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Abstract: Heterogeneous photocatalysis using titanium dioxide (TiO2) and zinc oxide (ZnO) has
been widely studied in various applications, including organic pollutant remediation in aqueous
systems. The popularity of these materials is based on their high photocatalytic activity, strong
photosensitivity, and relatively low cost. However, their commercial application has been limited by
their wide bandgaps, inability to absorb visible light, fast electron/hole recombination, and limited
recyclability since the nanomaterial is difficult to recover. Researchers have developed several strate-
gies to overcome these limitations. Chief amongst these is the coupling of different semi-conductor
materials to produce heterojunction nanocomposite materials, which are both visible-light-active
and easily recoverable. This review focuses on the advances made in the development of magnetic
ferrite-based titanium oxide and zinc oxide nanocomposites. The physical and magnetic properties of
the most widely used ferrite compounds are discussed. The spinel structured material had superior
catalytic and magnetic performance when coupled to TiO2 and ZnO. An assessment of the range of
synthesis methods is also presented. A comprehensive review of the photocatalytic degradation of
various priority organic pollutants using the ferrite-based nanocomposites revealed that degradation
efficiency and magnetic recovery potential are dependent on factors such as the chemical composition
of the heterojunction material, synthesis method, irradiation source, and structure of pollutant. It
should be noted that very few studies have gone beyond the degradation efficiency studies. Very
little information is available on the extent of mineralization and the subsequent formation of inter-
mediate compounds when these composite catalysts are used. Additionally, potential degradation
mechanisms have not been adequately reported.

Keywords: magnetic nanoparticles; ferrites; nanocomposites; photocatalytic activity; organic pollu-
tants; reusability

1. Introduction

Nowadays, concern around efficient management of water use has become topical,
with interest not only limited to agricultural and industrial sectors but also attracting public
health and sustainable economic development proponents.

The wide range of anthropogenic activities that use water results in the generation of
highly toxic effluents, which are rich in organic pollutants, rendering them unsuitable for
reuse in agricultural activities and human consumption. As a result, water decontamination
has become the focus of attention for several studies.
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Chemical oxidation-based methods have been proposed as possible remediation
techniques for the treatment of domestic and industrial effluents since they are rich in
toxic organic compounds, resulting in reduced environmental pollution and enabling the
recycling of water resources [1–3].

Advanced oxidative processes (AOPs), which include photocatalysis, plasma oxida-
tion, Fenton’s reactions, and ozonation, have been used to degrade numerous pollutants in
both water and wastewater treatment applications [2]. Among these, photocatalysis is one
of the most widely researched and used AOPs.

Photocatalysis typically involves the irradiation of semi-conductor catalysts with UV
or visible light, resulting in the transfer of electrons from the valence band to the conduction
band. For charge separation to occur, the energy of the photons must be greater than the
band gap energy of the catalyst. The holes (h+) are capable of reacting with water molecules,
leading to the formation of highly reactive hydroxyl radicals (•OH) [3,4].

Titanium dioxide (TiO2) and zinc oxide (ZnO) are amongst the most widely studied
photocatalysts due to their high photocatalytic activity, strong oxidation potential, super-
hydrophilicity, biological and chemical stability, prolonged durability, non-toxicity, and
low cost [4–9].

While these catalysts demonstrate excellent photocatalytic activity, their particle sizes,
often in the nano range, negatively impact their recovery. As a result, photocatalysis
using these catalysts has limited the large-scale application in treatment of polluted water
and wastewater due to the costs associated with loss of the material [4,10,11]. This has
necessitated the development of new, inexpensive materials with good photocatalytic
efficiency, recoverability, and reusability properties.

Nanomaterials that possess good magnetic properties while exhibiting photocatalytic
activity comparable to pure TiO2 and ZnO are the most ideal photocatalysts as they can be
recovered from the reactor using a magnetic field [4].

In particular, ferrite-based nanoparticles have attracted significant attention from
researchers in different applications such as sensors, biomedical, catalysis, and energy
storage devices. This is due to their excellent adsorption capacities, high surface area,
optical properties [12], and magnetic properties [12,13].

The ferrites also present chemical and thermal stability [14,15]. Therefore, nanocom-
posites of magnetic ferrites-based metal oxides (TiO2 and ZnO) have been synthesized
with the aim of developing photocatalysts with enhanced properties, thereby limiting the
deficiencies presented by neat materials.

Several studies show that doping magnetic nanoparticles with ZnO or TiO2 enhanced
the photocatalytic performance of the metal oxides through changes in optical proper-
ties, increased surface defects, production of surface oxygen vacancies, and impeding
recombination of charge carriers [16,17].

A study conducted by Rahmayeni et al. [18] investigated ferromagnetic NiFe2O4
doped with diamagnetic ZnO that resulted in superparamagnetic behavior being imparted
to the synthesized photocatalyst. They subsequently demonstrated that these properties
made it easier to separate the ZnO/NiFe2O4 nanocomposite from the reaction mixture.

The present work focuses on the development of magnetic spinel ferrite-based zinc
oxide and titanium oxide nanocomposites used in the photodegradation of dyes for use in
water and wastewater treatment. In particular, principal synthesis and characterization
methods are explored.

The recovery and reusability of the magnetic nanocomposite catalysts are reported and
discussed. Furthermore, the review also discusses the often overlooked social dimension
about the water and wastewater treatment. Finally, conclusions are drawn, and challenges
encountered in the use of these catalysts are cited.

2. Magnetic Ferrites Nanoparticles

Ferrites can be divided into four structural groups, which include hexagonal (MFe12O19),
orthogonal (MFeO3), and garnet (M3Fe5O12), where M represents metal ions, i.e., Ba2+ and



Catalysts 2021, 11, 1543 3 of 32

Pb2,+ and spinel (AB2O4) [19]. The cations represented by A and B occupy tetrahedral and
octahedral sites. Figure 1a shows both tetrahedral and octahedral sites coordinated to an
oxygen atom [12].

In a single unit cell, there are 64 tetrahedral and 32 octahedral sites where only 8
and 24 sites are occupied by cations, respectively [12]. The distribution of cations in the
tetrahedral and octahedral sites of spinel structure can be classified into three groups i.e.,
normal, inverse, and mixed.

Therefore, normal spinel (Figure 1b) is ZnFe2O4 where the tetrahedral sites are filled
by Zn2+, and the octahedral sites are occupied by Fe3+ [12]. Furthermore, the common
example for inverse spinel ferrite (Figure 1c) is nickel ferrite, wherein the tetrahedral sites
are occupied by half of the Fe3+ and octahedral sites are occupied by both Ni2+ cations and
the other half of Fe3+ [20].

NiFe2O4 demonstrates ferrimagnetic behavior with a curie temperature (TC) of ap-
proximately 858 K, whereas ZnFe2O4 displays antiferromagnetic behavior ordering below
the curie temperature of 9 K [21].

An example of a mixed spinel ferrite is MnFe2O4, its structure is represented as follows:
([Mn0.8Fe0.2][Mn0.2Fe1.2]O4), where the +2 and +3 ions are distributed randomly on both
sites [22]. CoFe2O4 can be found as an inverse or normal spinel structure; this is dependent
on the synthesis method used.

