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ABSTRACT
The building energy performance certificates (EPC) are widely adopted for sustainable development
and improvement in building energy efficiency. Different from the conventional direct measurement
based approach of acquiring a building’s EPC label, this study proposes a novel and alternative ap-
proach to classify a building’s EPC label using artificial neural network (ANN) models. Given the
extensive best building EPC practices in developed countries, historical building EPC data and ex-
periences can expedite the development and improvement of this procedure in developing countries.
This study first develops the ANN classification model to attain the building EPC label. The classi-
fication result shows that the building EPC classification can achieve a 99% precision with sufficient
input data. With the assistance of explainable artificial intelligence (XAI) tools such as the Local
Interpretable Model-Agnostic Explanation (LIME) and SHapley Additive exPlanation (SHAP), some
less important input features for the ANN classification models can be removed without severely in-
fluencing the ANN model’s accuracy. In the case studies, the EPC best practices historical registry
data from Lombardy, Italy are used in training the ANN model. The ANN models’ accuracy for the
case study 1 is 93% with 14 input features where CO2 emissions and net surface area are the two most
influential features. The most influential input feature for case study 2 is the winter AC non-renewable
energy performance, and the accuracy of the case study 2 ANN model is 89% with 26 input features.

1. Introduction
The building sector contributes to 40% of the global en-

ergy consumption [1] and 36% of greenhouse gas emissions
[2]. The building sector hence embodies great opportunities
for global energy use reduction through energy efficiency
measures and policies. The building energy performance
certificate (EPC) programme is one of the most popular en-
ergy policy instruments that regulates the large-scale build-
ing energy efficiency and carbon emissions. Information
acquired from the EPC assists tenants, owners, and facil-
ity managers to adopt energy efficiency measures to achieve
lower carbon dioxide (CO2) emissions and energy consump-
tion while reducing building operation costs. In many coun-
tries, the building EPC label is determined by the energy in-
tensity in kWh per m2 per annum, where the kWh refers to
the total energy consumption over a year, andm2 refers to the
effective floor area of the building under assessment [3]. The
EPC is usually supplemented with an advisory report, which
suggests energy efficiency measures that are technically and
economically viable for the EPC label improvements.

The general procedure to determine a building EPC label
requires four key parameters, namely the annual building en-
ergy usage, effective floor areas, relevant climate zone, and
a building energy performance reference table [4]. In prac-
tice, accurately quantifying the annual building energy us-
age is usually a challenging task. The most commonly used
method to determine the annual energy usage of a building is
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through direct measurements. This measurement approach
ranges from energy bill readings to complex methods that
include building a management monitoring system or sub-
metering. Energy bills are valuable documentary evidence
used to obtain the annual energy usage. However, there are
drawbacks to rely on energy bills for the annual energy us-
age. Firstly, collecting the full historical energy bills can be
tedious, especially for buildingswithmultiple owners, build-
ings consuming various forms of energy, or owners who oc-
cupy numerous buildings; and secondly, sometimes utility
bills are derived based onmodel predictions instead of actual
readings. Even when the actual bills are available through
the whole facility measurement, they cannot provide a com-
plete picture of the energy use at the building energy system
level, which is critical information to identify the energy sav-
ings opportunities to improve the EPC label levels. The sub-
metering approach has long been proven as an effective and
accurate procedure. It is however a lengthy and costly pro-
cess for meter procurement, installation, meter reading, cal-
ibration, and maintenance [5]. Worse still, waiting for the
full interval readings over the desired measurement period,
say at least a whole year for the national building EPC pro-
gramme, may cause significant delays to the EPC roll out at
the national level.

The annual energy usage can also be characterised by
energy models such as computer simulation models. Some
common dynamic simulation tools are DOE-2 [6], TRNSYS
[3], and EnergyPlus [7], which take into consideration fea-
tures such as weather conditions, building envelopes, build-
ing appliances, and building operations. The computer sim-
ulation process is precise, but it necessitates a large amount
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Nomenclature
Abbreviation
AI Artificial intelligence
ANN Artificial neural network
CENED Certificazione Energitica degli edifici
EPC Energy performance certificates
LIME Local Interpretable Model-Agnostic Explanation
POET Performance, operation, equipment, and tech-

nology energy efficiencies
SHAP SHapley Additive exPlanations
XAI Explainable artificial intelligence
Symbol
AC Air conditioning
AUb Average U-value of basement
AUr Average U-value of roof
AUw Average U-value of walls
AUwn Average U-value of windows
CO2 CO2 emissions
DC Diesel consumption
DD Degree day
DHC District heating consumption
EV Energy vector
FT Fuel type
Gs Glazed surface
GHE Global heating efficiency
GHWE Global heating water efficiency
HDE Heating and domestic hot water efficiency
LBC Liquid biomass consumption
NGC Natural gas consumption
Os Opaque surface
RBC Reference building consumption
RC Reference class
SA Useful heated surface area
SAC Summer air conditioning
SACM Summer AC medium efficiency
SAPER Summer AC energy performance renewable en-

ergy
SAPNER Summer AC energy performance non-renewable

energy
SBC Solid biomass consumption
SESA Summer equivalent solar area
SPVC Solar photo-voltaic consumption
ST System type
STC Solar thermal consumption
SV Surface area/volume ratio
TT Thermal transmittance
V Gross volume heated
WACE Winter AC medium efficiency
WAEPNR Winter AC energy performance non-Renewable

energy
WAEPR Winter AC energy performance renewable en-

ergy
WANP Winter AC nominal power
WHT Winter heating thermal reference

of data, time, and knowledge, along with highly skilled in-
dividuals to run the computer simulations. The input data
at certain instances, may not be available at the time of sim-
ulation, which further increases its complexity. When nu-
merous buildings in a city or region have to be evaluated,
the intricacy levels are high and a great deal of effort is re-

quired.
The recent inception of the building EPC programme in

South Africa demonstrates urgent needs to accurately deter-
mine the EPC label and the labelling improvement oppor-
tunities for the national buildings that are participating in
the programme. The intention of the policy is to classify
buildings with reference to their energy intensity value into
grades. These grades are defined through a label range from
A to G with ‘G’ symbolising the worst efficiency rating and
‘A’ being a highly efficient rating for a building. A compar-
ison between reference consumption of that building and its
energy intensity provides the grading. The reference con-
sumption of each building is given in [8] and provides the
expected energy intensity consumption for different build-
ings with different occupancy classes. The policy is deemed
to apply to all government owned and occupied buildings
greater than 1 000 m2 and private sector buildings greater
than 2 000 m2 with a required rating of Grade D firstly. The
mandatory assessed building categories are offices, places of
instruction, entertainment and public assembly. A roll out to
other building categories is expected in the near future. Due
to the oldness of these buildings they tend to be inefficient
and therefore considerable investments are required to im-
prove their rating. These financial implications result in a
need for tools that will assist in providing explanations as
to what measures may result in the quickest and best way to
improve their EPC labels [9].

