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BACKGROUND: Pregnancy, infancy, and childhood are sensitive windows for environmental exposures. Yet the health effects of exposure to nano- and
microplastics (NMPs) remain largely uninvestigated or unknown. Although plastic chemicals are a well-established research topic, the impacts of
plastic particles are unexplored, especially with regard to early life exposures.

OBJECTIVES: This commentary aims to summarize the knowns and unknowns around child- and pregnancy-relevant exposures to NMPs via inhala-
tion, placental transfer, ingestion and breastmilk, and dermal absorption.

METHODS: A comprehensive literature search to map the state of the science on NMPs found 37 primary research articles on the health relevance of
NMPs during early life and revealed major knowledge gaps in the field. We discuss opportunities and challenges for quantifying child-specific expo-
sures (e.g., NMPs in breastmilk or infant formula) and health effects, in light of global inequalities in baby bottle use, consumption of packaged foods,
air pollution, hazardous plastic disposal, and regulatory safeguards. We also summarize research needs for linking child health and NMP exposures
and address the unknowns in the context of public health action.

DISCUSSION: Few studies have addressed child-specific sources of exposure, and exposure estimates currently rely on generic assumptions rather than
empirical measurements. Furthermore, toxicological research on NMPs has not specifically focused on child health, yet children’s immature defense
mechanisms make them particularly vulnerable. Apart from few studies investigating the placental transfer of NMPs, the physicochemical properties
(e.g., polymer, size, shape, charge) driving the absorption, biodistribution, and elimination in early life have yet to be benchmarked. Accordingly, the
evidence base regarding the potential health impacts of NMPs in early life remains sparse. Based on the evidence to date, we provide recommenda-
tions to fill research gaps, stimulate policymakers and industry to address the safety of NMPs, and point to opportunities for families to reduce early
life exposures to plastic. https://doi.org/10.1289/EHP9086

Introduction
Globally, humans are in close and frequent contact with plastics
and their degradation products (Vianello et al. 2019), particularly
nano- and microplastics (NMPs). Because of their complex physi-
cal and chemical properties (e.g., polymer, size, shape, charge)
(Figure 1), NMPs may negatively affect human health, yet these
exposures and their health implications remain either largely unin-
vestigated or unknown (Koelmans et al. 2019; WHO 2019). In this
commentary, we describe why the special vulnerability of children
and pregnant women to these exposures must be considered when

framing research questions and designing methods for plastics
research, as well as when developing policy around plastics.

Emerging evidence indicates that humans are ubiquitously
exposed to NMPs (Koelmans et al. 2019). Plastic products have
also been found to contain a cocktail of more than 40,000 chemi-
cals (Zimmermann et al. 2020), and certain plastics have been
shown to leach over 80% of their chemicals into water, highlight-
ing the potential for human exposure (Zimmermann et al. 2021).
As plastics degrade in the environment, they generate potentially
toxic modified products. Thus, plastics are a source of exposure
to particles and chemicals alike, and their health effects will
likely be driven by both physical and chemical toxicity.

Although the chemicals present in plastics have become a major
research topic, their presence as particles is critically unexplored, in
part due to significant methodological barriers. Yet these micro-
scopic (and smaller) plastic particles may exert potential health
effects in multiple ways. Mechanisms could include the ability to a)
deposit and cause inflammatory reactions if present in large num-
bers in sensitive areas (e.g., the alveoli region with its limited re-
moval processes) (Hinds 1999); b) translocate through biological
barriers owing to their small size (with different sizes relevant for
different barriers/organs) (Amato-Lourenço et al. 2020; Riediker
et al. 2019; Stone et al. 2017); and c) act as carriers of chemical mix-
tures, thereby contributing to chemical exposures (Campanale et al.
2020; Eriksson et al. 2020; Rochman et al. 2019).
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Recently, microplastics were discovered in human placenta
(Ragusa et al. 2021), meconium, and infant stool (Zhang et al. 2021;
Schwabl et al. 2019; Braun et al. 2021). Yet the impacts of exposure
to plastic particles during early windows of vulnerability are almost
entirely unknown. Our lack of knowledge on the health impacts of
NMPs and the chemicals they carry prevents evidence-based assess-
ment and effective management of the potential health risks arising
from plastic exposures (Senathirajah et al. 2021). Early exposures to
NMPs—alongside other environmental contaminants—should, we
believe, be researched as contributors to the developmental origins
of health and disease. Fundamental questions remain wide open: To
what extent are humans exposed to NMPs, especially during preg-
nancy and the sensitive early years? And what are the effects on
human health over the long term?

Plastics are chemically complex and release both NMPs and
chemicals during production, use, and degradation (Hahladakis
et al. 2018). The majority of NMPs come from fragmentation of
larger plastic items (usually litter), but there is also significant
direct release to the environment of microplastics (e.g., loss of
preproduction pellets). To date, just a handful of studies have
measured these exposures at human scale. One 2019 study esti-
mated daily microplastic intake at 203 particles for girls and 223
particles for boys based on consumption of specific foodstuffs
and drinking water in the United States (Cox et al. 2019).
Another study modeled the lifetime accumulation of microplas-
tics using a physiologically based pharmacokinetic model and
estimated daily intake rates of 553 particles for children
(Mohamed Nor et al. 2021). Yet these estimates might be “drastic
underestimates” (Cox et al. 2019); more child-focused research
estimated a single infant’s intake of microplastics from feeding

bottles to be in the range of 14,600–4,550,000 particles/d, with
the lowest levels seen in Africa and Asia (Li et al. 2020). This
enormous range highlights the large uncertainty around human
exposure to NMPs, particularly in early life, and the considerable
analytical challenges of quantifying NMPs.

Another major knowledge gap is around the potential human
health effects of NMPs. In 2019, a systematic review by the
Norwegian Food Safety Authority found only three studies rele-
vant for human health and concluded that it was currently impos-
sible to assess the health risks of NMPs (VKM 2019). This
mirrors earlier assessments by the European Food Safety
Authority (EFSA 2016), United Nations Food and Agriculture
Organization (Lusher et al. 2017), and Science Advice for Policy
by European Academies (Koelmans et al. 2019).