Ferrites have attracted more attention in catalysis for water and wastewater treatment
due to their various advantages such as the presence of a band gap capable of absorbing
visible light, together with the spinel crystal structure, which increases photocatalytic
activity due to the catalytic sites t featured on the crystal lattice [23].

Besides the magnetic behavior, other properties that spinel ferrites possess include
spin canting effect, spin-glasslike behavior, and higher heat and corrosion resistance [12,22].
The common band gap energies for some spinel ferrites are as follows: CuFe2O4 (1.32 eV),
ZnFe2O4 (1.92 eV), CoFe2O4 (2.27 eV), and NiFe2O4 (2.19 eV) [23,24].

Figure 1. Structure of magnetic spinel ferrite showing tetrahedral sites (yellow), octahedral sites (green), and oxygen atoms
(red) units (a) [12]. Unit cell structure of (b) normal spinel ferrite, and (c) inverse spinel ferrite [25]. Republished with
permission from Elsevier.

Due to the small band gap energy of ferrites, which makes them effective under
absorption of visible light irradiation, they are extremely suitable for the removal of organic
pollutants in water and wastewater treatment processes [22,23].

2.1. Methods of Synthesis of Magnetic Spinel Ferrites

Synthesis methods play an important role in the development of magnetic nanoparti-
cles as this controls the electrical, optical, and magnetic properties of the material [15].

Additionally, synthesis methods should pay particular attention to the cost of pro-
duction. An optimum balance between processing costs and the desired nanomaterial
properties is desired [15,26].
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Numerous synthesis methods have been used to prepare magnetic nanoparticles (MNPs);
these include microwave [27–29], sonochemical [30], sol-gel [31–34], co-precipitation [35,36],
combustion [37,38], micro-emulsion [39], and hydrothermal [40–44]. Amongst these, co-
precipitation, sol-gel, hydrothermal, and combustion methods are the most widely reported.

Co-precipitation requires careful monitoring of pH in order to obtain pure spinel
ferrites [25]. Advantages associated with this method include low cost, short synthesis
time, high product yield, and production of uniformly sized particles [45].

For example, El-Okr et al. [46] synthesized magnetic CoFe2O4 using the co-precipitation
method and obtained crystallites between 11 and 45 nm in size, with saturation magnetiza-
tion ranging from 5 to 67 emu/g. The authors reported that the difference in crystallite size
and saturation magnetization (Ms) values was associated with the variation of parameters
such as pH and calcination temperature.

The hydrothermal synthesis method enables particle size control and flexibility in
terms of surface modification. It is based on the wet-chemical synthesis; typically, this
occurs in sealed reactors or autoclaves at high vapor pressures (from 0.3 to 4 MPa) and
elevated temperatures (130 to 250 ◦C) [47,48].

Some noteworthy advantages of this method include low temperature for synthesis,
high purity, simple reactions, cost-effectiveness, and good dispersibility of the MNPs [49].
For instance, Zhao et al. [41] prepared cobalt ferrite using the hydrothermal method. The
resultant material had 70 nm crystallites with a saturation magnetization (Ms) of 86 emu/g.

The sol-gel method is extensively used for the synthesis of spinel ferrites [50–55].
The process involves the transition of a system from a liquid phase (sol) to a solid phase
(gel), through chemical reactions such as hydrolysis and condensation polymerization of
the metallic precursors [25]. Thus, its widespread acceptance is driven by the low cost
associated with the method, better homogeneity, composition control, and narrow particle
size distribution at relatively low temperatures [25,45].

The sol–gel method also allows for good control of the structural and magnetic
properties of MNPs [45]. Sajjia et al. [56] prepared cobalt ferrite nanoparticles by a sol-gel
method. Their results demonstrated that the saturation magnetization was 67.3 emu/g
and the particle sizes were between 7 and 28 nm, according to the calcination temperature
of nanoparticles.

The combustion synthesis method of MNPs is based on the thermodynamics principles
and chemistry of propellants and explosives [57–59]. The method requires a powdered
mixture, typically consisting of an oxidizing agent containing the metal ions of interest
such as oxidizing reagents, and a reducing agent such as urea or glycine [57,60–63].

Upon ignition, the mixture undergoes an exothermic or endothermic redox reaction
depending on the material properties. Equation (1) shows the combustion reaction used to
produce ZnFe2O4 by Mapossa et al. [64].

Zn(NO3)2·6H2O(s) + 2Fe(NO3)3·9H2O(s) + 6.67(NH2)2CO(s) → ZnFe2O4(s) + 6.67CO2(g) + 37.33H2O(g) + 10.67N2(g) (1)

Using the principles of propellant chemistry, the valences of the elements present in
the oxidizing and reducing agents are represented as follows: Zn = +2; Fe = +3; C = +4;
H = +1; and O =−2. The total valence of urea is equal to +6, and the total valence of nitrates
(Zn(NO3)2/Fe(NO3)3, 1/2) for oxidizing agent zinc ferrite (ZnFe2O4) is equal to −40.

Thus, the combination of total valences of reducing agent (fuel, urea) and oxidizing
agent achieved gives the following expression: −40 + 6n = 0, where n is the number of
moles of urea (in this case, n = 6.67 mol) for the combustion reaction. Since it is complete
combustion, the stoichiometric reaction (Φe = 1) follows the definition described for the
oxygen balance and equals zero.

To accomplish this, the content of oxygen from the nitrates is completely oxidized by
a reducing agent (fuel) in the mixture [61].

A study conducted by Salunkhe et al. [65] evaluated the magnetic properties of cobalt
ferrite nanoparticles prepared using the combustion method using glycine as fuel. The
results showed that the crystallite size was 38 nm and saturation magnetization was
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67.3 emu/g. Table 1 summarizes the structural and magnetic properties of CoFe2O4 MNPs
synthesized using various methods.

Table 1. Effect of synthesis method in structural and magnetic properties of catalyst cobalt ferrite [65–67].

Synthesis Method Sol-Gel Co-Precipitation Hydrothermal Combustion

Crystallite size (nm) 37.3 33.0 15.0 38.0
Ms (emu·g−1) 58.9 60.9 56.9 59.0

2.2. Characterization Methods

Before the synthesized magnetic materials are used as catalysts, an investigation of
the various properties, which influence their performance, is essential. Some of the key
parameters are size, shape, and surface area.

Therefore, this information can be elucidated using one or a combination of the follow-
ing techniques: X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission
electron microscopy (TEM), BET-N2 analysis, vibrating sample magnetometer (VSM).

X-ray diffraction (XRD) gives information about the structural properties, crystallite
size, and crystalline phases of magnetic nanoparticles as catalysts.

The BET-N2 adsorption-desorption isotherm is a technique commonly used to evaluate
the porosity and specific surface area of MNPs. For example, smaller particles have a larger
surface area, leading to higher photocatalytic activity due to a larger number of active
sites [23]. More details are explained in Section 5.

The magnetic behavior of the ferrites (saturation magnetization) is evaluated using
a vibrating sample magnetometer (VSM). The information obtained from this technique
gives an idea of the recovery potential of the photocatalyst.

Figure 2 shows the magnetic behavior of various ferrites at room temperature. With the
exception of zinc ferrite, which has a low magnetization of saturation, the other ferrites have
a high magnetization of saturation values, which implies good magnetic and recyclability
properties [67].
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Figure 2. Magnetic properties behavior of different photocatalysts at room temperature [67]. Repub-
lished with permission from Elsevier.

