived LPS signaling in HFD-induced chronic inflammation.

Using 5-aminosalicylic (5-ASA, or mesalamine), a drug with
intestine-specific anti-inflammatory properties, Luck et al. (88)
showed that a 12 to 14 week treatment of obese mice ameliorated
HFD-induced insulin resistance through anti-inflammatory and
barrier protective properties. Although treatment with 5-ASA
did not inhibit weight gain, it improved liver steatosis, reduced
fasting plasma glucose concentrations and improved glucose
tolerance (88). The effect of 5-ASA treatment was dependent
on the intestinal immune system since it showed no effect in
beta7 null mice, which are devoid of intestinal immune cells.
Furthermore, 5-ASA treatment improved intestinal barrier
leakage, as assessed using the fluorescein isothiocyanate
(FITC)-dextran assay. Overall, Luck et al. (88) demonstrated
that HFD-induced inflammation in the gut and treatment with a
local acting anti-inflammatory drug improved metabolic
parameters, which implicated the intestinal immune system as
a potential mechanism to improve metabolic function. In
Frontiers in Endocrinology | www.frontiersin.org 5
addition, Liu et al. (93) showed that peroxisome-proliferator-
activated receptor gamma (PPARg) played a significant role in
mitigating the inflammatory effects of the HFD feeding in the
colon tissue of diet-induced obese mice. These authors showed
that exercise produced anti-inflammatory effects in the colon of
HFD-fed mice, which a PPARg antagonist abrogated. PPARg
expression was previously found to be reduced by HFD feeding
and its reduced expression is considered an indicator of
inflammation in the colon (94).

3.3 A Role for the Innate Immune System
in Metabolic Disease
While the role of the innate immune system in adipose tissue
inflammation and insulin resistance is well documented (95–99),
few studies have investigated the role of the intestinal innate
immune system in the development of obesity, insulin resistance
and T2D. The innate immune system, which includes DCs,
macrophages, innate lymphoid cells and eosinophils, is the first
line of defense against pathogens, especially in the intestines, but
it is also essential for shaping the adaptive immune responses
(100, 101).

Innate immune cells release monocyte chemoattractant
protein-1 (MCP-1), also referred to as C-C motif chemokine
ligand (CCL2), which is a critical chemoattractant that initiates
recruitment of immune cells to sites of inflammation. CCL2
signals through the CCL2 receptor (CCR2) which is expressed
onmost innate immune cells and effector cells such as T cells (102,
103). Kawano et al. (90) showed that HFD feeding induced CCL2
expression and that knockout of IEC-specific CCL2 ameliorated
HFD-induced insulin resistance, infiltration of pro-inflammatory
macrophages in the colon mucosa, and adipose tissue
inflammation. Furthermore, macrophage-specific knockout of
CCR2 in the colon improved glucose tolerance and insulin
resistance in mice. In the colon, CCR2 knockout was associated
with immunological changes such as the decreased production of
pro-inflammatory cytokines and barrier protection through
increased expression of the tight junction protein, claudin 1.
These changes resulted in improved barrier function and
lowered systemic LPS levels as key events in improving
metabolic disturbances. The CCL2/CCR2 signaling axis may
therefore promote a pro-inflammatory environment in the colon
which likely increases intestinal permeability with significant
adverse effects on whole-body glucose homeostasis (90).

Another component of the innate immune system, eosinophils,
are traditionally thought to be hallmarks of acute inflammatory,
anti-parasitic and allergic responses, such as asthma (104, 105).
However, eosinophils are also found in immune cell infiltrates in
inflammatory bowel diseases such as Crohn’s disease and
ulcerative colitis, where eosinophil activation contributes to
neutrophil recruitment and tissue ulcerations (106, 107).
Findings by Johnson et al. (87) support a role for eosinophils in
diet-induced metabolic disease. These authors showed that a
short-term, 7-day HFD feeding regimen in mice decreased
eosinophils levels in the small intestines, although no signs of
inflammation, such as monocyte or macrophage infiltration, were
observed. These changes were accompanied by increased
January 2022 | Volume 12 | Article 833544
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permeability in the small intestine as measured by the FITC-
dextran assay and fecal albumin levels, and, notably, occurred
before the onset of metabolic dysfunction. Since ob/obmice, which
develop obesity through hyperphagia as they do not produce
leptin due to a mutation, did not display similar eosinophil
trafficking defects, Johnson et al. (87) concluded that this defect
was caused by HFD feeding. While the significance of the HFD-
induced reduction in the number of eosinophils in the intestines is
not yet clear, new roles of eosinophils with focus on their
involvement in intestinal tissue homeostasis are under
investigation (108, 109). Emerging evidence also suggested that
eosinophils may contribute to immunoglobulin A (IgA)
expression (106, 110).