Pregnancy and childhood are windows of vulnerability to
environmental toxicants, as research over the last several decades
has established (Landrigan and Etzel 2013). Early life exposures
to hazardous chemicals, even in small quantities, can impact
human health over the entire life span (Vizcaino et al. 2014).
During infancy and childhood, child-specific behaviors, such as
crawling and hand-to-mouth activity, mean that children are
exposed to the environment in different ways than adults (Moya
et al. 2004). Moreover, children eat, drink, and breathe more per
unit body weight than adults. Consequently, pollutants in the
environment are disproportionately taken up by the youngest, and
we believe the same is true for NMPs (Figure 2). These higher
exposures occur at the same time as critical development of the
neurobehavioral, immune, metabolic, cardiovascular, and other
important body systems. Children also have more years of life
ahead of them than adults, making the early years a critical win-
dow to prevent long-lasting damage to health. Nevertheless, very
little research on NMPs has taken an early life exposures
approach (Street and Bernasconi 2021). Measurements of early
life exposures to NMPs, their toxicity, and long-term outcomes
are therefore scarce.

The aim of this commentary is to summarize the available
evidence on child- and pregnancy-related exposures to NMPs via
inhalation, placental transfer, ingestion and breastmilk, and der-
mal absorption. By providing an overview of the topic for the
public health and pediatrics communities, we aim to engage them
more actively in NMP research. We a) briefly review the state of
the science on early life exposures to NMPs and identify knowl-
edge needs; b) demonstrate how new methodologies may be able
to fill these knowledge gaps; c) guide study design of future stud-
ies; d) put these issues in the context of policy and global health
adaptations; and e) provide recommendations for research and
the relevant stakeholders.

Methods: Literature Review
To identify studies that investigated health effects of NMP par-
ticles in the context of pregnancy or child health and explore
knowledge gaps in the field, we carried out a literature search on
9 April 2021 in Web of Science and Scopus. The following
search strings were used:

• Web of Science:
TS = ((microplast* OR nanoplast* OR micro-plast* OR
nano-plast* OR “plastic particle*” OR polystyrene OR
microbead*) AND (infant OR child* OR baby OR pregnan*

OR neonatal OR prenatal OR utero OR gestation* OR trans-
generational OR intergenerational OR placenta* OR breast-
milk OR breastfeed*))

• Scopus:
TITLE-ABS-KEY ((microplast* OR nanoplast* OR micro-
plast* OR nano-plast* OR “plastic particle*” OR polystyrene
OR microbead*) AND (infant OR child* OR baby OR

Figure 1.Major characteristics of nano- and microplastic particles. Figure
and definitions of size categories (nanoplastics: 1 to <1000 nm; microplas-
tics: 1 to <1000 lm) adapted with permission from Hartmann et al. (2019)
© 2019 American Chemical Society.
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pregnan* OR neonatal OR prenatal OR utero OR gestation*

OR transgenerational OR intergenerational OR placenta*

OR breastmilk OR breastfeed*))
The search resulted in 1,091 unique studies after removal of

duplicates using EndNote 20. Two authors (K.S. and M.W.) inde-
pendently screened titles and abstracts for inclusion using
Rayyan (Ouzzani et al. 2016); discrepancies were resolved
jointly. A total of n=44 articles were included (Figure 3), of
which n=37 were primary research articles (Table 1). The full
list of included articles is provided in “Literature search bibliog-
raphy” in the Supplemental Material.

Inclusion criteria were primary studies of humans or other
mammals, as well as review articles and meta-analyses that
included NMPs in terms of toxicity, hazard, or exposure. The lit-
erature search was date and language unrestricted. Studies were

excluded if they used in vitro or nonmammalian models or did
not have clear relevance for pregnancy or child health. The large
majority of excluded studies used NMPs as consumables (e.g.,
antibody-coated microbeads or polystyrene plates) rather than as
the research topic, or reported on medical procedures, drugs, or
diagnostics that used NMPs. A small number of search results
were excluded when the abstract did not have sufficient detail
and full text was unavailable.

Results: Literature Review
Included studies were published between 1991 and 2021, with
more than half published in 2019 or later. We also found seven
review articles (listed in “Review articles on health effects of
nano- and microplastics relevant for pregnancy and childhood” in

Figure 2. Early life exposure pathways to plastic particles, showing potential routes of exposure via (top) placenta, (middle) breastmilk, and (bottom) dermal,
respiratory, and gastrointestinal systems. Illustration printed with permission, © Dorothy Fatunmbi (https://elementusillustrations.com).
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the Supplemental Material), thus nearly 16% of the total included
search results were review articles. In the research articles, the
most common topic (n=18 studies) was exposure to microplas-
tics, predominantly quantified in air or seafood. Interestingly,
only one study focused on a child-specific source of exposure,
namely plastic feeding bottles (Li et al. 2020). Exposure esti-
mates for children (Cox et al. 2019; Mohamed Nor et al. 2021)
were based on generic assumptions (e.g., food consumption)
rather than empirical information on the levels of NMP in matri-
ces relevant for child exposure (e.g., toys, indoor air in schools,
playground soils, infant foods, baby personal care products).

With regard to the child-specific hazards of NMPs, 12 studies
investigated toxicokinetic aspects and 7 studies focused on the tox-
icodynamics, both in mammalian models. Only 1 study took an ep-
idemiological approach. Most toxicokinetics work has addressed
the placental transfer of plastic particles (n=9), followed by stud-
ies on the biodistribution of NMP after inhalation (n=4).We iden-
tified 6 rodent studies and 1 study with lambs that investigated the
effects of NMPs in the context of in utero, neonatal, or early life
exposures. Based on these few studies, no specific trend in the toxi-
cological research on NMP is apparent. It is noteworthy that all but
1 study (Huang et al. 2015) used commercially available polysty-
rene beads, which are of limited relevance for human exposure
given their spherical shape. Real-world NMPs have a wide variety
of physical and chemical properties (Figure 1).

In general, the literature search revealed large gaps remaining in
our knowledge about early life exposures to NMPs; pregnancy- and
child-specific absorption, distribution, metabolism, and elimination
of NMPs; and the toxicodynamic profiles of NMPs. The overall size
of the evidence base for NMPs was substantially smaller than for
plastic chemicals. We tested this by running the same search replac-
ing NMP-related terms with “bisphenol*” (n=5,218 studies) or
“phthalate*” (n=4,398), comparedwith the n=1,090 studies found
for NMPs.Although this comparison has its limitations (e.g., chemi-
cals vs. particles,more time spent on research on chemicals), it high-
lights the nascent nature of NMP research in general and the lack of
focus on child health in particular.