The morphology, including shape, and particle size of magnetic nanoparticles, can
be determined using transmission electron microscopy (TEM) and scanning electron mi-
croscopy (SEM). Figure 3a,b demonstrates the difference in morphology and structure of
cobalt ferrite affected by different methods of synthesis [68].
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Thermal decomposition studies are crucial for the development of nanocatalysts as
most of them are synthesized at high temperatures. Thermogravimetric analysis (TGA) or
differential scanning calorimetry (DSC) are used to determine the optimum temperature
required for the synthesis of magnetic nanoparticles due to the possibility of a loss of
activity during their preparation.

Finally, these characterization techniques are also employed to investigate if any
changes occur by decomposition or degradation, and whether they retain their magnetic
properties after the photocatalytic process.

3. Photocatalytic Application of Magnetic Ferrites and Their Nanocomposites

Photocatalytic degradation is a sequence of chemical reactions promoted by light
resulting in the breakdown of the target compound [69].

The photocatalytic activity is effectively dependent on the surface area and electron-
holes separation efficiency of the catalyst [69]. Figure 4 shows a schematic of the photocat-
alytic mechanism of magnetic ZnFe2O4/ZnO nanocomposite during methylene blue and
methylene orange dye degradation [69].
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Figure 4. A general scheme of visible light photodegradation mechanism of magnetic nanocomposite
i.e., ZnFe2O4/ZnO for organic pollutants [69]. Republished with permission from Elsevier.

It has been reported that nanocatalysts that have high surface areas exhibit higher
photocatalytic activity compared to their larger counterparts with lower surface area. The
smaller nanoparticles support the easy transition of electrons from the valence to conduc-
tion band, thereby generating electron-hole pairs when exposed to UV-visible radiation.
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The generated electrons and holes further interact with dissolved oxygen and water to
produce highly reactive free radical species capable of degrading the methylene dyes [69,70].
The general photocatalytic degradation mechanism of magnetic nanocomposites towards
organic pollutants is demonstrated by Equations (2)–(8).

ZnO + hν→ h+ + e− (2)

ZnFe2O4/ZnO→ ZnFe2O4/ZnO (e−) (3)

e− + O2 absorbed → •O2
− (4)

•O2
− + MB dye→ degraded products (5)

h+ + H2Oabsorbed → H+ + •OH (6)

h+ + OHabsorbed
− → •OH (7)

•OH + MB dye→ degraded products (8)

Reduction and oxidation take place at the photo-excited surface of the photocatalyst.
Recombination between e− and h+ can occur for the use of redox reaction. The e− and h+

that do not recombine are transferred to the surface of redox reaction and undergo reduction
process and oxidation process to form superoxide ion (O2

−) and ·OH, respectively. OH−

then leads to the production of strong oxidizing ·OH radicals. Meanwhile, the negative e−

reacts with the oxygen (O) molecule to form a ·O2
−. This ·O2

− also produces ·OH radicals
via the formation of HO2

• radicals and H2O2. The radicals formed from the reaction are
used to degrade the organic pollutant [71,72].

3.1. Nickel Ferrite and Nanocomposites

NiFe2O4 has generated a lot of interest because of its excellent features. These include
being a soft ferrimagnetic or ferrite n-type semiconductor with low coercivity, chemical
stability, and electrical resistivity. These make it an excellent material in different applica-
tions such as in magnetic resonance imaging enhancement, magnetic recording media, and
electronic devices, as well as in catalysis [20].

Following the description in Section 2, NiFe2O4 is completely composed of an inverse
spinel structure comprising a face-centered cubic lattice. NiFe2O4 consists of tetrahedral
sites occupied by half of the Fe3+ cations, while the rest of the Fe3+ and Ni2+ cations are
distributed over the octahedral sites [73–75].

Figure 5 shows the XRD spectra and SEM images of neat zinc oxide, nickel ferrite,
and their nanocomposites [76]. In the study conducted by Adeleke et al. [76], no secondary
peaks or secondary phases of material were observed; this demonstrated the effectiveness
of the synthesis method used in this study.

Furthermore, SEM images demonstrated the effect of doping ferrite with zinc oxide.
The high degree of agglomeration and different morphologies observed on the ZnO/Fe2O4
catalyst were attributed to the magnetic attraction between nickel ferrite and zinc oxide
layers [76].

Several studies have demonstrated that magnetic NiFe2O4 and its nanocomposites
are effective photocatalysts for the removal of dye from water and wastewater, due to their
high adsorption capacity and strong photocatalytic properties [16,77–82].

Khosravi and Eftekhar [83] synthesized magnetic NiFe2O4 using a sol-gel method and
evaluated its effectiveness as an adsorbent for the removal of Reactive Blue 5 (RB5) dye.
Parameters such as pH, temperatures, and catalyst concentration were evaluated during
RB5 degradation [83]. Maximum degradation (90%) was achieved under acidic conditions
(pH = 1) at room temperature using an (adsorbent/catalyst loading of 0.03 g/L).
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These findings were corroborated by Zhu et al. [16] when they evaluated the photo-
catalytic degradation of Congo Red dye using NiFe2O4/ZnO as a catalyst. In their study,
the NiFe2O4/ZnO nanocomposite resulted in a 94% removal of Congo red solution under
simulated solar light irradiation in 10 min. Nickel ferrite was also shown to be effective
when coupled with other metal oxides such as TiO2.

In a study done by Hung and Thanh [84], a magnetic nanocomposite of NiFe2O4/TiO2
degraded 98% of methyl orange dye after 14 h of UV or visible light irradiation. Although
the reaction time was rather long, the photocatalyst had a high saturation of magnetization
(40 emu/g), which makes it easily recyclable for reuse.

The results obtained in these studies demonstrate that nickel ferrite nanocomposites
are potential candidates for wastewater treatment in large-scale applications.

Additional studies that illustrate the efficacy of nickel ferrite, nickel ferrite-based
titanium oxide, and zinc oxide catalysts in the degradation of variant organic pollutants
are summarized in Table 2.

3.2. Zinc Ferrite and Nanocomposites

Zin ferrite has a small bandgap of around 1.9 eV, which gives a good response to
the visible light, as well as excellent photochemical stability, considerable magnetism,
and cost-effectiveness. As a result, it has also attracted attention by researchers in the
photocatalysis process [85].

The compound consists of a fully normal spinel structure, where its tetrahedral sites
are occupied only by Zn2+ cations and the Fe3+ ions are distributed in the octahedral
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sites [86]. Figure 6 shows the XRD patterns and SEM micrographs of the zinc oxide-, zinc
ferrite-, and zinc ferrite-based zinc oxide nanocomposites [17].
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The photocatalyst ZnFe2O4/ZnO had diffraction peaks similar to those of neat ZnFe2O4
and ZnO. The sharp peaks showed good crystallinity of the nanocomposite [17], which
demonstrates the efficacy of the synthesis method used in this study.

The SEM images revealed the effect of incorporating ZnFe2O4 nanoparticles into the
pores of the ZnO matrix. The authors observed that a high content of ZnO nanoparticles
was formed; these were better defined in the ZnFe2O4/ZnO nanocomposites [17].