The knowledge of the challenges experienced with ac-
quiring the annual building energy usage via bill reading,
sub-metering, or computer based simulation, and recognis-
ing the extensive experiences andmassive data records avail-
able from countries that have implemented the building EPC
policies, leads to the impression of whether alternative pro-
ceduresmaybe used. Possibly, the building EPC labelsmaybe
identified viamachine learning and big data techniques, which
can determine a building’s EPC rating level by the most eas-
ily attainable building features, characteristics and building
energy efficiency classifications such as those in the perfor-
mance, operation, equipment, and technology energy effi-
ciencies (POET) framework [10] of a particular national in-
terest, instead of only relying on the time series numeric in-
terval readings from the energy meters. Once the machine
learning approach is available, it will offer the building own-
ers, third-party EPC rating practitioners, researchers, and
government an alternative solution, which is fast, easily im-
plementable, and cost-effective, to determine the buildings
EPC label.

Implementation of data driven models requires data to
enact numerous decisions and perform predictions [11]. Ran-
dom tree forests (RF) [12], support vector machines (SVM)
[13], Extreme Gradient Boosting [14], and artificial neural
networks (ANN) are prime examples of data driven models
[15]. Unsupervised, semi-supervised, supervised, and rein-
forcement learning are four major categories that form part
of machine learning techniques. The unsupervised learning
technique is used in pre-processing data and analysing the
characteristics of the data as the input data are known how-
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ever, the output data are unknown. Semi-supervised learn-
ing incorporates input data with both known and unknown
output labels or values making it a hybrid approach of super-
vised and unsupervised learning [16]. Reinforcement learn-
ing employs sets of input, some output, and grade as train-
ing data. It is generally used when optimal interaction is
required, such as control and game plays. Supervised learn-
ing requires the data to have predetermined input and output
pairs to further define a relationship between these inputs
and outputs. In supervised learning the training process ad-
justs the model to limit the error between the correct out-
put and predicted output. There are two distinct procedures
in supervised learning namely regression and classification.
Regression determines a value mapped from the input data.
Classification, categorises the group that the input data is at-
tributed to from the identified groups in the training dataset
[17, 11]. Potential classification limitations are data bias,
the need for a substantial amount of historical data, and that
predictions of unrepresented classes in the dataset cannot be
determined. The implementation of this alternative proce-
dure for classifying buildings’ energy performance into the
correct EPC label category instead of the direct measure-
ment approach requires the careful avoidance of these three
limitations.

Various studies show the implementation ofmachine learn-
ing models in building energy estimations with ANN, ran-
dom forest, and SVM being the popular choices [11, 18].
The ANN and SVM may outperform each other in different
scenarios. Building energy estimations in [11] include but
are not limited to the prediction of electricity, cooling/heating
loads, natural gas and total energy consumption of various
building energy systems and building environment. Build-
ing retrofit opportunities are essential solutions to improve
the building EPC labels. Studies have shown the use of ANN
in addressing retrofit scenarios by the pre-retrofit and post-
retrofit analyses [19]. Sensitivity analysis has also beenwidely
applied to determine input parameters for the ANN model
with the application of particular energy retrofit measures,
with the capability of determining the post-retrofit energy
consumption values [15]. According to [20], the most accu-
rate predictions are provided by ensemble models [21] such
as gradient boost random trees. These ensemble models tend
to be a combination of two or more base models [22, 23]
and have been popularised in recent years. Conversely, the
support vector machine is generally well suited for instances
with smaller data-sets and generic input variables due its
simplicity and speed of calculations. However, for complex
data-sets it is better to make use of deep neural networks as
they perform well in these circumstances in comparison to
the other machine learning approaches. The study [24] illus-
trates that deep neural networks perform the best for energy
use predictions as compared to SVM, RF, Gradient Boost-
ing, K-Nearest Neighbours, and decision trees. The major
drawbacks of deep neural networks are its complexity which
require appropriate tuning for good performance and that it is
considered an opaque model. Highly performing algorithms
such as these neural networks tend to be opaque and require

some explanations in order to understand them. These are
considered post-hoc explanations implemented through ex-
plainable artificial intelligence (XAI) [25, 26].

The ANN models have proven to be accurate and ro-
bust in previous studies [1, 6]. The input parameters include
those derived frommeasured and computer simulations. The
ANN models consequently enable the flexibility to acquire
and determine the most essential parameters with respect to
time and finances for energy quantification [27]. Through
the acquisition of relevant and optimal information, assess-
ment time is reduced as parameters that are acquired over a
whole year period maybe reduced. In this study, the building
EPC ANN classification model is proposed as a verification
procedure and processes where other approaches may not be
necessary, resulting in improving EPC labelling procedures.
Through the oversight of the actual measurement of the an-
nual energy consumption, new building EPC labelling is en-
abled.

Artificial Intelligence (AI) models are considered to be
black box models as their internal functioning mechanisms
are indistinct [28]. The design and deployment of many AI
systems require limited human interaction. Interpretability
of these black box models to understand how they reach cer-
tain decisions is evidently important to enable their appli-
cability in key areas such as law or medicine [29, 30]. The
XAI has been at the forefront of various research initiatives
for this reason. The XAI tools help to identify how each in-
put influences the output in the AI models. The AI models
become robust as essential input elements that guarantee ac-
curate decision making are identified [28]. Model operation
and post modelling explanations are rendered by the XAI
which gives greater insight and understanding [29, 28]. The
psychology of explanation, a social science field is the major
driver of the XAI principles [31]. The XAI invokes trust in
AI models through explainability, producing good accuracy,
and insight on buildings’ energy performance and how to
operate them. In this study two XAI techniques are adopted
to explain the machine learning based building energy clas-
sification model, which are the Local Interpretable Model-
Agnostic Explanation (LIME) and SHapley Additive exPla-
nations (SHAP) [32], respectively. The LIME and SHAP
assist in the explanation and determination of what influ-
ence each input feature in the building EPC ANN classifica-
tion model has for each particular EPC classification output.
Moreover, LIME and SHAP with the combination of fea-
ture engineering techniques provide and define the essential
input features.

This study contributes to both the building EPC labelling
and the EPC label improvements. Its objectives are pre-
sented in the following aspects:

• Building EPC ANN classification models are devel-
oped based on historical building EPC labelling data,
which directly classify a building’s energy performance
to a building EPC label with up to a weighted clas-
sification precision of 91.49% for case study 1 and
88.69% for case study 2.
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• The proposed building EPC ANN classification ap-
proach is superior compared to the traditional mea-
surement based building EPC labelling approaches in
following aspects: 1) it does not require long dura-
tion of interval measurements of the annual building
energy consumption; 2) it enables the new building
EPC labelling. However, it is obvious that the pro-
posed building EPC classification approach relies on
the availability of historical data.