In addition to studies captured by this literature search, some les-
sons can be drawn from the environmental health and safety
research on engineered nanomaterials, for which more information
is available (Schüepp 2010; Machado et al. 2010). For instance,
some engineered nanomaterials in food and the domestic environ-
ment can be ingested or inhaled by children (Tang et al. 2015; Tulve
et al. 2015) or transferred via the placenta to the fetus (Bongaerts
et al. 2020). Infants’ immature respiratory systems may make them
more vulnerable to nanomaterials (Semmler-Behnke et al. 2012).
However, there are also certain crucial differences between engi-
neered nanomaterials and nanoplastics: the former are intentionally
manufactured, and the latter are often unintentionally generated dur-
ing or after the use of plastic products. Accordingly, NMPs aremore
heterogeneous in shape, size, chemical composition, and other prop-
erties and will fragment further and faster in the environment
(Gigault et al. 2021). Thus, insights from engineered nanomaterials
cannot be simply translated toNMPs. However, as with the intersec-
tion of research on ambient ultrafine particles (Stone et al. 2017), it
is worth exploring common lessons to be learned. The following
sections are based on evidence from the emerging literature base
around NMPs, as well as on insights drawn from other nanomateri-
als and classicallymonitored chemicals.

Discussion

Exposure Routes
Plastics are unavoidable for children, infants, and pregnant women
around the world. The presence of microplastics is predominantly

Table 1. Studies on health effects of nano- and microplastics relevant for
pregnancy and childhood identified via literature search.

Type of study Study focus Reference

Epidemiological
studies

Exposure and irritation in schools Malmberg et al. 2000

Exposure studies MP in indoor or outdoor air or in
dust

Abbasi et al. 2017,
2019

Akhbarizadeh et al.
2021

Dehghani et al. 2017
Dris et al. 2017
Liu et al. 2019
Zhang et al. 2020

MP in fish and seafood for human
consumption

Akhbarizadeh et al.
2018, 2019, 2020

Barboza et al. 2020
Martinez-Tavera et

al. 2021
MP in bottled water Makhdoumi et al.

2021
Zuccarello et al. 2019

MP in fruits and vegetables Conti et al. 2020
MP release by infant feeding

bottles
Li et al. 2020

Aerosol deposition in the nose Zhou et al. 2013
Meta-analyses with exposure

estimates
Cox et al. 2019
Mohamed Nor et al.

2021
Experimental

studies
Toxicokinetics—inhalation Becquemin et al.

1991a, 1991b
Fournier et al. 2020
Han et al. 2021

Toxicokinetics—ingestion Smyth et al. 2005
Toxicokinetics—placental/

embryonic transfer
Grafmueller et al.

2015a, 2015b
Gruber et al. 2020
Huang et al. 2015
Ragusa et al. 2021
Wick et al. 2010
Fournier et al. 2020
Tian et al. 2009

Toxicodynamics—allergy,
asthma, inflammation

Alberg et al. 2014
Inocencio et al. 2017

Toxicodynamics—embryo
development

Bosman et al. 2005

Toxicodynamics—reproduction Han et al. 2021
Toxicodynamics—metabolism Luo et al. 2019a,

2019b
Toxicodynamics—systemic

toxicity
Han et al. 2021

Note: MP, microplastic.

Figure 3. PRISMA flow chart for literature review. Note: PRISMA,
Preferred Reporting Items for Systematic Reviews and Meta-Analyses.
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studied in air, foodstuffs, and beverages (Table 1) (Kannan and
Vimalkumar 2021; Lehner et al. 2019) although early life expo-
sures can also occur via the placenta and breastmilk (Figure 2), as
well as from food contact materials. The relative importance of
these exposure routes has not yet been established.

Microplastics have been discovered in human placenta
(Ragusa et al. 2021), meconium, and infant stool (Zhang et al.
2021; Schwabl et al. 2019), but the sources of these plastics are
difficult to trace. Microplastics have been detected in a variety of
foods (Mortensen et al. 2021), such as fish (Akhbarizadeh et al.
2020; Barboza et al. 2020; Martinez-Tavera et al. 2021), seafood
(Danopoulos et al. 2020; Van Cauwenberghe and Janssen 2014),
and salt (Yang et al. 2015), as well as in food contact materials
(Li et al. 2020), drinking water (Belz et al. 2021; WHO 2019),
and in both indoor and ambient air (Abbasi et al. 2017; Allen et al.
2019; Cai et al. 2017; Liu et al. 2019; Zhang et al. 2019).
Absorption of NMPs from these sources in utero, infancy, and
childhood has yet to be benchmarked.

In the following sections, we outline key findings and knowl-
edge gaps for child-relevant NMP exposure routes. Variation in
size and other properties of NMPs (Figure 1) will influence their
behavior and relevance for the different exposure routes.

Inhalation. Plastic degradation products, depending on their
size (<100 lm), may become airborne and available for inhala-
tion (Amato-Lourenço et al. 2020; Prata 2018). Microplastics
have been detected in ambient air in environments ranging from
urban (Abbasi et al. 2019; Akhbarizadeh et al. 2021; Amato-
Lourenço et al. 2020; Cai et al. 2017) to remote mountain areas
(Allen et al. 2019). The presence of microplastics in both indoor
air (Soltani et al. 2021; Dris et al. 2017) and settled dust (Liu et al.
2019) has also been reported. Compared with outdoors, much
higher concentrations of synthetic fibers including microplastics
have been reported indoors, predominantly composed of polypro-
pylene and polyethylene terephthalate (PET) polymers. Given the
instrumental limitations of the prior research, only fibers >50 lm
have been analyzed. This size fraction (>50 lm) is not respira-
ble, that is, it will not reach the tracheobronchial and alveolar
region during inhalation (Hinds 1999; ICRP 1994). However,
once settled on surfaces, such particles can be ingested by infants
during their typical mouthing behaviors (Xue et al. 2007).
Particles between 10 and 100 lm typically do not reach the tho-
racic and alveolar region but are deposited in the nose and mouth
(head airways region), which, despite effective clearance mecha-
nisms (Hinds 1999; Thomas 2013), can be the site of allergic
reactions. The respirable fraction of particles (<10 lm) can reach
the thoracic and alveolar region (Hinds 1999; ICRP 1994). The
presence of such small synthetic fibers and NMPs in indoor envi-
ronments, relevant for deposition in the lower respiratory system,
has not yet been studied. Considering that people in high-income
countries spend about 90% of their time indoors (Brasche and
Bischof 2005), assessing exposures indoors via inhalation is cen-
tral to understanding potential health effects.