Significant efforts have been devoted to investigating ZnFe2O4-based photocatalysts
for water and wastewater treatment, with the aim of removing organic pollutants [87–90].

Yuan et al. [91] investigated the photocatalytic activity of a ZnFe2O4/TiO2 nanocom-
posite where the pure ZnFe2O4 and TiO2 were obtained via the co-precipitation method.
The results showed that the ZnFe2O4/TiO2 and pure TiO2 resulted in 95% and 20% of
degradation of phenol respectively during 180 min of irradiation under UV–Visible. This
demonstrated that the ZnFe2O4/TiO2 nanocomposite catalyst was more effective than pure
TiO2 in the degradation of phenol.

In addition, Shao et al. [85] evaluated the application of ZnFe2O4/ZnO nanoparticles
in the photodegradation of methylene blue dye. The findings demonstrated that even after
three cycles, the photocatalytic activity of the magnetic nanocomposite ZnFe2O4/ZnO (65%)
was better compared to that of pure ZnO (58%), indicating the significance of ZnFe2O4
in the suppression of ZnO photo-corrosion. This was attributed to the photostability of
ZnFe2O4 nanoparticles [92].

Further study by Patil et al. [93] investigated the photocatalytic activity of ZnFe2O4
nanoparticles synthesized using a combustion method. Their activity was tested on syn-
thetic wastewater made up of the following dyes: Methylene Blue, Rose Bengal, Evans
Blue, and Indigo Carmine.

Degradation efficiencies of 98, 99, 82, and 87% were recorded for each dye, respec-
tively [93]. The antibacterial activity of ZnFe2O4 against diverse gram-negative bacterial
strains such as Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Bacillus
was also investigated. A variation in the antibacterial activity towards the different bacterial
strains was observed [93].
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Other work conducted by Sripriya et al. [94] reported on the excellent photocatalytic
performance of ZnFe2O4 in the degradation of 4-chlorophenol (4-CP). They further re-
ported that factors such as particle size and surface area significantly affected the activity.
Further studies on the use of magnetic ZnF2O4 nanocomposites as photocatalysts are listed
in Table 2.

3.3. Cobalt Ferrite and Nanocomposites

Cobalt ferrite is a hard ferrimagnetic material that has a face centered cubic struc-
ture [95]. It exists as a normal spinel structure or inverse spinel structure, depending on
the synthesis method. In the normal spinel structure, the Co2+ ions are distributed in the
tetrahedral sites, while the octahedral sites are occupied by Fe3+ ions.

For the inverse spinel structure, the tetrahedral sites are occupied by half of the Fe3+

ions and the rest of the octahedral sites are distributed by Fe3+ and Co2+ ions. It is important
to note that the magnetic properties vary depending on the structures [95,96].

Figure 7 shows the XRD patterns and TEM micrographs of the cobalt ferrite and cobalt
ferrite-based zinc oxide nanocomposite [97]. Pristine XRD patterns were obtained with
no impurities; this demonstrated that the co-precipitation method used for synthesis was
highly efficient [97].
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Several studies have demonstrated the potential of cobalt spinel ferrite doped with
metals oxides (TiO2 or ZnO) as photocatalysts for water and wastewater treatment for
organic pollutants removal. This is due to the various attributes that include chemical
stability, small band-gap energy that leads to activation by visible light [5,12,98–100],
magnetic properties, and higher surface area.

A study conducted by de Oliveira et al. [4] demonstrated that the magnetic nanocat-
alyst of CoFe2O4 coupled to TiO2 resulted in 100% degradation of diuron degradation.
This study also observed that CoFe2O4/TiO2 nanoparticles displayed good saturation
magnetization, demonstrating that they can be easily separated for reuse.

Furthermore, Li et al. [101] reported good performance of magnetic TiO2/CoFe2O4
nanocomposite for methylene blue (MB) degradation (98%) in 300 min. The good per-
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formance of magnetic TiO2/CoFe2O4 nanocomposite was attributed to the presence of
CoFe2O4, which not only improved the UV light absorbance but also enhanced the response
to the visible light region.

A study done by Chandel et al. [102] reported that the ZnO/CoFe2O4 nanocomposite
displayed 94% degradation efficiency towards Methylene Orange (MO) and 92% removal
for malachite green (MG) dye. The authors attributed the hydroxyl radicals (OH•) and holes
(h+

VB) as the main reactive species responsible for the degradation of MO and MG dyes.
The photocatalytic activity and stability of ZnO/CoFe2O4 were confirmed by showing

10 cycles for successive reuse. Since ZnO/CoFe2O4 is recyclable and easily recovered
magnetically; it is a good candidate for use as a low-cost photocatalyst for water and
wastewater treatment.

Additional studies on the photocatalytic performance of cobalt ferrite and their
nanocomposites in the degradation of organic pollutants are summarized in Table 2.

3.4. Manganese Ferrite and Nanocomposites

MnFe2O4 is a soft spinel ferrite with high magnetic permeability and moderate satura-
tion magnetization, high chemical stability, high electrical resistance, and special optical
properties [103]. A combination of these factors makes it attractive for use in different
applications such as biomedical drug delivery and catalysis [103,104].

MnFe2O4 is considered a mixed spinel ferrite in which the tetrahedral and octahedral
sites are both are occupied by Mn2+ and Fe3+ ions [104,105]. High reaction temperatures
affect the synthesis of the magnetic ferrite, resulting in variation in particle sizes of the
material, which in turn affects other parameters such as saturation magnetization.

A study conducted by Chang et al. [106] demonstrated through X-ray diffraction
analysis that no other peaks attributed a second phase were observed for manganese ferrite
and titanium oxide. Additionally, peaks attributed to pure materials (MnFe2O4 and TiO2)
were observed in the XRD pattern of MnFe2O4/TiO2 nanocomposite (Figure 8).

Catalysts 2021, 11, 1543 12 of 33 
 

 

 
Figure 8. XRD patten of MnFe2O4 and MnFe2O4/TiO2 nanocomposites [106]. Republished with per-
mission from Elsevier. 

 
Figure 9. SEM micrographs of: (a) MnFe2O4; (b) MnFe2O4/TiO2 nanocomposite; and TEM images of 
(c) MnFe2O4 and (d) MnFe2O4/TiO2 nanocomposites [106]. Republished with permission from 
Elsevier. 

Numerous studies have demonstrated that manganese ferrite-based metal oxide 
nanocomposites are effective in the photocatalytic degradation of organic dyes. For 
example, Zamani et al. [107] evaluated the photocatalytic performance of a magnetic 
MnFe2O4/ZnO nanocomposite for Congo red dye (CR) removal.  

The results showed that 90% degradation of Congo red dye was achieved in 35 min 
under UV-vis irradiation. Additionally, Arief et al. [103] showed that the same 
nanocomposite was effective for Rhodamine B dye degradation (95%). This was attributed 
to the presence of a narrow band gap energy (1.95 eV) of MnFe2O4/ZnO.  

Silambarasu et al. [108] tested the performance of MnFe2O4 on the degradation of 
methylene blue dye. The manganese ferrite achieved 96% dye decolorization and 
exhibited saturation magnetization (Ms) of 39.7 emu/g. The magnetic properties indicated 
that the product could be easily recovered for potential reuse.  

Figure 8. XRD patten of MnFe2O4 and MnFe2O4/TiO2 nanocomposites [106]. Republished with
permission from Elsevier.