3.4 Adaptive Immune System
3.4.1 B Cells
IgA is the most abundant antibody subtype produced by B cells in
the intestines and is generally considered the first line of defense
(111). IgA is mainly secreted across mucosal surfaces, such as in
the intestinal mucosa, where it fulfils several essential functions
including maintaining gut homeostasis and microbial tolerance.
Secretory IgA can bind to or “coat” microbiota, thereby inducing
immune exclusion and neutralization by altering bacterial motility
and gene expression, and facilitating antigen uptake (112–116). A
recent study reported that fecal IgA levels did not differ between
non-obese patients with T2D and healthy controls or patients with
Crohn’s disease (117). However, these authors found a significant
decrease in IgA expressing B cells in the intestinal mucosa of non-
obese patients with T2D, specifically in mucosal CD19+CD20-

cells, compared to healthy patients. These changes were
accompanied by an increase in IgG expressing B cells, which
may be linked to increased T cell-derived interferon-gamma
(IFNg) secretion. These authors suggest that plasma cells of
non-obese T2D patients are more reactive to IFNg compared to
healthy controls, resulting in a pro-inflammatory environment
and depletion of IgA+ cells in intestinal tissues (117).

Inmice, IgA+ plasma cells were decreased in the large intestines
of HFD-fed obese mice compared to normal-weight mice fed a
standard diet, which was accompanied by increased insulin
resistance and higher fasting plasma glucose concentrations
(118). These results suggest a link between the abundance of
IgA+ plasma cells and glucose metabolism in response to HFD
feeding. Furthermore, lower intestinal IgA secretion was
associated with altered microbiota composition and produced a
microbiota signature eliciting a transplantable metabolic
phenotype when transferred into germfree or antibiotic-treated
mice. It was proposed that lower IgA levels and increased bacterial
IgA binding affinity in response to HFD feeding stimulate or
induce pathogenic bacteria to migrate across the intestinal barrier.
Interestingly, metformin treatment or bariatric surgery improved
IgA deficiency in this model (118). In a recent study by Sakamoto
et al. (119), HFD feeding decreased IgA+ cells in the lamina
propria of the small intestines, which was associated with
increased body weight and fasting blood glucose concentrations
compared to mice fed a standard chow diet. IgA, particularly in
intestinal tissues, has not yet been the focus of in-depth studies
investigating the pathophysiology of T2D. However, the
Frontiers in Endocrinology | www.frontiersin.org 6
highlighted effects on regulating glucose homeostasis and
microbiota composition suggest that it could be an important
target for prevention of metabolic diseases such as obesity and
T2D. Further studies investigating its role in the pathophysiology
of metabolic diseases are therefore warranted.

3.4.2 T Cells
The role of different T cell subsets in intestinal immune
homeostasis and metabolic diseases is the subject of intense
research (85, 114, 120). T-helper (Th)17 cells, intraepithelial T
lymphocytes, regulatory T (Treg) cells and the cytokines and
cytokine receptors involved in their differentiation have emerged
as targets of interest in metabolic disease. T cells set the
inflammatory tone, with each subset of T-helper cells secreting
distinct cytokine profiles. Monteiro-Sepulveda et al. (121)
attempted to eliminate diet as a confounding factor by
studying intestinal inflammation in metabolically healthy obese
as well as obese patients with T2D. These authors showed that
obesity-induced inflammation in the jejunum resulted in
increased CD3+ T cells in the jejunal epithelium. The number
of macrophages, CD3+ T cells and intraepithelial T cells was
increased in the jejunum of obese patients, while mature DCs
and natural killer cells were increased in obese patients with T2D
(121). Increased epithelial T cell and innate immune cell
populations were linked to intestinal and specifically jejunal
inflammation in obesity and correlated with high dietary fat
content. In addition, the IECs displayed insulin resistance due to
T cell activation (121). The link between increased pro-
inflammatory immune cell populations and reduced insulin
sensitivity in IECs in obesity could provide new insight into
the development of insulin resistance and T2D. Other studies
have reported that diet-induced obesity is characterized by the
increased presence of pro-inflammatory intestinal Th1 and
CD8+ cells and reduced Treg cells (88). In the latter study,
3 weeks of HFD feeding changed the immune cell populations in
the lamina propria of the colon towards a pro-inflammatory
milieu, resulting in decreased Treg cells and increased IL-17
producing gd T cells (88). After 14 weeks of HFD feeding these
effects were also observed in the small intestine, with an increase
in Th1 cells producing IFNg and a decrease in CD4+/Forkhead
box protein P3 (FoxP3)+ Treg cells. Reduced Treg cells and
increased T-box protein expressing T cells (T-bet+ cells) and
CD8+ cells were observed in the colon and small intestines of
obese patients, while no histological signs of inflammation were
apparent (88). Interestingly, Luck et al. (88) showed that beta7
null mice, which are devoid of intestinal immune cells, displayed
improved glucose metabolism in response to a 12 week HFD-
feeding regimen when compared to wild-type mice, without
beneficial effects on body weight gain. The authors suggested
that induction of disturbances in glucose metabolism and insulin
resistance may therefore be dependent on gut immune system
dysfunction (88). While Luck et al. (88) assessed T cell
populations in the lamina propria of the small and large
intestine, a recent study documented a critical role of intestinal
intraepithelial ab and gd T cells in whole-body glucose and lipid
metabolism (122). These authors showed that mice lacking
integrin b7 were protected against diet-induced obesity and
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atherosclerosis with improved glucose tolerance and displayed
reduced numbers of intraepithelial T cells. As these T cell subsets
represent the major cell population expressing GLP-1 receptors,
He et al. (122) were able to explain these positive metabolic
effects in mice lacking integrin b7 through increased
bioavailability of GLP-1 leading to increased glucose disposal.