As they grow, infants and children undergo changes in lung
architecture and breathing rates and patterns. In rodents, the
translocation of inhaled nanoparticles from the alveolar air space
to secondary organs was over one order of magnitude greater in
neonatal rodents than in adults (Semmler-Behnke et al. 2012); to
what extent this applies to human inhalation of NMPs—and its
potential for nanotoxicity (Donaldson et al. 2004)—is unre-
solved. Studies on inhalation of NMPs come mainly from adults,
and primarily from occupational settings, such as synthetic textile
production sites (Kremer et al. 1994). Both cellulosic and plastic
microfibers have been observed in nonneoplastic and malignant
lung tissue taken from patients with different types of lung cancer
(Pauly et al. 1998) where fibers were present in 87% of 114 lung

human lung tissue specimens examined and showed little deterio-
ration, indicating their biopersistence. Observations in the study
by Pauly et al. (1998) confirmed that some fibers are capable of
reaching the deep lung and avoiding clearance mechanisms.
Because they persist, these foreign bodies may induce acute or
chronic inflammation.

Placental transfer. Maternal exposures can become determi-
nants of a child’s health. Toxicants a mother is exposed to while
pregnant—or those stored in her body from years earlier—can be
released to her child during pregnancy and breastfeeding. A range of
experimental studies is available on the placental transfer of polysty-
rene NMPs within a nanomaterial health and safety context
(Fournier et al. 2020; Grafmueller et al. 2015a, 2015b; Gruber et al.
2020; Tian et al. 2009; Wick et al. 2010). Recently, Ragusa et al.
(2021) discovered microplastics in the human placenta in the size
range of ∼ 5–10 lmusing Ramanmicrospectroscopy. Ragusa et al.
(2021) located pigmented microplastic fragments in four of the six
human placenta samples studied, on both the fetal and maternal
sides, as well as on chorioamniotic membranes. However, the route
of NMP transfer into the body, into the bloodstream, and then into
the placenta is unknown. Braun et al. (2021) detected microplastics
>50 lm in the placenta andmeconium after cesarean, while empha-
sizing the need for researchers to carefully evaluate the potential for
contamination of samples from air fallout. Research suggests that
the degree of particle transfer across the placenta changes across the
trimesters with increasing gestational age (Vähäkangas and
Myllynen 2009). It is unclear whatmechanismsmay be triggered by
the transport of NMPs to the embryo or fetus. In a mouse model,
carboxylate-modified polystyrene nanoparticles (20–500 nm in
size) have been reported to cross the placenta, induce trophoblast ap-
optosis, and show uptake by fetal organs (Huang et al. 2015).
Research has demonstrated NMP transfer in human cells using pla-
cental perfusion ex vivo in the size range of 20–500 nm
(Grafmueller et al. 2015a; Poulsen et al. 2015;Wick et al. 2010) and
in vitro (Aengenheister et al. 2018; Cartwright et al. 2012; Hesler
et al. 2019; Kloet et al. 2015). Yet, limited research has explored the
placental kinetics of nanoparticles and engineered nanomaterials in
humans (Bové et al. 2019; Muoth et al. 2016); we encourage further
research on this topic.

Breastfeeding and ingestion. Chemical contaminants can be
transferred frommother to child by breastfeeding (Mogensen et al.
2015). Depending on the duration of breastfeeding, the child’s
body burden reflects the mother’s exposure. The degree to which
NMPs can be transferred by lactation is not known. As a toddler, a
child can inhale and digest NMP-containing dust in their home
environments as well. Tasting, licking, and chewing plastic toys
and textiles are potential exposure routes for NMPs and associated
contaminants. In one study, infant stool was found to have signifi-
cantly higher concentrations of PET microplastics compared with
adult stool, a finding that the authors attributed primarily to inges-
tion, whereas the stool concentration of polycarbonate microplas-
tics did not differ significantly between infants and adults (Zhang
et al. 2021). In addition, plastic packaging of child food items and
baby bottles must be considered potential sources of NMPs and
plastic chemicals. Li et al. (2020) showed that when shaken
with warm water, plastic baby bottles released up to 16million
microplastics per liter and that sterilization and high-temperature
water significantly increased microplastics release. Overall, they
concluded that children fed via plastic baby bottles will be
exposed to 14,600–4,550,000 particles/d in the size range cap-
tured by 0:8-lm pore sized filters. The analysis by Li et al. (2020)
also found trillions of nano-sized plastic particles per liter, with a
mean particle diameter of ∼ 100 nm. We call for future research
to collect data on plastic use during pregnancy and in early
childhood.

Environmental Health Perspectives 015001-5 130(1) January 2022



Ongoing and future cohort studies should gather information
on the type of plastic packaging used during pregnancy and child-
hood. Such an approach is already being implemented in the sixth
Faroese Birth Cohort, which was established in June 2020 and
has received support from the U.S. National Institutes of Health
and the Danish Environmental Protection Agency. To date, 550
mother–child pairs are participating. Parents provide information
on plastic-avoiding behavior via written questionnaire, and chil-
dren are examined at birth, 2 wk, 3 months, and 12 months post-
partum. The generated data may be used to estimate changes in
ingestion-related exposure hazards.

Dermal absorption. Although research has suggested a low
probability for dermal exposure to NMPs given the surface prop-
erties of plastic particles and the excellent barrier properties of
adult skin (Lehner et al. 2019), it is unknown how vulnerable
children’s skin may be. The adult skin barrier is different from
those of infants and children. Preterm-born infants in particular
have a thinner and less efficient stratum corneum, which is the
most superficial layer of skin, compared with adults (Mancini
2004). Skin barrier maturation has been reported to continue into
a child’s fourth year of life (Mack et al. 2016). Little evidence
exists for transfer of nanoplastics >100 nm (Bouwstra et al.
2001); for smaller NMPs, ports of entry could be hair follicles,
sweat glands (Alvarez-Román et al. 2004), or damaged skin,
such as related to atopic dermatitis (eczema), which is a common
childhood disease (Biagini Myers and Khurana Hershey 2010).
Frequent use of plastic packaging, emollients, and other baby per-
sonal care products could also be sources of exposure to NMPs,
but research on relevant sources is lacking.