• ExplainableAI techniques such as the LIME and SHAP
are adopted to explain the internal classificationmech-
anism with respect to numerous input features in a
quantitative manner. The XAI explanations help to
identify the key influential factors to the building EPC
label. Such findings bring multiple benefits: 1) less
important input features can be removed from the orig-
inal building EPCANNclassificationmodel whilemain-
taining the EPC classification accuracy; 2) providing
guidance on the building EPC labelling determinant
factors; and 3) reveal the key factors to focus on for
one to improve the building EPC label for a given build-
ing.

This study is distinct from existing literature in twofold.
First, some existing literature [33] applies the neural net-
works to estimate the building EPC labelling through regres-
sion analysis of the annual building energy usage, while our
study develops the ANNmodel to directly classify the build-
ing EPC labels. Moreover, since the ANN models are black
box models, the internal processes and reasons for their clas-
sifications are unknown. As a result, application reluctance
and distrust are increased. The explainable artificial intel-
ligence techniques attempt to address the constraints of this
method by offering explanations for the ANN classifications.
To the best of our knowledge, this is the first study trying
to explain the ANN classifications for building EPC appli-
cations. Effectiveness of the proposed building EPC ANN
classification models are demonstrated via two case studies
based on the Certificazione Energitica degli edifici (CENED)
tool derived energy database [34], which comprises of data
pertaining to over 500 000 residential building energy cer-
tificates. The database splits itself into building data with
the old and new energy building EPC labelling methodolo-
gies [34]. This study analyses both datasets. The new build-
ing EPC methodology post 2015 is very similar to that of
the South African building EPC policy. The database offers
input data such as technical and human influenced building
factors, which enables the training, validation, and testing
of the building EPC ANN classification model. The results
depicted by the EPC classification are analysed through the
XAI tools and principles, making the building EPC classi-
fication models for both datasets trustable. The key input
features that positively or negatively influence the EPC clas-
sification are revealed, which are able to assist building own-
ers, tenants, facility managers, and energy auditors in know-
ing the factors that mainly contribute to the building EPC
labels.

The rest of the paper is organised as follows: Section 2
presents the ANN system modelling with feature selection
and the machine learning processes for model development
and analyses using two XAI tools to explain building EPC
classification. Section 3 describes the case studies with Sec-
tion 4 giving the discussion and results. Section 5 covers the
conclusion of the paper.

2. Methodology
The research methodology for this study is shown in Fig-

ure 1. We start with the development of the ANN model for
the building EPC label classification. The modelling pro-
cess mainly includes the feature engineering, model train-
ing, and the model performance testing. Defective data of
the operational and historical building characteristics data
acquired from the CENED database are removed through fil-
ters and conditioned through feature engineering principles
that improve the performance of the ANN model [33]. The
screened data are used for the ANN modelling. The ANN
model structure and its parameters are tuned to produce an
optimally performing model. Section 2.1 expands on the
ANN modelling procedures whereby the model is validated
and the model accuracy is analysed. The ANN model’s ac-
curacy, transparency and robustness are improved through
the guidance of the XAI. The selected XAI tools, SHAP
and LIME are capable of explaining the internal function-
ing mechanisms of the ANN for the building EPC classifi-
cations.
2.1. The building EPC ANN classification model

An ANN model consists of three layers that are the in-
put, output and hidden layers, which resemble the concept
of a biological neuron in the brain. The three layers are in-
terconnected with the connections leading to the next adja-
cent layer as depicted in Fig. 1. The interconnected neu-
rons of the activation and transfer functions form the inte-
gral part of the ANN. The transfer function propagates the
calculated values to the next layer. The activation function
consists of weight and bias values that estimate the output
values [35, 36, 33]. The optimisation technique used for the
ANNmodelling procedures for fine-tuning and updating the
weights of the hidden neurons is the adaptive momentum
estimation [37, 38]. It provides the perfect balance of speed
and accuracy, which is important, given the large size of the
dataset for model training [39]. The loss function is used to
determine the deviation of the model from the predicted and
output value. The ANN model implemented in this study
utilised the categorical cross entropy for the loss determina-
tion in the classification process.

The classic ANN model takes the form of [37]

y = fx

( n
∑

i=1
(wiXi + b)

)

, (1)

where y represents the model output. The weights wi aremultiplied by the input dataXi . The dummy neuron weight
value is b, which is the threshold value or bias. The sigmoid,
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Figure 1: Building EPC ANN classification and explainable artificial intelligence.

rectified linear, step, or hyperbolic function are application
options for the transfer function fx [35].In this study, there are two transfer functions utilised,
which are the rectified linear function and softmax function,
implemented for the hidden layers and output layer, respec-
tively. The function is expressed as [37]

ℎ(a) =

{

0, if a ≤ 0,
a, if a > 0, (2)

whereℎ(a) represents the transfer function, and a as the input
values (bias values and the input weights). The output val-
ues from the classification model are usually un-normalised
score values pertaining to particular classes. Therefore, N
real values taken from the preceding layer are normalised
through the softmax function intoN real values that add up
to 1. The normalisation results are values between 0 and 1,
which are defined as the probability scores. This probabil-
ity score is directly proportional to its attributed value from
the deep neural network model output layer and remains be-
tween 0 and 1. This process is ideal for multi-classification
models where the classes are mutually exclusive. The soft-
max function is expressed as [37]

�(y⃗i) =
exi

∑N
i=1 e

xi
, (3)

where y⃗ denotes the input vector (y1,… , yN ) of the softmax
function. The previous layers’ input values are denoted by

xi. The equation further incorporates an exponential term
exi . Input values less than one are excluded by the expo-
nential. Moreover, the normalisation term that governs the
probability distribution is given by the output vector sum-
mation at the denominator in Eq. (3).
2.2. The ANN model training, testing, and

evaluation
The ANN model characteristics and parameters are ad-

justed suitably for the building EPC classification. More-
over, the historical dataset is split into three groups to min-
imise over-fitting, namely a training set, a validation set, and
a test set. The training and validation sets are given a 80/20
percentage split, respectively. This process is performed af-
ter the initial 20% split of the whole dataset to establish the
test data. The test data are not used in the training process as
this group is used to determine the practical performance of
the ANN model. Performance evaluations of the model are
executed through the test data. They take the form of accu-
racy measures that include but are not limited to the overall
accuracy, probability of detection, and precision. XAI tools
and the confusion matrix are other procedures and processes
used to further evaluate the performance of the building EPC
ANN classification model.