While Th1 and Th2 cells are involved in shaping active
immune responses, the main function of Treg cells is to create
(self)tolerance, which is particularly important in the gut due to
the high antigen load (123). Everard et al. (124) showed that FoxP3
expression was increased in the jejunum ofMyD88 knockout mice
fed an HFD compared to HFD-fed wild typemice, likely due to the
key role of MyD88 in the TLR and LPS signaling pathway. MyD88
is an intracellular adapter protein that facilitates TLR and IL-1
receptor signaling and is, therefore, a critical link in the activation
of pro-inflammatory transcription factors such as NFkB or
mitogen-activated protein kinases (125). Compared to wild type
mice, FoxP3 expression in Treg cells was increased in the colon of
MyD88 knockout mice fed either a standard diet or HFD. Everard
et al. (124) further showed that knockout ofMyD88 in selected cell
types such as in myeloid cells conferred no protection against
obesity, while IEC-specific knockout of MyD88 played a pivotal
role in development of T2D and obesity, likely through sensing
diet-related stress (124). Epithelial MyD88 knockout also affected
microbiota composition and transferring these microbiota to
germfree mice conferred the positive metabolic traits of the
MyD88 knockout, suggesting that microbiota can be shaped by
the host (124).

Th17 cells, initially thought to induce pro-inflammatory
responses, are now recognized to exert contrasting protective
and pathological roles (126). Th17 cells may protect against
certain infections (126) and in the small intestine, they have
been implicated in maintaining microbiota homeostasis. A study
by Hong et al. (127) showed that ob/ob mice and HFD fed mice
displayed lower abundance of Th17 cells in their small intestines,
which was accompanied by increased T-helper 1 (Th1) cell-
derived IFNg levels compared to Th17 cell-derived IL-17 and
IL-22. However, increased abundance of Th17 cells improved
metabolic status (127). Garidou et al. (128) showed that HFD
feeding in mice influenced intestinal T cell populations. Feeding a
diet consisting of 72% fat and devoid of carbohydrates for 10 and
30 days did not induce weight gain, but these animals developed
glucose intolerance and insulin resistance with a concomitant loss
of Th17 cells in the ileum, which preceded inflammation in
adipose tissues. In the ileum and mesenteric lymph nodes, IL-
17, IL-22 and IL-10 gene expression was reduced, while a loss of
Th17 cells (i.e. IL-17 and IL-22 secreting) was detected in the colon
and small intestinal tissues (128). Treg cell numbers were lower in
the small intestinal lamina propria in HFD fed mice, with a
proportional increase in Th1 cells. In a study using nucleotide
oligomerization domain (NOD)2 knockout and wild type mice,
Th17 responses were decreased in response to HFD feeding (129).
Wild-type and NOD2 knockout mice displayed reduced
neutrophil-dependent oxidative bursts against bacteria following
HFD feeding, which could play a role in shaping microbiota
composition (129). It seems that metabolic disease could be
Frontiers in Endocrinology | www.frontiersin.org 7
characterized by reduced Th17 responses in the intestines, in
contrast to inflammatory bowel disease where increased IL-17 was
associated with increased inflammation, disease severity and
relapse (130, 131).