Toxicology
Similar to our limited understanding of human exposures, the
health impacts of plastic particles remain poorly understood.
Recent assessments point toward large knowledge gaps regarding
the toxicokinetics and -dynamics of NMPs (WHO 2019). Our lit-
erature search identified just five studies in this area that investi-
gated inhalation (n=4 studies) or ingestion (n=1 study) using
animal models (Table 1). The major line of thinking is that
smaller plastic particles have a higher probability of crossing bio-
logical barriers and, thus, entering tissues or becoming systemati-
cally distributed. Limited evidence suggests that NMPs <10 lm
in size can be transported actively across epithelia (e.g., by M
cells in the small intestines), whereas larger microplastics up to
130 lm can translocate passively via persorption (Wright and
Kelly 2017). However, the proportion of NMPs physically enter-
ing the human body in the sense of a tissue translocation remains
largely unknown. The same is true for elimination and excretion
(Schwabl et al. 2019; Zhang et al. 2021). Moreover, the physico-
chemical properties of NMPs (e.g., polymer, size, shape, surface
charge) driving the uptake by cells (including in placental tissue
and mammary glands), cytotoxicity, and pro-inflammatory
responses have yet to be benchmarked. In addition, nearly no
studies of NMPs and plastics take into account that plastic may
pose distinct human health risks at every stage of its lifecycle
(Eibner 2007), including hazards from incinerating plastic waste.

Thus far, toxicological research has not specifically focused
on the effects of NMPs on child health. This is problematic
because the body’s defense mechanisms—the lungs and immune
system—are not fully developed at birth, leading to, for example,
much higher rates of respiratory infections and asthma among
children than adults (Landrigan and Etzel 2013). This means that
environmental exposures tolerable for adults may have adverse
health effects when they occur early in life. Humans are equipped
with a blunted immune system at birth, with decreased neutrophil
and monocyte cell counts, decreased natural killer cell cytolytic

function, and a T-cell population skewed toward immunotoler-
ance, instead relying on maternally derived immunoglobulins and
other immune factors to combat infections (Pollard and Bijker
2021; Simon et al. 2015). Little, if anything, is known about how
exposure to NMPs affects the developing human immune system.
However, mouse dams fed NMPs in drinking water displayed a
dose-dependent increase in immunoglobulin A levels, fewer
mature dendritic cells, and an increased ratio of helper/cytotoxic
T-cells (Park et al. 2020). The dendritic cell phenotype was reca-
pitulated in male, but not female, pups, whereas the T-cell popu-
lation in pups of both sexes was skewed toward helper T-cells.
Although suggestive of NMP immunomodulation, the impact this
has on infection and autoimmunity is unknown. It is important to
close these knowledge gaps to assess how NMP exposure affects
the developing immune response and the implications for immune
responses later in life.

Recent studies seem to confirm that polystyrene particles, fre-
quently considered an inert material, can, in the nanosize range,
exert toxicological effects. Polystyrene nanoparticles (25 and
70 nm) have been reported to exert toxicological effects on
human alveolar epithelial cells and to affect cell viability, cause
cell cycle S phase arrest, oxidative stress, activated inflammatory
gene transcription, and change the expression of proteins associ-
ated with the cell cycle and pro-apoptosis (Dong et al. 2020; Xu
et al. 2019b). However, it remains open if these effects are caused
by the polystyrene itself, a stabilizer present on the particle sur-
face, or a degradation product of polystyrene forming in vivo.
Research is needed to find out the extent of exposure and charac-
teristics of particles that determine where and at what dose the
particles deposit in the respiratory tract, as well as their associ-
ated toxicological effects. Insoluble particles <10 lm, which can
reach and deposit in large numbers in the alveolar region, may
cause inflammation and systemic changes even if the material
they are composed of is not potentially toxic (Garcés et al. 2021).
This is due to the site of deposition and limited clearance mecha-
nisms, which in the case of alveoli entails engulfment by macro-
phages only, with a clearance process of insoluble particles
occurring over months to years (Hinds 1999; Nagre et al. 2019).
Plastic particles may serve as carriers of mixtures of chemicals
ad- and absorbed on them. These chemicals may be delivered
with particles to the sensitive lower parts of the lungs, where they
may dissolve upon particle deposition and enter the bloodstream.
There is emerging evidence confirming translocation of ambient
insoluble particles <100 nm (called ultrafine particles in air pol-
lution studies) to the blood circulation through the pulmonary
alveoli (Saenen et al. 2017). An understanding of the toxicity of
particles beyond the effects of incorporated or adsorbed low-
molecular weight substances is critically needed.

A small number of animal studies relevant to early life
exposures points toward toxicological effects of NMPs on me-
tabolism, maternal–fetal immune balance, and the microbiome,
as well as an induction of oxidative stress and inflammation
(Alberg et al. 2014; Bosman et al. 2005; Han et al. 2021; Hu
et al. 2021; Inocencio et al. 2017; Luo et al. 2019a, 2019b)
(Table 1). As an example, exposure to inhaled polystyrene
nanoplastics exacerbated lung injury and inflammation in
preterm-born lambs (Inocencio et al. 2017). In a study with
pregnant mice, an exposure to polyethylene microplastics via
drinking water did not affect reproduction but, rather, resulted
in higher body and organ weight in dams and neonates (Han
et al. 2021). Another study with pregnant mice exposed during
gestation and lactation to polystyrene microplastics via drinking
water reported metabolic effects in F1 and F2 animals (Luo et al.
2019a). The translocation to tissues, the cellular uptake of
NMPs, a range of cytotoxic and apoptotic effects, as well as
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inflammation, are potential mechanisms of toxicological action
from NMP exposure. However, given the early stage of
research, these studies have certain limitations, such as the use
of very high doses of spherical NMPs predominantly consisting
of polystyrene (WHO 2019) and the focus on high-dose, acute
dose-limiting toxicity, often neglecting long-term effects of
NMP exposure. Potential NMP toxicity on other systems and
the developing brain is also critically unexplored.

Our literature search identified only one epidemiological
study of health effects following exposure to NMPs in children.
Malmberg et al. (2000) studied an acrylate–styrene copolymer
floor polish in a school environment that began powdering after
layers of polish peeled off and turned to dust (including particles
<5 lm in diameter). Teenagers at the school reported irritation in
their eyes and lower airways. Chemical analysis confirmed the
presence of acrylate monomers, which could be transported on
respirable floor dust particles.