The performance indicators such as the model accuracy,
sensitivity and precision defined in equations Eqs. (4)-(6) are
adopted to facilitate the model training. The model accuracy
in Eq. (4) represents the total test data samples correctly clas-
sified as a percentage of the total test data samples supplied
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to the ANN model for the building EPC classification.

Accuracy = CP + CN
CP + CN +WP +WN

, (4)

where CP denotes the correct positive classifications, CN
denotes the correct negative classifications,WP denotes the
wrong positive classifications, andWN denotes the wrong
negative classifications. The sensitivity in Eqs. (5) is the
fraction of the total correct positive classifications against
the total of correct positive and wrong negative classifica-
tions by the ANN model. Whereas, the precision in Eqs. (6)
is the ratio between the correct positive classifications against
the total of correct positive and wrong positive classifica-
tions by the ANN model classification.

Sensitivity = CP
CP +WN

, (5)

and
Precision = CP

CP +WP
. (6)

2.3. Explanation of the building EPC ANN
classification model

The building EPCANN classificationmodels are “black-
box” machine learning models. In order to demonstrate their
internal classification mechanisms and increase public ac-
ceptance of the model, this study deploys the XAI tools to
explain the underlying model and the influence of each input
feature on the classification outcomes. LIME and SHAP are
popular XAI tools used for model interpretation and making
machine learning models comprehensible, which employ a
simplified explanation model that is regarded as the inter-
pretable approximation of the obtained building EPC ANN
classification model. The LIME and SHAP are considered
additive feature attribution methods, which takes the form
represented in Eq. (7) [40].

g(z
′
) = �0 +

M
∑

j=1
�jz

′

j , (7)

where z′ ∈ {0, 1}M , M is the number of simplified input
features, g(⋅) denotes the explanation of the machine learn-
ing model. Each feature attribute, represented by j, is as-
signed a weight �j . These weights are summed to determine
an approximation of f the original machine learning model.
z′j ∈ {0, 1}, the coalition vector, represents the features pres-ence or non presence in the summation, respectively.
2.3.1. Local Interpretable Model-Agnostic

Explanation
Model agnostic interpretation is achieved through Lo-

cal Interpretable Model-agnostic Explanations (LIME) [41].
This procedure produces an approximationmodel [32]. Through
the locally executed procedure a globally understood model

is achieved [42]. The LIME aims to minimise the following
objective function: [32]:

�(z) = arg min
g∈G

L(f, g, �z) + Ω(g), (8)

where g ∈ G is the explanation model, G represents a vari-
ety of interpretable models namely linear models, rule lists,
and decision trees. For the black-box building EPC ANN
classification models represented by f , the probability that
z belongs to a specific class is given by f (z). The estab-
lishment of the locality around z is realised through �z, theproximity measure. The minimisation of the loss function
L(f, g, �z) [32] is the operation prescribed in an attempt to
establish the performance of g(⋅) in Eq. (7), in explaining
f . Lastly, with the derived g ∈ G model not always being
simple to explain, Ω(g) a complexity factor is introduced.
In order to allow for interpretations by humans, this factor is
kept low. Examples include non-zero weights in linear mod-
els and tree depth in decision trees. Through LIME, locally
produced models estimate f globally [29, 42].
2.3.2. SHapley Additive exPlanation

SHapleyAdditive exPlanation (SHAP) is a techniquewith
the ability to interpret and determine feature importance scores
from black-box models. In this algorithm, SHAP values �jallocated to the jth feature are derived through the support
of game theory. This value provides a score that determines
the effect the feature has in the classification process of the
machine learning models [42, 43]. The SHAP values are
determined through the equation [40]

�j =
∑

S⊆Z⧵{j}

|S|!(Z − |S| − 1)!
Z!

[fS∪{j}(xS∪{j})−fS (xS )],

(9)
whereZ is a set of the input features, S is a subset represen-
tation of the features extracted from Z. The building EPC
ANN classificationmodel is trained on all the feature subsets
and the importance of each feature is evaluated to determine
its effect on the classification. The analysis results in a value
being allocated to each feature. In order to realise this ef-
fect, two models are analysed, one with the feature present
and one without the feature present, which are represented
by fS∪{j}(xS∪{j}) and fS (xS ), respectively [40]. xS is set
S’s input features’ actual values.
2.4. Applications of the explained ANN model

The SHAP and LIME algorithms are performed to ex-
plain the building EPC ANN classification model. The ex-
planation outcomes can be taken as guidance to eliminate re-
dundant and negatively influencing features during the clas-
sification. In addition, the XAI algorithms help to iden-
tify the key determinant features of the building EPC labels.
Such explanations consequently offer guidance for building
EPC label level improvements. For instance, if the XAI ex-
plains that the thickness of the building window is one of the
determinants of the building EPC’s label rating level, then it
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Table 1
Annual kWh∕m2 for EPC labelling of Italy’s Lombardy region
pre-2015[34].

EPC label kWh∕m2
A+ ∈ (0, 14)
A ∈ [14, 29)
B ∈ [29, 58)
C ∈ [58, 87)
D ∈ [87, 116)
E ∈ [116, 145)
F ∈ [145, 175)
G ∈ [175, ∞)

is reasonable for building owners to modify the thickness of
the building window as a prior building energy efficiency
solution.

3. Case studies
In this section, two case studies are presented to demon-

strate the effectiveness of the proposed building EPC ANN
classification models and AI explanations of the ANN mod-
els. The neural networks are constructed using Python 3.7.
Feature importance calculations are performed through the
XAI algorithms that explain the reasons for a particular build-
ing classification. The SHAP and LIME explanations are
used to identify the key features while recognising features
to be excluded that portray little or insignificant influences
on the classification.
3.1. Case study 1: Italian EPC labelling pre-2015

In the first case study, buildings are classified into eight
distinct classifications, namely A+, A, B, C, D, E, F and G
using the CENED software [33], which is capable of cal-
culating the required energy for heating, cooling, lighting,
and domestic hot water independently. The EPC energy la-
bel is exclusively decided by the heating energy consump-
tion EPH . The criteria for assigning an EPC label differ
between residential and non-residential structures, as well
as their corresponding climate zones. The EPH values are
the key determinants of the EPC label in a certain climate
zone as depicted in Table 1. This concern of only using
EPH for labelling purposes has been resolved in a current
upgrade to the CENED software, which takes into account
all of the aforementioned energy loads when calculating the
energy performance index. In the second case study, build-
ings are therefore classified into ten distinct groups, namely
A4, A3, A2, A1, B, C, D, E, F, and G, determined by the
current CENED tool [34].
3.1.1. Data description and processing

The open source CENED database that contains numer-
ous buildings’ energy information in the Italian Lombardy
region is utilised to train the building EPC ANN classifica-
tion model. For the first case study, the building EPC la-
belling is mainly dependent on EPH , which is the heating

Table 2
Data processing filters from the CENED database [33, 35].