The findings demonstrate that the magnetic nanoparticles were successfully synthe-
sized via a hydrothermal followed by the sol-gel method [106]. The SEM micrograph of
MnFe2O4/TiO2 (Figure 9) showed that agglomerated spherical particles were produced.
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The MnFe2O4 nanoparticles display a well-defined morphology with particle size
around 15–20 nm. Meanwhile, it is clearly visible that the particle size of MnFe2O4/TiO2 is
uneven and relatively large [106].

The TEM micrographs of photocatalyst MnFe2O4/TiO2 demonstrated that MnFe2O4
nanoparticles are coated by TiO2 with shape a core-shell structure (see Figure 9) [106].

Numerous studies have demonstrated that manganese ferrite-based metal oxide
nanocomposites are effective in the photocatalytic degradation of organic dyes. For
example, Zamani et al. [107] evaluated the photocatalytic performance of a magnetic
MnFe2O4/ZnO nanocomposite for Congo red dye (CR) removal.

The results showed that 90% degradation of Congo red dye was achieved in 35 min
under UV-vis irradiation. Additionally, Arief et al. [103] showed that the same nanocom-
posite was effective for Rhodamine B dye degradation (95%). This was attributed to the
presence of a narrow band gap energy (1.95 eV) of MnFe2O4/ZnO.

Silambarasu et al. [108] tested the performance of MnFe2O4 on the degradation of
methylene blue dye. The manganese ferrite achieved 96% dye decolorization and exhibited
saturation magnetization (Ms) of 39.7 emu/g. The magnetic properties indicated that the
product could be easily recovered for potential reuse.

There are few studies reporting the application of manganese ferrite and manganese
ferrite-based zinc oxide and titanium oxide nanocomposites in water and wastewater
treatment for organic pollutants removal.

3.5. Copper Ferrite and Nanocomposites

CuFe2O4 is one of the magnetic nanoparticles that has become a promising candidate
in the catalysis field due to the presence of surface hydroxyl groups, good chemical, and
thermal stabilities, a small band gap, and magnetic properties [109]. These characteristics
make it attractive as a photocatalyst for work on water and wastewater treatment for
organic pollutants degradation.

Copper ferrite has an inverse spinel structure, where the tetrahedral sites are occupied
by half of the Fe3+ ions and the rest of the octahedral sites are occupied by Fe3+ and
Cu2+ ions [110]. Therefore, besides the cubic crystal structure, the copper ferrite also
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presents a tetragonal crystal structure that depends on the synthesis method and annealing
temperature [110].

In the XRD patterns of TiO2/CuFe2O4 nanocomposites, the peaks associated with the
neat TiO2 and CuFe2O4 were observed without any further secondary phase (Figure 10) [109].
This demonstrated that the nanocomposite photocatalyst was successfully prepared using
the Sol-Gel method and the pure titanium oxide and copper ferrite nanoparticles remained
with their structure during the synthesis processes.
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Figure 11a,b shows the SEM micrographs of CuFe2O4 and TiO2/CuFe2O4, where the
presence of agglomerated particles distributed randomly is apparent. The introduction
of TiO2 in the CuFe2O4 influenced the morphology of the nanocomposite TiO2/CuFe2O4.
The surface of the nanocomposite was much rougher than that of the CuFe2O4.

The TiO2 agglomerated on the surface of CuFe2O4 can provide more active sites
for the nanocomposite and improve its photocatalytic activity during organic pollutants
degradation [109].

Several studies have reported the photocatalytic activity of copper ferrite and its
nanocomposites in water and wastewater treatment [109,111,112].

For instance, a study done by Anandan et al. [110] reported good performance of
magnetic CuFe2O4 as photocatalyst for the degradation of methylene blue (MB) dye in the
presence of peroxydisulphate under UV–vis light.

The activity of the copper ferrite was attributed to the effect of the peroxydisulphate
in the photocatalyst, which improved the photocatalytic degradation of methylene blue
(95%) 75 min. Before the addition of the oxidant peroxydisulphate to the cobalt ferrite, the
nanoparticles showed 16% MB dye degradation in 75 min.

A recent study conducted by Janani et al. [113] evaluated the magnetic nanocomposite
ZnO/CuFe2O4 as a catalyst for methylene blue dye degradation under visible light. In
their study, they demonstrated that the ZnO/CuFe2O4 photocatalyst was efficient in the
degradation of methylene blue dye (86%) in 77 min.

The authors associated the activity of the nanocomposites with the hydroxyl radicals
and holes generated, which play a principal role in the degradation of the dye. Furthermore,
the photocatalyst also remained stable after six cycles of reuse. More studies on the activity
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of copper ferrite nanocomposites for the degradation of organic pollutants are listed
in Table 2.
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3.6. Mixed-Metal Ferrites and Nanocomposites

The introduction of different cations in the spinel ferrite system is required to improve
the physicochemical properties of spinel ferrites. For instance, the substitution of magnetic
cations such as Mn2+, Ni2+, Co2+, and Cu2+, and diamagnetic ions such as Zn2+ and Cd2+, in
spinel ferrites systems, changes the structural, morphological, opto-magnetic, and catalytic
properties [114,115]. In general, this is attributed to the distribution of metallic ions in the
tetrahedral and octahedral sites [115,116].

Ciocarlan et al. [117] evaluated the structural, morphological, and photocatalytic
properties of magnetic nanoparticles Co0.5Zn0.25M0.25Fe2O4/TiO2, where M represent Ni2+,
Cu2+, and Mn2+ ions. XRD patterns for TiO2-based magnetic nanocomposites showed that
the introduction of TiO2 into the magnetic nanoparticles affected their structural properties
(Figure 12).
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TEM micrographs for the two magnetic nanocomposites revealed variations in mor-
phology upon substitution of M2+ cations (Ni2+ and Cu2+) and introduction of TiO2 to the
Co0.5Zn0.25M0.25Fe2O4 system (Figure 13).

Finally, in terms of photocatalytic activity, the results demonstrated that approximately
80% and 75% of methylene orange (MO) and methylene blue (MB) were effectively de-
graded by Co0.5Zn0.25Ni0.25Fe2O4/TiO2. The authors attributed the good photocatalytic
activity to the Ni2+ ions and synergistic effect in combination with Co2+ ions [117].

Several other studies have also demonstrated the photocatalytic performance of
complex-structured magnetic nanocomposites. For example, a Mn1−xNixFe2O4 catalyst
with varying concentrations of nickel (x = 0.1, 0.2, 0.3, 0.4, and 0.5) was evaluated for indigo
carmine dye degradation by Jesudoss et al. [118].

Amongst the obtained photocatalysts, the Mn0.5Ni0.5Fe2O4 catalyst exhibited higher
photocatalytic performance in the degradation of indigo carmine dye, with 96% degrada-
tion within a 180 min period.