In contrast to the dearth of experimental and epidemiological
data on NMPs, occupational health data from workers in plastics
industries and orthopedic research on plastic implants is more abun-
dant. Occupational exposure to plastic fibers and dust caused respi-
ratory symptoms and impaired pulmonary function (Koelmans et al.
2019), and abrasion of plastic implants induced inflammation in an
in vitro study using human cells (Wooley et al. 1996). In the 1980s,
researchers investigated spontaneous abortions inwomen employed
in the plastics industry (Lindbohm et al. 1985; McDonald et al.
1988). Although these examples represent very specific exposure
scenarios, they may serve as indicators of potential health effects
caused by a chronic exposure to NMPs in the general population.
Addressing this through the lens of child health is particularly perti-
nent because we know that children are widely affected by ambient
air pollution (WHO2018, 2021), which includesNMPs.

Interactions between NMPs and other chemicals make it
impossible to assess the health impacts of plastic exposures by
investigating NMPs alone. Plastic particles can act as carriers for a
diverse group of chemicals (Hartmann et al. 2017; Rochman et al.
2019; Wiesinger et al. 2021). These include chemicals used in
plastic production [such as phthalates (Bølling et al. 2020), bisphe-
nols (Asimakopoulos et al. 2016), and brominated flame retardants
(Sindiku et al. 2015; Tsydenova and Bengtsson 2011)], as well as
chemicals [such as polycyclic aromatic hydrocarbons (PAHs),
organochlorine pesticides, and polychlorinated biphenyls (PCBs)]
sorbed to plastics from the environment (Gasperi et al. 2018).
Plastic particles can also contain or accumulate metals such as cad-
mium, zinc, nickel, and lead, added as colorants, biocides, or sta-
bilizers (Campanale et al. 2020). A number of chemicals used in
plastics and others that NMPs carry are classified as endocrine-
disrupting chemicals (Li et al. 2010). Older plastic toys with
unsafe levels of lead, cadmium, and bromine are still widely avail-
able in secondhand shops and among hand-me-downs and donated
items (Turner 2018). Altogether, this results in an exposure to a
cocktail of chemicals and particles that remains largely unquanti-
fied and uncharacterized (Zimmermann et al. 2019). Accordingly,
toxicity of NMPs may be related to the particles themselves or the
“Trojan Horse” effects via the release of sorbed pollutants and/or
the leaching of plastic chemicals (Bouwmeester et al. 2015;
Vethaak and Legler 2021). Attempting to disentangle the physical
toxicity (i.e., presence of particles) of NMPs from their chemical
impacts experimentally is, we believe, at the same time difficult
and too simplistic.

Analytical Tools to Characterize NMPs
Knowledge-based policy development on a global scale critically
depends on the ability to identify and characterize the health haz-
ards of different classes of NMPs. Yet we believe that the greatest

current barrier to this knowledge is the absence of methods to
readily locate, identify, and quantify NMPs in the human body.
This challenge increases for plastic particles in the submicron
size range (e.g., nanoplastics). Compared with small molecules
NMPs can be considered massive, and their size makes them
challenging to ionize for conventional mass spectrometric analy-
sis. However, by employing field flow fractionation and pyrolysis
gas chromatography mass spectrometry, researchers can deter-
mine the size of the particles and the type of polymer the plastic
is made of (Mintenig et al. 2018). Another method to determine
the type of plastic material is to take advantage of the interaction
of light with the chemical functional groups present in the parti-
cle using Fourier transform infrared spectroscopy (FTIR) or
Raman spectroscopy (Cabernard et al. 2018; Xu et al. 2019a).

The current gold standard for detection and identification of
NMPs is the use of vibrational spectroscopic imaging or mapping
(Chen et al. 2020; Renner et al. 2018; Xu et al. 2019a) although
these methods are not high-throughput. Mass spectrometric meth-
ods also provide important information but are often not sufficient
to identify few very small particles. Vibrational spectroscopy can
be deployed to identify NMPs in typical infant foods, such as
breastmilk or infant formula. Raman mapping has previously been
used to study plastics (Xu et al. 2020) and is, in principle, capable
of identifying particles in the submicron range (Schwaferts et al.
2019). Studying infant-specific food samples would be a logical
first step toward approaching more challenging sample matrices
relevant for children. The NMP community may benefit from
specific protocols, such as for preconcentration, developed specifi-
cally for infant-specific food samples. A combination of vibra-
tional spectroscopic imaging with statistical learning methods
would likely be the way forward to identify the presence of NMP
particles (Renner et al. 2019); commercial software packages for
analytical chemistry are available, and many important functions
are available as packages in R or Python. With such methods,
detection in more challenging matrices, such as breastmilk or even
tissue, may also become feasible. Detection of specific toxic chem-
icals dissolved in NMPs, or from NMP degradation products,
would be a further challenge.

Sampling and analysis of NMPs in different matrices. Improved
sampling of NMPs in air, food, packaging, and other child- and
pregnancy-relevant matrices is an important steppingstone toward
estimating early life exposure. Yet there is no “magic box” avail-
able for obtaining such data on NMPs. Based on our experience,
it is difficult to analyze very small microplastics, and it is cur-
rently impossible to analyze nanoplastics in complex matrices,
such as breastmilk.

Take the example of measuring airborne NMPs. Few relevant
studies have analyzed atmospheric fallout samples (Dris et al.
2015), filter samples (Dris et al. 2017), and settled dust (Dris et al.
2017; Liu et al. 2019). Such studies typically rely on microscopic
analysis (counting and size determination) and offline chemical
analysis (e.g., FTIR coupled with attenuated total reflectance,
micro-FTIR, micro-Raman spectroscopy). One promising tech-
nique that so far has not been used for NMP detection is real-
time aerosol mass spectrometry, which allows determination of
the chemical composition of particles and their size in the range
that is relevant for possible lung deposition (50–600 nm). Aerosol
mass spectrometry was recently used to study phthalates in the
particle phase (Eriksson et al. 2020) and may, therefore, be
applied to detect airborne nanoplastics. Simpler detection techni-
ques could be developed for airborne particles of <10 lm using
gravimetric analysis combined with scanning electron micros-
copy and energy dispersive X-ray for chemical composition anal-
ysis and automated counting and size determination through
image analysis.