Parameter Filter Unit
Net floor area (50,∞) m2
Glass opaque surface ratio (0, 0.9] -
Net volume (130,∞) m3
U-value of walls, roof and floor (0.15, 4) W ∕m2K
U-value of windows (0.8, 6) W ∕m2K
Glazed surface (1,∞) m2

energy consumption of the building as depicted in Table 1.
The input parameters for the classification process of build-
ing EPC labels is described in Fig. 1. In Fig. 1, residential
buildings are the biggest group, which are labelled with the
code E.1(1) on the open source CENED database. As part
of the filters identified in Table 2, zero entries in particular
are removed. In order to acquire a reliable neural network,
defective data must be removed as the errors experienced in
the weights are transferred from one layer to the next result-
ing in a poorly performing model [33]. The input features go
through various filters and various feature engineering tech-
niques that are adopted from studies on the same dataset, e.g.
removal of zero inputs of thermal conductivity data and label
encoding categorical data [44, 33].

The input data used to train the building EPC ANN clas-
sificationmodel can be classified into three categories, namely
the building characteristics, environmental conditions, and
the social factors. The building characteristics refer to the
building envelope and building appliances. The environ-
mental conditions include both the indoor and outdoor cli-
matic conditions, and the social factors relate to occupant
behaviours, building operations and maintenance. The in-
fluence of each input parameter on the model is established
and is known as a causal strength. The input feature val-
ues are weighted to give different output classes and together
with the determined causal strengths, which enable the de-
velopment of a more reliable ANNmodel that is able to clas-
sify their EPC label levels [35]. Additionally to these three
categories in South Africa, for instance, we could classify
the building characteristic input features into the POET cat-
egories [10]. The POET framework is a well-established
grouping strategy to capture the key driven factors of energy
systems.

Fig. 2 shows the distribution of the recorded building
EPC labels, where ‘G’ rated buildings occupy 52.03%. ‘A+’
and ‘A’ labelled buildings occupy 0.6% and 3.3% respec-
tively in case study 1. The filters and data cleaning con-
cepts applied are extracted from studies performed on Italian
buildings [44, 33], which results in 254 128 buildings with
129 682 ‘G’ rated buildings.

3.1.2. The building EPC ANN classification model
training and analysis

The ANN model is initially trained by fourteen inputs
depicted in Table 3. These input features are numerical fea-
tures except for the “FT". The obtained model exhibits an
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Figure 2: Building EPC label distributions in the source data.
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Figure 3: EPC classification accuracy during the ANN model
training for Italy’s Lombardy region pre-2015.
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Figure 4: A confusion matrix: input building EPC label vs.
classified EPC labels (Case study 1).

accuracy of 93.10%, which is shown by Fig. 3. The optimum
time as well as epochs are established in order to attain the
highest possible accuracy efficiently by stopping the training
after no improvement for five epochs.

A summary of the model’s performance is given by the
confusion matrix. In Fig. 4, the confusion matrix shows a
matrix of certified building EPC labels against the classified
building EPC labels. The overall accuracy achieved from the

Table 3
The building EPC ANN classification modelling characteristics.

Characteristic Case study 1 Case study 2
EPC input features 14 26
First layer neurons 64 64
Second layer neurons 128 128
Output layer nodes 8 10
Test data ratio 0.2 0.2
Validation data ratio 0.16 0.16
Training data ratio 0.64 0.64
Epochs 90 250

building EPC ANN classification models on the test dataset
is 93.10%. The diagonal of the confusion matrix represents
correctly classified building EPC labels that are determined
as true by the building EPC ANN classification model. The
acquisition of the performance of the classification of each
class is illustrated through Eqs. (4)-(5). These results are
further summarised in Table 4. The buildings labelled with
an ‘A’ EPC label occupy 0.33%. This low representation
in the test and training data-sets results in the lowest values
of precision (0.4270) and probability of detection (0.6867).
Buildings labelled ‘G’ present the highest probability of de-
tection (0.9606) and precision (0.9911) values as they con-
stitute 53.43% of the dataset.

Table 4 addresses the performance overview numerically
of the building EPC classification ANN model. Through it,
the unequal distribution of various building EPC energy la-
bels and their effect on performance is apparent as depicted
in Fig. 2.
3.1.3. LIME XAI

The local explainability is achieved through the LIME
algorithm. Its application in the building EPC programme
results in feature importance identifications and probabili-
ties of the classified classes. Figs. 5-6 illustrate the findings
from the LIME algorithm. Fig. 5 presents a list of expla-
nations that reflect the key features contributing to the EPC
‘G’ classification, consisting of three parts: the prediction
probabilities, the feature probabilities, and the feature value
table. The prediction probabilities graph shows the building
EPC ANN model’s classification decision, which clearly in-
dicates a probability of 1, labelled ‘G’ and represented by the
grey bar, to classify this building to an EPC label ‘G’. The
feature probabilities graph shares more details about how
each of the 14 input features contribute to the given classi-
fication decision. In this case, detailed feature probabilities
reveal informative details regarding what input feature sup-
ports the classification to the ‘F’ and ‘G’ EPC label, together
with the details about what input feature contradicts classi-
fication to the ‘F’ or ‘G’ EPC label. The feature value graph
presents the actual value that one feature possesses in this
observation, and also sorts the features by importance. The
top 13 input features are illustrated in the feature value table.
The feature value table helps the interpretations of the results
in the feature probabilities graph. For instance, in this expla-
nation, the “CO2” value is 111.02 kg∕m2a, which is greater
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Table 4
ANN model classification performance.

EPC label Probability of detection Precision Number of input testing labels % of input testing labels
A+ 0.7346 0.8316 1345 2.64%
A 0.6867 0.4270 166 0.33%
B 0.9467 0.8845 5332 10.49%
C 0.7982 0.9388 3845 7.57%
D 0.9088 0.7731 3344 6.58%
E 0.8328 0.7483 4319 8.50%
F 0.8026 0.8000 5314 10.46%
G 0.9606 0.9911 27161 53.43%
Weighted average precision 0.9149

Table 5
EPC classification performance with altered input features.

Input feature EPC label G Target EPC label E Unit
DD 2592 2592 °C
SA 68.09 68.09 m2
V 234.91 234.91 m3
Os 284.85 284.85 m2
Gs 15.64 15.64 m2
AUw 1.57 0.3 W ∕m2K
AUb 0.81 0.81 W ∕m2K
AUr 0.90 0.90 W ∕m2K
AUwn 3.22 3.22 W ∕m2K
CO2 111.02 20 kg∕m2a
GHE 0.61 0.61 -
GHWE 0.22 0.22 -
FT 13 13 -
HDE 0.55 0.55 -

than 60.37 kg∕m2a. The feature “CO2 > 60.37” supports
the classifications to an EPC label of ‘G’ and also ‘NOT F’.