3.4.2.1 Role of Th17 Specific Cytokines
Th17 cells have been identified as a distinct cell lineage due to their
cytokine secretion profiles, including IL-17, IL-22 and IL-23 (132),
and were shown to fulfil critical functions in the defense against
pathogens in the gut mucosa (133). The shaping of gut microbial
populations is accomplished by producing antimicrobial peptides,
which can be stimulated by Th17 cytokines such as IL-22 (134,
135). IL-22 is part of the IL-10 family and is expressed by Th17
cells, innate lymphoid cells and Th22 cells. Its protective and
regenerative functions have been demonstrated in various tissues,
including the gut (136, 137). IL-22 deficient mice develop
metabolic syndrome when fed an HFD and treatment with an
IL-22Fc fusion protein ameliorated body weight gain and glucose
intolerance. However, continued treatment was required to
maintain the therapeutic effect (138). Treatment with the IL-
22Fc fusion protein also induced changes in microbiota
composition, however, since this did not occur in mice fed the
control diet, the effect of the IL-22Fc on microbiota was suggested
to be HFD-dependent and secondary to metabolic changes (138).

To investigate intestinal inflammation, Gulhane et al. (65)
used Winnie mice, who contain a mutation in the Muc2 gene,
which results in misfolding of the mucin 2 glycoprotein, which is
the main component of the intestinal mucus layer. Winnie mice
are considered a model of endoplasmic reticulum stress-induced
colitis, which constitutes an epithelial defect, while mice present
with a normal immune system. HFD feeding aggravates colitis in
Winnie mice, but when these mice were treated with IL-22, the
intestinal mucosa produced lower cytokine levels in response to
HFD, which increased claudin 1 protein expression, thereby
improving tight junction function, and decreasing systemic
LPS levels. IL-22 treatment further normalized the changes in
the microbiota induced by HFD, for instance by increasing levels
of Akkermansia muciniphila and decreasing levels of E. coli (65).

IL-23 is a member of the IL-12 family, which is associated
with chronic inflammatory disease and is considered an
important inducer of Th17 cells (139, 140). Interestingly, IL-
23p19 knockout mice gained more weight compared to wild type
mice in response to HFD feeding, as shown by total fat
accumulation and a trend towards increased visceral adipose
tissue (141). Furthermore, HFD feeding increased insulin
resistance, glucose intolerance and fasting plasma glucose levels
in IL-23 deficient animals compared to the wild type animals on
HFD (141). These results suggest that IL-23p19 could have
protective properties during diet-induced obesity.
4 IMPACT OF SPATIAL SEGREGATION IN
THE GUT ON OBESITY AND T2D

The intestinal barrier (compare insert in Figure 1) is a complex
system comprising (i) an immunological barrier, which consists of
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immune cells, cytokines and IgA as discussed in the previous
section, (ii) a chemical barrier, which is characterized by
antimicrobial secretions and (iii) a physical barrier, which
involves spatial segregation through mucus and epithelial cells
that provide a barrier through intercellular tight junctions. The
intestinal barrier and its permeability play an important role in the
pathogenesis of obesity and T2D, however, it is still unclear whether
increased intestinal permeability is a cause or consequence of
metabolic disease, or perhaps both (34–36). Nevertheless, the
critical role of the intestinal barrier in metabolic disease
development and prevention is becoming increasingly recognized
and mechanisms that prevent pathogens, microbiota and
microbiota-derived products from gaining access to the
circulation through breaching intestinal tissues will be discussed
in the following section.

4.1 Chemical Barrier
Antimicrobial molecules produced by the intestinal epithelium
are important defense mechanisms to prevent infection and
dysbiosis of commensal microbiota. HFD feeding was shown
to decrease the expression of antimicrobial peptides (124, 128,
142–145). The gene expression of the antimicrobial peptide
regenerating islet-derived protein 3 gamma (RegIIIg) was
reduced in the jejunum and colon of HFD-fed wild-type mice,
but not in HFD-fed MyD88 knockout mice (124). This is of
interest as RegIIIg has been suggested to modulate microbiota
through spatial segregation, thereby preventing commensal
microbiota from reaching the epithelium (124, 146, 147).

In contrast to studies that reported decreased antimicrobial
peptides in response to HFD feeding (124, 128, 142–145), Gao et
al. (148) showed that HFD feeding increased the expression of
antimicrobial peptides in the colon, which was counteracted by their
treatment with polyphenols derived from Pu-erh tea. This
inconsistency between these studies regarding HFD-induced
antimicrobial peptide expression may be due to diet composition.
Variation in diet composition between studies poses a major
challenge in microbiota research as differences in diet
composition, particularly regarding fat and fiber content, can
induce variable metabolic outcomes (149, 150). While both
Everard et al. (124) and Gao et al. (148) provide information on
fat content (60% and 45% of kcal as fat, respectively), the type of fat
and fiber in the diets were not reported. It is tempting to speculate
that the type of fat may affect intestinal barrier function and,
although there is limited evidence, diets rich in anti-inflammatory
omega 3 fatty acids are likely to display barrier protective effects
and/or modulate microbiota composition (151–153). Dietary fiber
is an important source for fermentation by selected microbiota.
High fiber diets may, therefore, profoundly affect microbiota
composition through selecting strains that produce beneficial
microbial metabolites such as short chain fatty acids (SCFA),
which can be used as energy sources by enterocytes. If a standard
diet containing grain-based fiber is compared to an HFD lacking
fiber, metabolic benefits cannot be directly compared (149, 150).