The material exhibited excellent saturation magnetization of 35.0 emu/g, demonstrat-
ing that this can be recoverable after a catalytic reaction. The authors concluded that the
concentration of Ni2+ ions affected the structure of MnFe2O4, and that a high concentration
of nickel ions reduced the crystallite size and increased the surface area, thereby affecting
photocatalytic activity (Figure 14).
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A study by Naik et al. [119] evaluated the performance of nanostructured zinc-doped
cobalt ferrites (ZnxCo1−xFe2O4 with (x = 0.0 to 0.6 with the step of 0.2) in the photocatalytic
degradation of Congo Red (CR) and Evans Blue (EB) dyes. They established that the
photocatalytic performance of cobalt ferrite increased with an increase in Zn-doping up to
x = 0.4 then decreased thereafter (Figure 15).
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Additional studies revealed that higher Zn2+ doping concentrations increased the
bactericidal properties of the CoFe2O4 towards human pathogens. For both Congo red
(CR) and Evans Blue (EB) dyes, Zn0.4Co0.6Fe2O4 nanoparticles showed good photocatalytic
activity in 150 min of irradiation time.

The study suggests that the synthesized nanoparticles are suitable for photocatalytic
applications. More studies of photocatalytic activity of mixed metal ferrites nanocomposites
are summarized in Table 2.
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Table 2. Previous studies showing the photocatalytic degradation of organic pollutants using magnetic ferrites and ferrites-based zinc oxide and titanium oxides nanocomposites.

Magnetic Nanoparticles
(MNPs) Organic Pollutants Dye (mg/L) Photocatalyst (mg/L) Irradiation Time

(min) Irradiation Source Degradation (%) References

NiFe2O4/TiO2 Methyl Orange UV–Vis 90 [120]
CoFe2O4 Bromophenol Blue 50 25 24 n/A 2 [121] a

CuFe2O4 Bromophenol blue 50 25 24 n/A 48 [121]
FeFe2O4 Bromophenol blue 50 25 24 n/A 99 [121]
MnFe2O4 Bromophenol blue 50 25 24 n/A 0 [121]
CoFe2O4 Chicago Sky Blue 50 25 24 n/A 93 [121]
CuFe2O4 Chicago Sky Blue 50 25 24 n/A 95 [121]
FeFe2O4 Chicago Sky Blue 50 25 24 n/A 98 [121]
MnFe2O4 Chicago Sky Blue 50 25 24 n/A 91 [121]
CoFe2O4 Cu Phthalocyanine 50 25 24 n/A 70 [121]
CuFe2O4 Cu Phthalocyanine 50 25 24 n/A 75 [121]
FeFe2O4 Cu Phthalocyanine 50 25 24 n/A 92 [121]
MnFe2O4 Cu Phthalocyanine 50 25 24 n/A 19 [121]
CoFe2O4 Eosin Yellowish 50 25 24 n/A 25 [121]
CuFe2O4 Eosin Yellowish 50 25 24 n/A 53 [121]
FeFe2O4 Eosin Yellowish 50 25 24 n/A 85 [121]
MnFe2O4 Eosin Yellowish 50 25 24 n/A 12 [121]
CoFe2O4 Evans Blue 50 25 24 n/A 73 [121]
CuFe2O4 Evans Blue 50 25 24 n/A 92 [121]
FeFe2O4 Evans Blue 50 25 24 n/A 99 [121]
MnFe2O4 Evans Blue 50 25 24 n/A 8 [121]
CoFe2O4 Naphthol Blue Black 50 25 24 n/A 68 [121]
CuFe2O4 Naphthol Blue Black 50 25 24 n/A 95 [121]
FeFe2O4 Naphthol Blue Black 50 25 24 n/A 93 [121]
MnFe2O4 Naphthol Blue Black 50 25 24 n/A 75 [121]
CoFe2O4 Phenol Red 50 25 24 n/A 85 [121]
CuFe2O4 Phenol Red 50 25 24 n/A 86 [121]
FeFe2O4 Phenol Red 50 25 24 n/A 81 [121]
MnFe2O4 Phenol Red 50 25 24 n/A 63 [121]
CoFe2O4 Poly B-411 50 25 24 n/A 0 [121]
CuFe2O4 Poly B-411 50 25 24 n/A 7 [121]
FeFe2O4 Poly B-411 50 25 24 n/A 38 [121]
MnFe2O4 Poly B-411 50 25 24 n/A 0 [121]
CoFe2O4 Reactive Orange 16 50 25 24 n/A 21 [121]
CuFe2O4 Reactive Orange 16 50 25 24 n/A 86 [121]
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Table 2. Cont.

Magnetic Nanoparticles
(MNPs) Organic Pollutants Dye (mg/L) Photocatalyst (mg/L) Irradiation Time

(min) Irradiation Source Degradation (%) References

FeFe2O4 Reactive Orange 16 50 25 24 n/A 77 [121]
MnFe2O4 Reactive Orange 16 50 25 24 n/A 6 [121]
CuFe2O4 4-chlorophenol 200 30 30 UV–Vis 81 [115]

CuFe2O4-TiO2 4-chlorophenol 200 30 30 UV–Vis 84 [115]
Cu0.9Mn0.1Fe2O4/TiO2 4-chlorophenol 200 30 30 UV–Vis 88 [115]
Cu0.8Mn0.2Fe2O4/TiO2 4-chlorophenol 200 30 30 UV–Vis 92 [115]
Cu0.7Mn0.3Fe2O4/TiO2 4-chlorophenol 200 30 30 UV–Vis 94 [115]
Cu0.6Mn0.4Fe2O4/TiO2 4-chlorophenol 200 30 30 UV–Vis 96 [115]
Cu0.5Mn0.5Fe2O4/TiO2 4-chlorophenol 200 30 30 UV–Vis 98 [115]
(Co,Mn)Fe2O4@TiO2 Azo dye 10 10 960 UV 76 [122]

ZnFe2O4 Rhodamine B 10 20 150 200–700 nm 60 [123]
TiO2/ZnFe2O4 Rhodamine B 9.6 10 150 λ = 254 nm 99.7 [124]

TiO2/ZnFe2O4 (1:1) Rhodamine B n/A n/A 150 UV 47 [125]
TiO2/ZnFe2O4 (2:1) Rhodamine B n/A n/A 150 UV 58 [125]
TiO2/ZnFe2O4 (3:1) Rhodamine B n/A n/A 150 UV 87 [125]
TiO2/ZnFe2O4 (4:1) Rhodamine B n/A n/A 150 UV 95 [125]

ZnFe2O4 Rhodamine B 20 80 300 UV–Vis 38.4 [126]
ZnFe2O4 nanospheres Rhodamine B 20 80 300 UV–Vis 100 [126]

ZnFe2O4 Rhodamine B 20 500 360 UV-light 45 [86]
ZnFe2O4

b Rhodamine B 20 500 360 UV-light 88 [86]
ZnFe2O4

c Rhodamine B 20 500 360 UV-light 75 [86]
ZnFe2O4

d Rhodamine B 20 500 360 UV-light 60 [86]
ZnFe2O4

b Rhodamine B 20 500 360 Dark 0 [86]
TiO2/CoFe2O4 (10%) Methylene Blue 5 0.5 60 UV 56 [127]
TiO2/CoFe2O4 (20%) Methylene Blue 5 0.5 60 UV 60 [127]
TiO2/CoFe2O4 (30%) Methylene Blue 5 0.5 60 UV 57 [127]

TiO2/Ni-Cu-Zn ferrite Methylene Blue 20 13 120 UV 82 [128]
TiO2/Ni-Cu-Zn ferrite Methylene Blue 20 20 120 UV 98 [128]
TiO2/Ni-Cu-Zn ferrite Methylene Blue 20 26 120 UV 99 [128]
TiO2/Ni-Cu-Zn ferrite Methylene Blue 20 33 120 UV 95 [128]

ZnFe2O4 Methylene Blue 10 6 180 UV 28 [129]
MnFe2O4

e Methylene Blue 7 300 1200 Visible light 15.2 [92]
MnFe2O4

f Methylene Blue 7 300 1200 Visible light 67.2 [92]
ZnFe2O4 Methylene Blue 10 100 360 UV–Vis 8 [130]

ZnFe2O4 + H2O2 Methylene Blue 10 100 360 UV–Vis 52 [130]
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Table 2. Cont.