LIME also gives numeric thresholds in inequalities with
a clear ranking of the feature importance as shown in Fig. 6,
where one can observe that features with the highest impact
on the classification are the “CO2” and the “GHE”, and the
“AUb” has the lowest impact. The weight values depicted
in the figure are derived through the determination of the
distances of the data points, that are generated through per-
turbation, in the neighbourhood of the original data point.
These perturbed values are kept within a predetermined prox-
imity which keeps the model locally faithful. These LIME
explanations offer essential guidance on the possible solu-
tions to improve the EPC label ratings. For instance, Fig. 6
illustrates that the “CO2” feature can be reduced to an in-
put value lower than 60.37 kg∕m2a, which may result in the
building’s EPC label to improve from ‘G’ to a better rating
of ‘F’ or ‘E’. When the input feature values are altered in the
manner described in Table 5, it results in an upgrade of the
building EPC label ‘G’ TO ‘E’ when the “AUw” is changedto 0.3 and the “CO2” is changed to 20 kg∕m2a.

3.1.4. SHAP XAI
When SHAP is applied to explain the building EPCANN

classification model in the case study 1, it yields the global
influence of each feature across all classes and buildings in

the dataset. The average magnitude of SHAP values across
the dataset is derived to give the feature importance. Fig. 7
displays and ranks the overall feature importance from the
highest to the lowest. The most influential feature across
all building EPC label classifications is the “CO2”, with a
SHAP value of 0.62, followed by the “SA”. The “HDE” and
the “GHWE” are features with the least effect on the model
classifications. Removal of these two least influential fea-
tures according to the SHAP explanation does not result in
a drastic change in the model accuracy. Table 6 illustrates
as to what extent the removal of other features has on the
overall accuracy of the model. Model 1 represents the ini-
tial input features and these are depicted on the vertical axis
of Fig. 7. Further investigation shows that with the exclu-
sion of the feature “CO2” as the input feature, the only inputfeature measured over a yearly period, the training process
yields a model with an overall accuracy of 76.10%. SHAP is
also able to perform local interpretability of the ANN clas-
sification model. Local explainability of one specific build-
ing to be classed into an EPC label ‘G’ through SHAP is
summarised in Table 7. The classification probability of
the building EPC as ‘G’ is 1.00. The most influential in-
put feature supporting this classification is the “CO2” whilethe most influential input feature against this classification
is the “SA”. In addition, the input feature of the “CO2” is
strongly against this building to be classified into any other
EPC labels other than the EPC label ‘G’. The observations
from Table 7 is also supported by the absolute SHAP values
in Fig 8. In Fig 8, the bar values in red indicate those input
features who are positively contributing to the classification
to the EPC label ‘G’, while the bar values in blue symbolise
the input features who are against the building to be classi-
fied into a label ‘G’. The magnitude of bar values indicates
the strength of the contribution to each classification.

3.1.5. Comments on the XAI outcomes
The SHAP is able to perform both local and global ex-

planations while the LIME only offers local explanations.
The two XAI tools show that the most influential feature of
the building EPC classification is the “CO2”, whether ex-plained locally or globally. The LIME local explanations
show that the “GHE” and the “SA” are the next most influ-
ential parameters, with the “AUb” being the least influential.
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Figure 5: LIME explanations for a building EPC label ‘G’ classification.
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Figure 6: Input feature importance ranking via LIME explanations for a building EPC ‘G’ classification.

For the SHAP XAI, the “SA” and the “V” are the next most
influential, with the “AUb” being the least influential. The
local explanations only pertain to a particular classification
being explained locally and the explanations may not always
hold true globally. The LIME explanations, with its revealed
threshold given by the inequalities, allow one to determine
the quantifiable adjustments to enact the building EPC label

improvement while the SHAP only explains the magnitude
of the feature impact through SHAP values. The SHAP of-
fers explanations that determine feature importance globally
hence enabling to avoid the features of no influence for the
building EPC ANN classification.
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Figure 7: Input feature importance ranking via SHAP global explanations for building EPC classification.
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Figure 8: Input feature importance ranking via SHAP explanations for a building EPC G classification.

3.2. Case study 2: Italian EPC labelling post-2015
3.2.1. Data description and processing

The procedure applied in the building EPC labelling of

case study 2 is similar to that of the South African build-
ing EPC programme. The general process to perform the
EPC labelling includes two steps. Firstly, the global energy
performance index of the non-renewable energy value EPglfor the national reference building should be determined, see

T Tsoka et al.: Preprint submitted to Elsevier Page 11 of 19



XAI for building EPC labelling classification

Table 6
Model performance with different number of input features.

Model
Id

Input
fea-
tures

Feature names Accuracy

1 14 AUb, AUr, AUw, AUwn, DD,
FT,GHE, GHWE, HDE, Os,
Gs, V, SA, CO2

93.10%

2 13 AUb, AUr, AUw, AUwn, DD,
FT,GHE, GHWE, HDE, Os,
Gs, V, SA

76.10%

3 12 AUb, AUr, AUw, AUwn, DD,
FT,GHE,GHWE, Os, Gs, V,
SA ,

75.92%

4 11 AUb, AUr, AUw, AUwn, DD,
FT,GHE, Os, Gs, V, SA

75.37%

Table 7
SHAP classification explanations for a building EPC label G.

EPC Classification Top supporting Top contradicting
label probability feature feature
A+ 0.00 FT CO2
A 0.00 FT CO2
B 0.00 FT CO2
C 0.00 FT CO2
D 0.00 FT CO2
E 0.00 DD CO2
F 0.00 DD CO2
G 1.00 CO2 SA

Table 8
Annual energy usage ratio for different EPC labels in Italy’s
Lombardy region.

EPC label Energy usage ratio
A4 ∈ (0EPgl, 0.40EPgl]
A3 ∈ (0.40EPgl, 0.60EPgl]
A2 ∈ (0.60EPgl, 0.80EPgl]
A1 ∈ (0.80EPgl, 1.00EPgl]
B ∈ (1.00EPgl, 1.20EPgl]
C ∈ (1.20EPgl, 1.50EPgl]
D ∈ (1.50EPgl, 2.00EPgl]
E ∈ (2.00EPgl, 2.60EPgl]
F ∈ (2.60EPgl, 3.50EPgl]
G ∈ (3.50EPgl, ∞EPgl]

the Annex 1, Chapter 3 of the minimum requirements de-
cree [45]. Secondly, the property that is subject to the EPC
evaluation must have its ĒP gl calculated. The building EPClabel is determined by comparing the ratios against theEPglvalue of the reference building as depicted in Table 8. The
minimum expected building EPC label is B. The ĒP gl cal-culation is depicted in Eq. (10),

ĒP gl = EPH + EPC + EPW + EPV , (10)
where EPH , EPC , EPW , and EPV denote the energy in-
tensities of heating, cooling, domestic, and hot water and
ventilation, respectively in kWh/m2a.