4.2 Physical Barrier
In addition to their critical function in nutrient absorption, IECs
also form a physical barrier designed to segregate the internal
Frontiers in Endocrinology | www.frontiersin.org 8
system from the external luminal environment that is rich in
antigens and microbes. The intestinal epithelium consists of a
single layer of cells where the intercellular spaces are locked with
tight junction complexes, which can be used to regulate
permeability towards small solutes such as water, electrolytes and
macromolecules (154). Tight junction complexes play a critical role
in barrier function and modulation and have been extensively
reviewed recently (155–157). HFD feeding alters tight junction
function and increases intestinal permeability. Gulhane et al. (65)
showed that the tight junction protein claudin 1 was significantly
decreased after 11 weeks of HFD feeding, which was accompanied
by increased mucosal permeability and circulating levels of LPS.
Suzuki and Hara (158) showed that HFD feeding increased
intestinal permeability in lean and obese rats, which was linked to
decreased expression of the tight junction proteins claudin 1 and 3
as well as junctional adhesion molecule 1 (JAM-1). These authors
used the obese Otsuka Long Evans Tokushima Fatty (OLETF) rat
model, in which rats become hyperphagic due to knockout of the
cholecystokinin receptor, which senses cholecystokinin that is
released from I cells in the small intestine and regulates food
intake and satiety through neuronal feedback to the brain (159).
HFD feeding induced intestinal inflammation in OLETF rats,
however, the role of endotoxemia as a driver of this inflammatory
response was questioned as, although systemic LPS levels were
increased, systemic cytokine levels remained unchanged (158).

Goblet cells are the main source of the mucus that forms a
physical barrier, shielding the intestinal epithelium from luminal
antigens and microbiota (160, 161). Everard et al. (162) reported
that HFD feeding in mice decreases the intestinal mucus layer,
which improved after supplementation with Akkermansia
muciniphila, an interesting and well-researched beneficial member
of the microbiota (163). Another study showed that dietary
prebiotics, which provide nutrients for selected microbiota and
therefore support growth of selected commensals, are able to
increase the number of goblet cells and thus mucus layer
thickness (164), which is an integral part of the healthy intestinal
barrier (165). Goblet cell and barrier dysfunction as well as
inflammation following HFD feeding was recently linked to non-
esterified fatty acid (NEFA) levels, and specifically to palmitate-
induced oxidative and endoplasmic reticulum (ER) stress in goblet
cells (65). This resulted in the thinning of the mucus layer and
increased expression of non-O-glycosylated mucin 2 precursors in
the intestines.

4.2.1 Intestinal Epithelial Cells (IECs) and Their
Functional Diversity
IECs play a central role in intestinal barrier function as they
provide a single cell layer barrier with intercellular spaces tightly
locked by tight junctions, as previously highlighted. IECs produce
a variety of effector molecules, e.g. they are the main cell type to
express IAP, which plays a critical role in ameliorating metabolic
disease through modulating LPS levels (63). Everard et al. (124)
characterized a role for IEC-specific MyD88 expression in glucose
homeostasis as MyD88 is an important part of the LPS-signaling
cascade resulting in inflammation, while Lu et al. (66) used a TLR4
knockout mouse model to show the critical role of this receptor in
metabolic health. Kawano et al. (90) demonstrated the role of the
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CCL2/CCR2 signaling axis in IECs and showed the importance of
immune crosstalk between IECs and underlying immune cell
populations in whole-body glucose homeostasis (Figure 2).
Additional functions of IECs explaining their pivotal role in
metabolic disease are discussed in this section and summarized
in Figure 2.