Magnetic Nanoparticles
(MNPs) Organic Pollutants Dye (mg/L) Photocatalyst (mg/L) Irradiation Time

(min) Irradiation Source Degradation (%) References

ZnFe2O4 + H2O2 Methylene Blue 10 100 360 Dark 45 [130]
TiO2(57%)/CoFe2O4 (37%) Methyl Orange 6 n/A 250 UV 0 [114]
TiO2(62%)/CoFe2O4 (30%) Methyl Orange 6 n/A 250 UV 25 [114]

CoFe2O4/ZnO Methyl Orange 50 30 300 UV 93.9 [114]
TiO2/ZnFe2O4 Methyl Orange 8 80 420 UV 80 [131]

TiO2/ZnFe2O4
g Methyl Orange 10 50 180 UV–Vis 5 [87]

TiO2/ZnFe2O4
h Methyl Orange 10 50 180 UV–Vis 13 [87]

TiO2/ZnFe2O4
i Methyl Orange 10 50 180 UV–Vis 27 [87]

TiO2/ZnFe2O4 (0.15%) Methyl Orange 25 5 240 UV–Vis 65 [132]
TiO2/ZnFe2O4 (0.30%) Methyl Orange 25 5 240 UV–Vis 75 [132]
TiO2/ZnFe2O4 (1.5%) Methyl Orange 25 5 240 UV–Vis 84 [132]
TiO2/ZnFe2O4 (3.0%) Methyl Orange 25 5 240 UV–Vis 73 [132]
TiO2/ZnFe2O4 (6.05%) Methyl Orange 25 5 240 UV–Vis 55 [132]

ZnFe2O4 Methyl Orange 25 5 240 UV–Vis 4 [132]
ZnFe2O4 Methyl Orange 10 4 60 UV-light 75 [133]
ZnFe2O4 Methyl Orange 10 100 240 UV–Vis 5 [134]

TiO2/ZnFe2O4 Methyl Orange 10 100 240 UV–Vis 40 [134]
TiO2/ZnFe2O4 (1.5%) Methyl Orange 10 100 240 UV–Vis 12 [134]
TiO2/ZnFe2O4 (3.0%) Methyl Orange 10 100 240 UV–Vis 34 [134]
TiO2/ZnFe2O4 (4.5%) Methyl Orange 10 100 240 UV–Vis 24 [134]
TiO2/ZnFe2O4 (6.0%) Methyl Orange 10 100 240 UV–Vis 18 [134]

CuFe2O4-TiO2 Methylene Blue 50 1000 180 UV–Vis 83.7 [135]
ZnFe2O4/ZnO Methylene Blue 20 1000 360 UV 90 [136]
ZnFe2O4/ZnO Remazol Brilliant Blue 20 1000 360 UV 100 [136]

CoFe2O4 + H2O2 Rhodamine B 10 100 270 UV-Vis 90.6 [137]
CuFe2O4-TiO2 Methylene Blue 12 100 150 UV-Vis 47 [111]

a The reactions of various dyes were evaluated with ferrites and H2O2 with no applied irradiation [121]. b 9 nm average crystal size. c 14 nm average crystal size. d 19 nm average crystal size. e Thermal
preparation. f Seed-hydrothermal preparation. g Prepared by citrate–nitrate method. h Prepared by thermal method. i Prepared by thermal method, recovered, and sintered at 800 ◦C.
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It is important to note that, besides the focus of the development of magnetic nanocom-
posites for water and wastewater treatment, new recent trend of development of new mate-
rials is emerging. For example, Mir et al. [138] studied how confining AuNPs in a porous Si
template can significantly enhance the photocatalytic activity of MO. The pores prevent ag-
glomeration of nanoparticles and eliminate the need for any functionalization. Confinement
of the AuNPs in the Si nanocavities prevents electron–hole recombination and facilitates
the transfer of hot carriers from the Si support to accelerate the photocatalytic efficiency.

The results showed that the recyclable, low-band gap photocatalytic system has
economic and environmental advantages that promote implementation of catalytic and
separation processes in continuous flow mode, with the advantages associated with easier
phase separation and product recovery, enhanced safety, and easier operation [138].

Another recent trend of study explored functional elastomeric copolymer membranes
designed by nanoarchitectonics approach for Methylene Blue Removal. The results demon-
strated specific adsorption abilities up to 18 mg/g of grafted cyclodextrins [139].

The findings obtained in these studies show that more studies can be explored
in order to develop new nanomaterials that are sustainable and safer for water and
wastewater applications.

4. Factors Affecting the Photocatalytic Activity of Magnetic Nanocomposites

The photocatalytic activity of magnetic nanocomposites is dependent on several
factors such as surface area, concentrations of dopant metal ions, pH, and catalyst loading.

4.1. Catalyst Surface Area

Nanomaterials with a high specific surface area exhibit enhanced catalytic activity. A
decrease in particle size takes one to the increase of the surface area, which improves the
dispersion of the nanomaterials in solution. This results in an enhanced photon absorbance,
leading to the retrieval of their photocatalytic performance [140–143].

A study done by Padmapriya et al. [144] evaluated the effect of surface areas of
magnetic nanoparticles system NixZn1−xFe2O4, with different concentrations of Ni2+ ions
(0.0 ≤ x ≤ 1.0) in photocatalytic degradation of methylene blue dye (Figure 16a).
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Republished with permission from Elsevier.

The results demonstrated that better photocatalytic activity was found for the nanocat-
alyst Ni0.6Zn0.4Fe2O4, which had a high surface area (36.6 m2/g) compared to the other
samples. It can be understood from this study that surface area is also related to the active
sites on the catalytic surface, which enhance the photocatalytic activity.

Manikandan et al. [115] demonstrated that the photocatalytic degradation of 4-Chloro-
phenol (4-CP) using the photocatalyst ZnFe2O4 was affected by the particle size and
morphology of the catalyst.
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Additionally, a study conducted by Jia et al. [145] reported that the photocatalytic
activity of ZnFe2O4 nanoparticles for methylene blue dye degradation was related to the
surface properties and surface defects of the photocatalyst.

4.2. Effect of Catalyst Amount

The efficiency photocatalytic reactions can be influenced by the amount of the catalyst
used. Padmapriya et al. [144] reported that the photocatalytic degradation of methylene
blue dye was found to increase with an increase in the amount of the magnetic catalyst
Ni0.6Zn0.4Fe2O4 until a certain amount of nanocatalyst loading (Figure 16b).

However, further increase in the catalyst loading demonstrated negative influence
of the degradation plateaued. The authors also reported that adding an amount of the
magnetic nanocatalyst increased the active sites on the catalyst surface, which in turn
increased the amount of •OH (hydroxyl) and •O2

− (superoxide) radicals and degraded
the methylene blue (MB) dye.