Table 9
Data processing filters for the CENED database.

Parameter Filter Unit
Net floor area (50,∞) m2
Net volume (130,∞) m3

Table 10
Input feature classification for training purposes

Feature names Feature type
DD, LBC, NGC, SBC, DC, SPVC,
STC, DHC, SACM, SAPER, SAP-
NER, WANP, WACE, WAPEPR,
WAPNER, SA, V, SV, WHT, SESA,
TT, RC,

Numerical

RBC, ST, EV, SAC Categorical

35.94%
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Figure 9: Building EPC label distributions in the source data.

Residential buildingsmake up the largest category in case
study 2 and are assigned the code E.1(1) in the CENED
database. Zero entries in specific input features are elim-
inated as part of the filters described in Table 9. The in-
put features are categorical features such as the “RC”, “ST”,
“EV”, and “SAC”, and the other input features are all numer-
ical features that are displayed in the vertical axis of Fig. 14.

Fig. 9 illustrates the percentage of buildings EPC label
counts in the CENED database, where ‘G’ rated buildings
occupy 35.94%, and EPC labels ‘A1’ - ‘A4’ account for 7.21%
of the labelled buildings. The filters and data cleaning proce-
dures applied are extracted from studies performed on Italian
buildings [44, 33]. As a consequence, there are 174 793 ‘G’
rated buildings out of a total building entry of 486 347 in this
case study.

3.2.2. The building EPC ANN classification model
training and analysis

The building EPC ANN classification model is trained
with 26 input features as depicted in Table 10. For classifi-
cation, the model exhibits an accuracy of 88.49% as shown
by Fig. 10.

The XAI tools are used to evaluate the feature signifi-
cance, to explain why a specific building’s EPC label is de-
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Figure 10: EPC classification accuracy during the ANN model
training for Italy’s Lombardy region post-2015.
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Figure 11: A confusion matrix: input building EPC label vs.
classified EPC labels (Case study 2).

rived during the classification. The XAI explanations pro-
vide technical guidance to exclude characteristics that have
a minor impact on the classification.

Fig. 11 depicts a matrix of certified building EPC la-
bels against the classified building EPC labels. The overall
accuracy of the classification is 89.49%. The performance
of the model on classifying each class is illustrated through
Eqs. (4) - (5), with the results depicted in Table 11. The
‘G’ labelled buildings account for 34.36%, which shows an
associated probability of detection of 0.9638 and precision
of 0.9756. Buildings having EPC labels of ‘A1-A4’ account
for 1.69%, 1.86%, 2.08% and 2.22% in the test dataset, re-
spectively. They account for some of the lowest precision
and probability of detection values due to their low represen-
tations in the dataset. Table 11 addresses the performance
overview numerically of the building EPC labelling classi-
fication. The uneven distribution of various building EPC
labels is shown in Fig. 9. The confusion matrix encapsulates
the performance of the EPC labelling classification.
3.2.3. LIME XAI

In Fig 12, LIME explanations for a building EPC label
‘E’ classification are presented. The prediction probabili-
ties graph indicates that the building EPC label has a prob-
ability of 0.84 to be an EPC label ‘E’, represented by the

orange bar, while a probability of 0.16 to be an EPC label
‘F’, represented by the purple bar. The feature probabilities
graph categorises the 26 input features in terms of the sup-
porting features and contradicting features for the prediction
outcomes, the EPC ‘E’ and ‘F’ labels, respectively. It is ob-
served that the top feature against the classification ‘E’ is the
“WACE”. The top three input features contributing towards
the ‘E’ classification are “DHC”, “DC”, and the “NGC”.
There are 13 selected feature values given in the feature value
table. Fig 13 illustrates the feature importance ranking for
the given EPC label ‘E’ classification, where the “WACE”
is the most influential feature for the classified building EPC
label. To enact an improvement in the building EPC label,
“WACE”may be adjusted to an input value greater than 0.79.
3.2.4. SHAP XAI

Fig. 14 shows the most influential features during the
building EPC labelling classifications. The “WAEPR” is
the most influential, with a SHAP value of 0.75, followed
by the “NGC”. The “LBC” and “TT” are features with the
least effect on the classifications. Removal of the 10 least in-
fluential features according to the SHAP explanation shown
in Fig. 14 does not result in a drastic change in the model
accuracy. Model 1 in Table 13 represents the initial input
features that are depicted on the vertical axis of Fig. 14. Ta-
ble 13 further illustrates the ANN model accuracy perfor-
mance with insignificant input features removed. It is ob-
served that a model accuracy of 80.50% is achieved with
only 10 essential inputs as advised by the XAI explanations.
The Model 5 listed in Table 13 is trained by the input fea-
tures of “RC", “RBC", “V", “WHT”, “DHC”, “SA”, “DD”,
“WANP”, “WAEPR”, and “WAEPNR”, which are mostly
the technical specifications of building appliances in thewin-
ter season. This implies that information acquired from the
winter season is adequate to estimate the building’s EPC la-
bel for this case.

The SHAP classification probability for an ‘E’ labelled
building is depicted in Table 12. The probability of classify-
ing this building as an EPC label ‘E’ building is 0.84, which
is strongly supported by the input feature “WAEPR” while
contradicted by the input feature “RBC”.

3.2.5. Comments on the XAI outcomes
In this case study, the LIME XAI tool reveals that the

“WACE” is the most influential input feature for a specific
building EPC classification. The SHAP explains that the
“WAEPR” is the most influential input feature across the en-
tire building EPC classification exercise in the database. The
“DHC”, “DC”, “RBC”, and “SBC” are the next most signifi-
cant features, according to the LIME local explanations. For
that particular building EPC label classification, the “TT”
and “LBC” have the least impact. The “WHT” and “NGC”
are the next most influential features explained by SHAP,
with the “STC” being the least influential input feature. The
LIME reveals the lower bound or upper bound of the eval-
uated input features in its explanation output, which guides
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Table 11
ANN classification model performance.