Recent work has linked IECs with epigenetic mechanisms.
Whitt et al. (168) showed that mice with histone deacetylase 3
(HDAC3) knockout in IECs were resistant to diet-induced
obesity and showed improved glucose and lipid metabolism
compared to wild-type mice, which may be due to increased
energy expenditure, heat production and oxygen consumption
(168). The study further showed that modulation of HDAC3
expression in IECs affected metabolically active tissues, such as
the liver and adipose tissue and that an HFD reduces SCFAs
(168), which are known to inhibit HDAC3 activity a (169, 170).
The HFD feeding was suggested to induce HDAC3 activity,
which was associated with increased body weight gain and blood
glucose concentrations (Figure 2), while supplementation with
butyrate, a SCFA, was able to reduce weight gain in HFD fed
mice, presumably via HDAC3 dependent mechanisms. Taken
together, these results suggest that HDAC3 may be implicated
the development of obesity and T2D (168).

In addition to inhibiting HDAC3, microbiota-derived
butyrate can also modulate indolamine 2,3-dioxygenase (IDO)
Frontiers in Endocrinology | www.frontiersin.org 9
activity in IECs (171). As a key enzyme in tryptophan catabolism,
IDO converts tryptophane into kynurenine and is recognized as
a modulator of immune function (172). IDO is expressed in
macrophages, DCs and IECs and it contributes towards an
immune suppressive and anti-inflammatory milieu (172)
although a more complex role in intestinal homeostasis has
been proposed recently, including adverse effects in metabolic
disease (171, 173). Laurans et al. (167) demonstrated that IDO
knockout mice were protected against HFD-induced body
weight gain and displayed improved glucose tolerance. While
Laurans et al. (167) did not use IEC-specific knockout, they
demonstrated that IDO knockout in non-myeloid cells provides
this metabolic benefit. These non-myeloid cells include IECs as
the main cell type expressing IDO in the gut (171). In addition,
Laurans et al. (167) showed that HFD feeding in wild-type mice
increased IDO activity in the small and large intestines and this
increase in kynurenine in the intestines may deplete indole
derivatives that would otherwise be available for metabolism
by the gut microbiota and may consequently exert a selective
pressure on microbiota (Figure 2). The microbiota-derived
indole-3-acetic acid is also an activator of the aryl hydrocarbon
receptor (AHR), which, in addition, contributes to the protection
against diet-induced obesity and intestinal barrier permeability
(174). AHR plays a role in Treg cell differentiation (175) and a
wide range of bioactive plant compounds, such as polyphenols,
FIGURE 2 | Specific and diverse roles of IECs in HFD-induced metabolic disease. The roles of intestinal epithelial cells (IECs) in body weight gain and glucose
homeostasis can be categorized into immune crosstalk/chemokine signaling (90), pathways involving the endocannabinoid system (166), pathways involving
microbial metabolites (167, 168) and signaling pathways related to LPS signaling (63, 66, 124). While most pathways exerted adverse effects on glucose metabolism
and weight gain in response to HFD feeding, IEC specific knockout of CCL2 and MyD88 decreased body weight gain and improved glucose metabolism during
high-fat diet feeding (90, 124). CCL2 and MyD88 knockout improved intestinal barrier function by increasing claudin 1 levels and decreased expression of inflammatory
cytokines, respectively (highlighted in red). AMPs, antimicrobial peptides; CCL2, C-C motif chemokine ligand 2; HDAC3, histone deacetylase 3; HFD, high fat diet; IAP,
intestinal alkaline phosphatase; IDO, Indolamine 2;3-dioxygenase; IEC, intestinal epithelial cells; KO, knockout; LPS, lipopolysaccharides; Mj, macrophages; MyD88,
myeloid differentiation primary response gene 88; NAPE PLD, N-acylphosphatidylethanolamine phospholipase D; POMC, pro-opiomelanocortin; SCFA, short chain fatty
acids; TLR4, toll-like receptor 4; Treg, regulatory T cells.
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can act as AHR agonists and antagonists (176). Several reports
have highlighted the role of the intestinal AHR, which is mainly
expressed in IECs, in diet-induced obesity and metabolic disease
(177–179).

IECs have been also investigated with regards to their role in
the endocannabinoid system. Everard et al. (166) showed that
knockout of N-acylphosphatidylethanolamine phospholipase D,
a critical enzyme in endocannabinoid production, in IECs
decreased energy expenditure and increased fat accumulation
in response to HFD feeding without altering inflammatory status
in adipose tissues or glucose metabolism. These authors showed
that supplementation with A. muciniphila reversed most of the
HFD-induced effects on N-acylphosphatidylethanolamine
phospholipase D knockout mice. The endocannabinoid system
plays a critical role in whole body energy metabolism (180),
which was reviewed comprehensively by Veilleux et al. (181) and
others (182, 183). Thus, these results suggest a significant role of
endocannabinoids in intestinal tissues and in whole-body energy
and glucose metabolism in relation to obesity and
T2D development.
5 INTESTINAL BARRIER AND IMMUNE
SYSTEM PLAY AN INTEGRAL PART IN
THE PATHOPHYSIOLOGY OF OBESITY
AND T2D