Environmental Health Perspectives 015001-7 130(1) January 2022



We encourage prioritizing sampling for NMPs in child-
relevant environments, such as hospital nurseries and neonatal in-
tensive care units, homes, playgrounds, school buses, and schools
and kindergartens, as has been done with plasticizers (Bekö et al.
2013). We urge that foods, personal care products, toys, textiles
(e.g., clothing, carpets, bedding), and other items that pregnant
women, infants, and children are disproportionately exposed to
also be prioritized for sampling.

Plastic chemicals. Chemical additives for plastics manufac-
turing, nonintentionally added substances, and chemicals accrued
onto these particles add to the complexity surrounding NMP
exposures. Mass spectrometry allows for the characterization of
these chemicals. As an example, a recent study used a suspect
screening approach with ∼ 3,500 industrial chemicals and identi-
fied previously unknown plasticizers in paired maternal and cord
serum samples (Wang et al. 2021a). Nontargeted chemical analy-
sis of mother–child biosamples, supported by extensive targeted
screening of chemicals, is an important, although resource-
intensive, step toward identifying plastic-associated chemicals.
We believe that identifying and characterizing chemical bio-
markers that reflect our total plastic exposure—from chemicals,
NMPs, and their degradation products—is likely the most prom-
ising approach. Validated methods to interpret the huge amounts
of information generated from these analyses are, in our experi-
ence, critical. Moreover, targeted and nontargeted screenings can
identify substances associated with plastics, but they must be
combined with toxicological data (Zimmermann et al. 2020,
2021). We recommend that bioanalytical tools, health data
(ideally from prospective longitudinal cohort studies), cheminfor-
matics, and holistic human health risk analyses should be
integrated to obtain meaningful information about potential rela-
tionships between chemical signals and their toxicity for child
health. However, even if analytical methods advance significantly
in the mid-term, we believe that achieving the capability to moni-
tor NMPs in human populations on a scale needed to compile
convincing epidemiological evidence is unrealistic. We therefore
argue foremost for a precautionary approach to NMPs and child
health, even while data collection and risk analysis is still under-
way (see the “Recommendations” section).

Data science. Understanding the relationships between expo-
sure and risks is extremely complex because of the high volume of
heterogeneous data from different cohorts and different exposure
routes. Once more data become available on the health impacts of
NMPs, advanced information technologies can be applied to facili-
tate acquiring, storing, and managing knowledge and big data for
the development of evidence-based toxicology (Escher et al.
2020). Although the risks of hard-to-decipher results are clear, big
data approaches also provide an opportunity to reexamine existing
data with a new perspective. For example, existing mother–child
cohort studies can provide valuable data resources. A combination
of genetics analysis, mathematicalmodeling, andmachine learning
tools, we believe, will be valuable to evaluate the associations
between potential exposure, potential risk factors on child develop-
ment, and health hazards from early life exposure to NMPs and
plastics-associated chemicals.

Global Context, Policy, and Health Inequalities
NMPs are contaminants of emerging concern that are not yet sub-
ject to extensive risk assessment or regulation at the international
level. By contrast, the harmful effects of contaminants, such as
methylmercury, lead, and persistent organic pollutants (Storelli
2008), have been studied for decades, with well-documented
adverse impacts on the environment and humans, in part because
of the easier methodology compared with NMPs. Research on
these traditional contaminants has led to specific global policies

that have boosted human health, such as the banning of leaded
gasoline internationally and the Basel, Rotterdam, Stockholm,
and Minamata Conventions (Wang et al. 2021b).

An estimated 79% of all plastic waste ever produced has accu-
mulated in landfills, dumps, or the natural environment while 12%
has been incinerated and only 9% recycled (United Nations 2021).
Regulatory policies for plastics differ drastically between coun-
tries. This introduces variability in children’s exposure to plastic
particles and chemicals depending onwhere in the world they were
born (Danopoulos et al. 2020; Sripada 2017). Geography and cli-
matic conditions in a number of coastal communities in developing
countries also make them likely receivers of marine and air NMP
pollution that is generated elsewhere (Chassignet et al. 2021; Nel
et al. 2021; Premti 2018). Children in low- and middle-income
countries face substantial changes in the plastic landscape without
corresponding regulatory safeguards.

Hazardous waste—such as discarded electrical and electronic
equipment (e-waste)—exported from high-income countries to
developing countries for recycling or waste processing is a large
source of NMPs and a major public health threat for children
(Hale et al. 2020; Lebbie et al. 2021). E-waste often contains
plastic (e.g., cables, casings, electronic chips) and, when
shredded and burned, releases plastic particles along with highly
toxic fumes and runoff (Heacock et al. 2016; Labunska et al.
2013; Lebbie et al. 2021; Sindiku et al. 2015). Children and ado-
lescents who collect, process, shred, and burn plastic waste or
who live near dump sites face risks related to NMPs on top
of numerous other social and environmental hazards (U.S.
Department of Labor 2020; Fonbuena 2019; Lebbie et al. 2021;
Heacock et al. 2016; Perkins et al. 2014).

Consumption of highly processed foods continues to rise glob-
ally. Children’s exposure is, therefore, likely also rising to plastic
food contact materials used throughout the manufacturing process,
including food processing equipment, food packaging, and single-
use containers (Muncke et al. 2020). The global market for baby
bottles, along with the use of infant formula, is also expanding.
When a country’s gross domestic product per capita doubles,
breastfeeding prevalence at 12 months of age decreases by 10%
(Victora et al. 2016). Although glass and stainless steel bottles are
common alternatives, plastic bottles still dominate this growing
market and are a known source of NMPs (Li et al. 2020). Indeed,
63% of infants <6 months of age are not exclusively breastfed in
low- and middle-income countries; this figure is higher in high-
income countries (Victora et al. 2016) and among high-income
groups within countries. Plastic baby bottles have even been inap-
propriately marketed as hygiene measures during the Coronavirus
disease (COVID-19) pandemic, in violation of national and inter-
national codes (van Tulleken et al. 2020).

Early life exposures to NMPs and plastics reflect numerous
commercial and social determinants of health and are likely
linked to health inequalities. Global inequalities in pregnant
women’s body burden of plastic chemicals has, for example,
been reported by income (Wenzel et al. 2018), by race/ethnic
group (Bloom et al. 2019; James-Todd et al. 2017), by neighbor-
hood (Bustamante-Montes et al. 2021), and by education (Zhu
et al. 2016), among other socioeconomic factors. Some of this
variation may reflect differences in proximity to pollution sour-
ces, dietary behaviors, occupational exposures, use of personal
care products (Helm et al. 2018; Zota and Shamasunder 2017),
and intersections of these factors. Inequalities in exposure to
NMPs and health impacts may fall along similar lines.