EPC label Probability of detection Precision Number of input testing labels % of input testing labels
A4 0.5178 0.6279 2161 2.22%
A3 0.5059 0.5295 2024 2.08%
A2 0.7117 0.5225 1814 1.86%
A1 0.6636 0.8136 1644 1.69%
B 0.5759 0.7416 2377 2.44%
C 0.8086 0.6811 3903 4.01%
D 0.8646 0.8451 9972 10.25%
E 0.8643 0.9058 15958 16.40%
F 0.9335 0.9026 23997 24.67%
G 0.9638 0.9756 33419 34.36%
Weighted average precision 0.8869

Figure 12: LIME explanations for a building EPC ‘E’ label classification.
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Figure 13: Input feature importance ranking via LIME explanations for a building EPC E classification.

Table 12
SHAP classification explanations for a building EPC label E.

EPC Classification Top supporting Top contradicting
label probability feature feature
A4 0.00 NGC SPVC
A3 0.00 SPVC NGC
A2 0.00 SPVC NGC
A1 0.00 NGC SPVC
B 0.00 STC NGC
C 0.00 STC NGC
D 0.00 RC WAEPR
E 0.84 WAEPR RBC
F 0.16 SA NGC
G 0.00 RC WAEPNR

one to conduct necessary modifications for the EPC energy
label improvement, while the SHAP values are valuable in-
dicators to point out the most impactful features to retrofit
for the building EPC label improvement.

4. Discussions
This study provides alternative solutions to the building

EPC labelling, by ANN classification and the XAI outcomes
further advised the building EPC label improvement pro-
cedures incorporating both indoor building appliances and
building envelope features.

From the two case studies, it is evident that the build-
ing EPC ANN classification models are able to classify the
building EPC labels. The first case study mainly considers
the building envelope features that are the thermal properties
of buildings. There are particular energy efficiency mea-
sures available to improve these thermal resistivity values.
This allows stakeholders to make preferable decisions to im-
prove the building through an optimal and efficient man-
ner. The second case study adds to this phenomenon through
showing how one may limit the amount of features required

Table 13
Model performance with different numbers of features.

Model
Id

Input
fea-
tures

Feature names Accuracy

1 26 DD, LBC, NGC, SBC, DC,
SPVC, STC, DHC, SACM,
SAPER, SAPNER, WANP,
WACE, WAPEPR, WAPNER,
SA, V, SV, WHT, SESA, TT,
ST, EV, SAC, RC, RBC

89.62%

2 20 DD, NGC, DC, SPVC, STC,
DHC, SAPNER, WANP,
WACE, WAEPR, WAEPNR,
SA, V, SV, WHT, TT, ST,
EV, RC, RBC

87.52%

3 14 DD, NGC, SPVC, STC, DHC,
SAPNER, WANP, WAEPR,
WAEPNR, SA, V, WHT,RC,
RBC

87.48%

4 11 DD, NGC, DHC, WANP,
WAEPR, WAEPNR, SA, V,
WHT, RC, RBC

83.58%

5 10 DD, DHC, WANP, WAEPR,
WAEPNR, SA, V, WHT, RC,
RBC

80.50%

for the building EPC labelling process. This effectively re-
duces the procedures, data and information required for the
building EPC labelling exercise. The features in case study
2 are mainly the energy records of the indoor building appli-
ances. With the technical support of the XAI explanations,
the ANNmodel training process can be improved iteratively
towards the simplified and minimalist input of 10 input fea-
tures that can still maintain an overall model accuracy of
80.5%.

Clear evidence from the two case studies shows that a
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Figure 14: Input feature importance ranking via SHAP global explanations for the building EPC classification.

larger number of entries of the certified building EPC la-
bels results in better trained ANN models, hence this leads
to a higher probability of detection and precision of the EPC
ANN classification outcomes. A significant rise in Net Zero
Energy Buildings (NZEB) is expected in the coming years
due to the current regulations that enforce theseNZEBguide-
lines being a reality in the European Union. As a result, we
may expect more feature inputs of buildings at levels ‘A’ or
‘B’ to be available to calibrate the training of our proposed

building EPC ANN classification models.
The XAI tools adopted in this study share insight of the

inner working mechanism of the ANN models and reasons
for the building EPC label classifications. The LIME ex-
planations are local and prove helpful in determining the ad-
justable features in a quantifiable manner to improve a build-
ing EPC label. The SHAP explanations give global and lo-
cal feature importance evaluations. The global feature im-
portance identification allows insignificant features to be ex-
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Figure 15: Input feature importance ranking via SHAP explanations for a building EPC E classification.

cluded from the ANN models. When the local explanations
of SHAP are compared to those by LIME, the most influen-
tial features are the same. The proposed building EPC ANN
classification models and the XAI tools are ideal and benefi-
cial for the building EPC programmes. This study is able to
inform the key decision makers to take quantifiable effective
measures to improve the building EPC label. Unlike the tra-
ditional building EPC labelling process, the machine learn-
ing classification process renders a building EPC label as
its direct output without estimating the numeric energy con-
sumption, which might lead to doubts to the legitimacy of
the building EPC label. The XAI explanations curtail these
doubts.

5. Conclusion
This study proposes an artificial intelligence based clas-

sification method for the building EPC programme, which
aims to acquire the building EPC through a more efficient
and cost-effective process. The building EPC ANN classifi-
cationmodel is capable of classifying the building EPC label
by analysing input features of the technical and human re-
lated building energy driving factors. After the ANN model
classification, two XAI tools help to identify the minimal
input features that are most influential during the classifi-
cations. The minimum input feature identification, for the
building EPC classification, helps reduce the data and infor-
mation required during the EPC labelling process. In addi-
tion, the integral application of the building EPC ANN clas-
sification model and the XAI tools also reveal the quantifi-
able threshold of each input feature with respect to the nu-
meric contribution to the final classification decision. This
offers clear guidance for the EPC label improvement solu-
tions, when parties involved are cognisant of which input
feature can be modified, and by how much, such that a par-
ticular building EPC label can be improved to a better level.

The results from the case study 1 show that before fea-

ture removal the models accuracy was 93.10% at 14 input
features, and 75.37% at 11 input features without yearly cal-
culated data. The twomost influential features are the “CO2”and “SA”. For the case study 2, the ANN model classifica-
tion accuracy is 89.62% with 26 input features, and 80.50%
with 10 features acquired over the winter season. The most
influential features are the “RBC" and “WACE”.

6. Future work and recommendations
This study shares our initial investigations of applying

theANNmodels to classify building EPC labels, using LIME
and SHAPXAI tools to explain the building EPCANN clas-
sification models. Our ongoing research focus is in the fol-
lowing areas: 1) develop new artificial intelligence models
for the building EPC classification, and try to optimise the
model classification accuracy with minimum input features
through explainable AI techniques; 2) calibrate the existing
model by using the local data from the South African build-
ing EPC programme, with the aid of the existing and newly
developed XAI tools; and 3) based on the revealed build-
ing features and determinants of the existing, we will try to
prioritise the optimal building EPC label improvement solu-
tions.
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