Metabolic diseases, such as T2D, are complex diseases. Decades
of dedicated research on T2D have advanced our understanding
of the pathophysiology and keep producing advances in
treatment options that improve lives. However, the complexity
of disease mechanisms and the lack of a definitive cure for T2D
suggest that our understanding of the disease is not yet complete.
Figure 3 outlines the crosstalk between risk factors and key
players in T2D development, which include diet, microbiota,
intestines, metabolic inflammation and obesity. Two-way and
indirect interactions between these key players add to the
complexity of the disease:

1. Nutrient dense, high fat and high sugar diets likely exert a
“one way effect” on glucose homeostasis as it is well
established that chronic consumption of a western diet can
lead to T2D (184). High fat diets also affect the intestinal
immune system and barrier function, which can lead to
metabolic inflammation (14, 15).

2. Changes in microbiota composition and diversity have been
associated with obesity, dysregulated glucose metabolism and
T2D, with metabolic inflammation (15, 23) and modify the
intestinal immune and barrier system (152, 185). Conversely,
microbiota may also affect the dietary intake through
inducing behavioral changes and cravings (186, 187).

3. The intestines are known to shape microbiota through the
intestinal immune system, antimicrobial and antibody
secretions, which are critical components of the barrier
function (37, 124, 129, 152). Barrier defects and dysfunction
of the intestinal tissue can facilitate metabolic inflammation
Frontiers in Endocrinology | www.frontiersin.org 10
(14), but the intestines can also directly affect body weight and
glucose homeostasis through the secretion of gut hormones
(46, 47) and via activation of various inflammatory and pattern
receptor signaling pathways in intestinal epithelial cells (63, 66,
82, 90, 142, 166–168).

4. Metabolic inflammation was shown to contribute to obesity
(14, 18) and T2D development through inducing insulin
resistance, which has been reviewed extensively (8–11). How
metabolic inflammation may directly affect microbiota is not
yet clear, however, systemic inflammation has negative effects
on barrier function through the action of pro-inflammatory
cytokines (154) and may therefore indirectly influence
microbiota composition or diversity through its effect on
the intestinal barrier and immune system.

5. That obesity contributes to metabolic inflammation is well
established (95, 97, 99, 188), but obesity has also been
associated with intestinal inflammation and barrier
dysfunction (121, 189) and altered microbiota (27, 190).
Obesity may influence diet and/or food intake through
dysregulation in leptin and satiety levels (191). A more
direct effect of obesity on T2D development occurs likely
through increased release of free fatty acid from adipose
tissue which can induce insulin resistance through
oxidative stress and lipid metabolites (192).

6. T2D and dysregulated glucose homeostasis may affect obesity
in the sense that insulin resistance and hyperglycemia lead to
increased lipogenesis and lipid storage (192) although
increased body weight may predominantly result from side
effects of antidiabetic drugs. Hyperglycemia may induce
metabolic inflammation directly via mechanisms related to
increased oxidative stress (193) and indirectly through
decreasing intestinal barrier function (194). Altered
microbiota composition has been documented in type 2
diabetic patients (27).

Overall, this complex interactive system between organ
structures and risk factors could provide an explanation why
causal relationships between changes in microbiota composition,
intestinal tissue and barrier effects and metabolic health have
been difficult to attain.
6 SUMMARY AND CONCLUSION

There is a paucity of knowledge about the role of intestinal
immunity and intestinal barrier function in the development of
metabolic disease. This review highlights that the intestinal immune
and barrier system can be a powerful modulator of diet-induced
inflammation, glucose homeostasis, obesity and T2D development.
Given the importance of the intestinal system as the “first
responder” for dietary nutrients, antigens, commensals and toxins,
future research on intestinal tissue and immune homeostasis should
address changes in the intestinal immune system, including Treg
cells, Th17 cells, as well as IgA producing plasma cells and their
secretory profiles. Studies on innate and adaptive immune cell
populations have provided compelling evidence for the
contribution of these cell populations in the pathogenesis of
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metabolic disease (87, 88, 90, 117, 118, 127, 128), however, many
questions still remain unanswered.