On the international stage, the amendment of the Basel
Convention in 2019 (Basel Convention 2019) makes global trade
in plastic waste more transparent while ensuring that its manage-
ment is safer for the environment and human health. In 2020, the
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Basel Convention Plastic Waste Partnership working group spe-
cifically included microplastics in its portfolio. Yet despite the
global efforts to encourage a culture of recycling, the capacity for
collection, sorting, and recycling continues to underperform. This
is attributed to the increased material diversity and complexity of
plastics compared with other materials (Crippa et al. 2019).
Stricter policy measures in certain regions have limited or banned
the use of some microplastics, such as microbeads (Burton 2015).
However, largely untested replacements will likely be used in
their place. As plastics production continues to rise globally, new
mixtures are constantly emerging (Ryan 2015; Sackmann et al.
2018). It is therefore critical that these knowledge gaps are filled
with high-quality human-relevant data so that the Basel
Convention secretariat and other policy entities have the informa-
tion needed to both promote a circular economy and protect pub-
lic health.

Recommendations
Policymakers. Children’s right to a healthy environment is
enshrined in the United Nations Convention on the Rights of the
Child. According to this treaty—to which 196 countries are party—
states have the duty to secure children’s enjoyment of the highest
attainable standard of health, which includes states’ taking action
to prevent and reduce exposure to harmful substances or environ-
mental conditions that directly or indirectly affect children’s health
(UNHCR 2020). Given the unknowns surrounding the risk of
NMP exposures and effects in pregnancy and childhood, we advo-
cate for using the precautionary principle to guide policymakers’
approach to NMPs and child health (Leslie and Depledge 2020;
Harremoës et al. 2002). We argue that appropriate and proportion-
ate measures to reduce the exposure of children to NMPs should be
taken even without comprehensive knowledge of the scale of the
risk. At the same time, it is necessary that policymakers promote
research that enables us to better understand and quantify the risks
of NMPs. Along those lines, we call for greater surveillance of
NMPs in children’s environments that is guided by the latest
research. The process the government of California, USA, takes to
monitor microplastics in drinking water and, in parallel, to assess
the associated health risks can be a model for this (Coffin et al.
2021).We emphasize that humans will always be exposed to NMP
particles along with chemicals released by all the plastic products
we use, and therefore plastics cannot be studied or regulated as a
single entity (Lambert et al. 2017). Youth involved in plastic waste
collection and e-waste burning—especially those exploited or
forced into hazardous child labor—must be prioritized for preven-
tion and health promotion (Lebbie et al. 2021; U.S. Department of
Labor 2020).

Industry. NMPs in the environment are a human-made prob-
lem. We are convinced that the manufacturers of plastic products
that pregnant women, infants, and children will be in contact with
have a duty to reduce NMP exposures. As a first step, producers
should investigate how many plastic particles their products shed
under real-use conditions. If substantial, the manufacturers should
adopt a prevention through design approach (NIOSH 2013) and
innovate materials and products that release fewer NMPs.
Producers must demonstrate that their products are safe for their
youngest users, before bringing them to market.

Research.We urge the research community to work across dis-
ciplines and beyond academia to gain a better understanding of
early life exposures to NMPs and plastic chemicals. We believe
this is essential because research on other contaminants has shown
these to be sensitive periods linked to adverse health outcomes later
in life (Heindel et al. 2015). A substantially expanded evidence
base is needed to undergird regulatory processes and policymak-
ing. Such understanding can only be generated by significant

advances in exposure science, toxicology, epidemiology, and pub-
lic health sciences that aim at quantifying early life exposures,
long-term follow-up characterizing their (latent) effects, and link-
ing both in the relevant human populations (Table 2). For instance,
ongoing mother–child cohort studies should include aspects of ex-
posure to NMPs, such as sampling in child-relevant materials and
questionnaire data on plastics use and contact. Growing the knowl-
edge base about child health and plastics requires the development
of a joint terminology and consensus on appropriate quality stand-
ards, as well as the establishment of technical, scientific, and
science-policy forums to exchange data, knowledge, and ideas;
some of this work has already started (Noventa et al. 2021; Zarus
et al. 2021). Importantly, outputs should be co-created and commu-
nicated with stakeholders, such as families and children them-
selves. Including children in the study of their own exposure to
plastics and other nanomaterials may be both an exercise in inter-
disciplinary research, as well as an opportunity for citizen science
and awareness-building among those most affected (Kraftl et al.
2021).

Families. The largest actions, we believe, must be taken by
states and industry to prevent children’s exposures to NMPs.
Families can also take steps by following the recommendations
offered for other child-relevant contaminants, which we believe
are likely also effective for reducing NMP exposures. These steps
include reducing plastic contact of foods for children (Edwards
et al. 2021; Sessa et al. 2021; Trasande et al. 2018), regular wet-
cleaning of the home (Rhoads et al. 1999), and careful choice of
safer personal care products and building materials (Giovanoulis
et al. 2019).

Conclusion
Over the last several decades, pregnant women and children glob-
ally have been exposed to an extraordinary diversity of plastics.
We believe that children are unique in terms of their exposures
and vulnerabilities to NMPs. Yet foundational evidence on child-
ren’s exposure to NMPs, as well as child-specific toxicology, is
sorely lacking. Our assessment of the fragmented (but growing)
evidence base around early life exposures to NMPs provides
cause for concern.

These knowledge gaps slow public health action around
plastics in general and NMPs in particular. The fragmented evi-
dence base on NMP exposures and toxicity, as well as general
lack of epidemiological data, prevents us from fully understand-
ing the health risks of early life exposures to NMPs. Effective
risk assessment and risk management will depend on substantial
expansion of this evidence base. Closing knowledge gaps on
human and environmental health impacts of NMPs will also
support the development of safer alternatives, such as materials
shedding fewer NMPs and leaching fewer plastic chemicals.

The recommendations we offer here provide research direc-
tions to the wider scientific community to fill these knowledge
gaps. At the same time, we aim to spur policymakers and
industry to implement precautionary approaches toward NMPs
(Table 2).
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