This review also highlighted the complexity of interconnected
risk factors, organ systems and their cross-talk in metabolic
disease, summarized in Figure 3. Host immune cells can shape
commensal microbiota (37, 124) and inflammatory tone. The
Frontiers in Endocrinology | www.frontiersin.org 11
subtle inflammatory changes in the intestines in the early stages
of metabolic disease development (87–89) suggest that
inflammation in the intestinal sense could be viewed as shift in
immune cell populations whose cytokine profiles set either an
inflammatory or tolerant “tone”, e.g. by recruiting regulatory T
cells (88, 90, 127). IgA represents the initial defense that the body
FIGURE 3 | Complexity and cross-talk between contributors to obesity and T2D. Westernized diets [1], gut microbiota [2], the intestinal barrier and immune system
[3] and metabolic inflammation [4] play a significant role in the development of obesity [5] and type 2 diabetes [6]. [1] Diet likely exerts a “one way effect” (indicated by
red arrows) on glucose homeostasis, while high fat diets also affect the intestinal immune system and barrier function which can lead to [4] metabolic inflammation
(indirect effects are indicated with dashed arrows). [2] Changes in microbiota composition and diversity have been associated with obesity, dysregulated glucose
metabolism and T2D, with metabolic inflammation, and the intestinal immune and barrier system. Conversely, microbiota may also affect the dietary intake through
inducing behavioral changes and cravings. [3] The intestines are known to shape microbiota and facilitate metabolic inflammation through barrier defects, but the
intestines can also directly affect body weight and glucose homeostasis through gut hormone production and via expression of effector molecules and pathways in
intestinal epithelial cells. [4] Metabolic inflammation contributes to obesity and T2D development through inducing insulin resistance. How metabolic inflammation
may directly affect microbiota is not yet clear, but may occur indirectly through effects on intestinal barrier and immune function. [5] Obesity contributes to metabolic
inflammation, but is associated with intestinal inflammation, barrier dysfunction and altered microbiota. Obesity may also influence diet and/or food intake through
dysregulation in signaling related to satiety. A potentially direct effect of obesity on T2D development may involve the increased release of free fatty acid from adipose
tissue which can induce insulin resistance through oxidative stress and lipid metabolites. [6] Type 2 diabetes and dysregulated glucose homeostasis may induce
obesity in the sense that insulin resistance and hyperglycemia lead to increased lipogenesis and lipid storage but a direct pathway to increased body weight is likely
the result of anti-diabetic drugs and their side effects. Hyperglycemia may induce metabolic inflammation directly via increased oxidative stress and indirectly through
decreasing intestinal barrier function and altered microbiota composition. IgA, immunoglobulin A; LPS, lipopolysaccharide; T2D, type 2 diabetes.
January 2022 | Volume 12 | Article 833544

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Riedel et al. Intestinal Barrier and Immune Homeostasis in Diabetes
offers against invading pathogens and dysbiosis (195) and studies
have associated IgA producing cells with microbiota composition
and metabolic effects (117, 118), future research should
characterize the role of IgA in obesity metabolic disease in
more detail.

One way to improve intestinal barrier function may be through
focusing on IECs, as they possess more diverse and vital functions
in addition to nutrient and electrolyte transport than previously
known. In Figure 2, some of the recently discovered underlying
mechanisms of how IECs contribute to metabolic disease have
been highlighted. Exactly how this crosstalk between IECs, the
intestinal immune system and metabolically active tissues is
facilitated and translates into improved metabolic phenotype is
not yet fully elucidated, but the intestines may play a pivotal role in
the development of metabolic diseases and deserve further
investigation. This may indeed place the intestines, including the
intestinal immune system and IECs, at the center of metabolic
disease development and provide a new focus area to develop
improved treatments for obesity and T2D in future.
Frontiers in Endocrinology | www.frontiersin.org 12
AUTHOR CONTRIBUTIONS

Conceptualization, SR, CP, and RJ. Writing—original draft
preparation, SR. Writing—review and editing, SR, CP, RJ, JL,
and CM. All authors have read and agreed to the published
version of the manuscript.

FUNDING

SR received funding from the South African Medical Research
Council (baseline funding), the South African Rooibos Council
and the National Research Foundation (NRF) of South Africa,
grant UID 121919. CM received funding from the NRF of South
Africa under the IRG-Taiwan/South African Research
Cooperation Programme, grant UID 121232.

ACKNOWLEDGMENTS

Figures were created with BioRender.com.
REFERENCES

1. WHO.WHO | World Health Statistics 2018. Geneva: WHO (2018). Available
at: https://www.who.int/gho/publications/world_health_statistics/2018/en/.

2. International Diabetes Federation. IDF Diabetes Atlas. 9th Edition. Brussels,
Belgium: International Diabetes Federation (2019). Available at: https://
www.diabetesatlas.org/en/.

3. CulinaryLore. Who First Said “You Are What You Eat? (2016). Available at:
https://culinarylore.com/food-history:who-first-said-youare-what-you-eat/
[Accessed October 6, 2021].
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Ouvrage Théorique, Historique Et À L’ordre Du Jour, Dédié Aux Gastronomes
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