Furthermore, the excess of amount of nanocatalyst beyond the optimum may have
resulted in the agglomeration of catalyst particles and generated turbidity, which resulted
in the decrease of the photocatalytic degradation efficiency [140,142,146].

4.3. Effect of pH

Generally, the solution pH is an important variable in water and wastewater treatment
as it has a significant influence on the photocatalytic degradation process of organic
compounds [10]. The variation of pH alters the surface charge of heterogeneous catalysts
and, consequently, changes the photocatalytic activity of catalyst [147,148].

Figure 16c shows the influence of different pH (3, 4, 5, 6, 7, 8, and 9) on the pho-
todegradation of methylene blue using the nanomagnetic catalyst Ni0.6Zn0.4Fe2O4 in a
study conducted by Padmapriya et al. [144]. The results from this study showed that high
photocatalytic degradation efficiency was achieved at pH = 3, due to electrostatic attraction
between the anionic dye (MB) and the positively charged surface of nanocatalyst.

The authors demonstrated that at pH values above 7, the nanocatalyst surface be-
came negatively charged, leading to electrostatic repulsion between the methylene blue
dye and the catalyst, which reduced the photocatalytic degradation efficiency. More
studies demonstrating the same behavior were reported by Mirkhani et al. [149] and
Suwarnkar et al. [150].

5. Reusability of the Magnetic Nanocatalyst

Heterogeneous photocatalysis technology is always looking for an ideal photocatalyst,
one that is reusable and that possesses high photocatalytic efficiency, a large specific surface
area, and ability to absorb visible light [138]. Thus, the recyclability of catalysts is one
of the key steps towards the sustainable application of photocatalysts and development
of heterogeneous photocatalysis technology for water and wastewater treatment. The
recyclability of catalysts is also related to their actual operational costs.

Recently, several studies have demonstrated satisfactory recyclability of nanomagnetic
nanoparticles via magnetic separation processes using a magnetic field [5,10,150–152].

Krishna et al. [100] reported the reusability of the CoFe2O4/TiO2 nanocatalysts for acid
blue 113 (AB113) dye degradation through magnetic separation where its photocatalytic
activity was found to be retained up to six consecutive cycles and without considerable
loss of photocatalytic activity and stability (Figure 17).

Table 3 shows additional results of the activities of reused magnetic nanocomposites
for organic photodegradation processes. Most of the magnetic nanocomposites are recy-
clable up to more than three runs, demonstrating their stability during their application for
water and wastewater treatment for organic pollutants removal. Therefore, these studies
are indicators for possible industrial or large-scale application.
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Table 3. Reusability of magnetic nanoparticles (MNPs) for organic pollutants degradation.

Magnetic
Nanocomposites Organic Pollutants Dye (mg/L) Photocatalyst

(g/L)
Irradiation
Time (min) pH Cycles of Reusability

of MNPs
Degradation

Efficiency (%)
Irradiation

Source References

CoFe2O4/TiO2-SiO2 Methylene blue dye 0.3 0.33 30 6 6 93.2 UV [10]
NiFe2O4 Reactive blue 5 0.05 0.03 10 1–11 4 85.0 n/A [83]

NiFe2O4/ZnO Congo red (CR) 0.02 0.05 40 5.5 5 97.0 UV–Vis [16]
CoFe2O4/ZnO Methylene blue dye 5 0.025 60 n/A 3 - UV–Vis [5]
CoFe2O4/TiO2 Methylene blue dye n/A n/A 360 n/A 5 93.8 UV [153]

ZnFe2O4/TiO2/Cu Naproxen 0.03 0.1 120 4–9 5 72.3 Sunlight [154]
ZnFe2O4/TiO2 Rhodamine B 10 1 30 3–11 5 >99 UV–Vis [155]

CoFe2O4/TiO2/rGO Chlorpyrifos 5 0.4 60 5.8 8 - UV [152]
ZnFe2O4/TiO2 Methylene blue dye 20 0.05 360 5.6 5 93.2 UV–Vis [151]
ZnFe2O4/ZnO Methylene blue dye n/A 0.1 120 n/A 3 - UV [17]
NiFe2O4/TiO2 Methyl Orange 10 1 300 9.5–10 3 - Visible light [156]

Cu0.5Mn0.5Fe2O4/TiO2 4-chlorophenol 30 0.2 300 8 5 98.0 UV [115]
ZnO/MnFe2O4 Methylene blue dye n/A n/A 300 3–9 6 86.0 UV–Vis [113]
CuFe2O4/TiO2 Methylene blue dye 30 1 120 2.2 3 81.2 UV–Vis [135]
ZnFe2O4/ZnO Methylene blue dye 10 0.1 200 9–10 3 79.0 UV [85]

MnFe2O4/TiO2-rGO Ciprofloxacin 30 0.06 300 1–6 6 75.0 UV–Vis [106]
ZnFe2O4/TiO2 Bisphenol A 10 1 300 9.5–10 5 >90 UV–Vis [157]
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6. The Overlooked Social Dimension

The focus of most water and wastewater-related research has been on the technical
aspects of the problem and improvements in terms of water quality and in minimizing
environmental and health impacts, with very limited attention to its basic social and
cultural sustainability dimensions [158].

A study done by Wichelns et al. [159] demonstrated that there is a need for a paradigm
shift from the ‘treatment for disposal’ to the ‘treatment for reuse’ since wastewater contains
pollutants such as organic and inorganic compounds which may pose health risks if not
well managed [159].

Additionally, even when wastewater is treated using advanced technologies and
health risks are carefully addressed and controlled, irrespective of all scientific evidence,
the social perception remains the driver of the success or failure of wastewater reuse
schemes [158].

Depending on public perceptions, impressions, and attitudes, the development of
a wastewater scheme can be supported or constrained. Negative public perception can
prevent well-planned projects from moving forward. On the other hand, positive pub-
lic perception, which leads to greater acceptance, is the key element for the successful
implementation of wastewater treatment [159,160].

Saad et al. [158] reported that various local communities around the world have
rejected several water and wastewater treatment projects by their governments due to
inadequate community consultation which resulted in negative public perception.
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In summary, it can be said that recognizing the role of the social base for wastewater
management from risk reduction to reuse can have major implications, for example, on the
choice and effectiveness of the technologies employed.

Added to this is the creation of economic incentives for the public and private sector
institutions to invest in sanitation and to generate income for private operators as well as
secure their sustainability [161].

7. Conclusions and Recommendation

The development and application of magnetic ferrite-based titanium oxide and zinc
oxide nanocomposite as catalysts are extremely promising for the removal of organic
pollutants from water and wastewater, as shown by various studies presented in this
review. Studies demonstrated that these catalysts can be prepared by different methods
such as sol-gel, co-precipitation, hydrothermal, and combustion. However, the methods of
synthesis are chosen based on their advantages. The magnetic nanoparticles (MNPs) have
several advantages, including that they are easily separated by an external magnetic field
without loss of the nanocatalyst, which can be reused up to several runs of experiments.
In most of studies, the magnetic based titanium oxide and zinc oxide nanocomposite
exhibited an excellent catalytic activity for organic pollutants removal. Additionally, some
studies showed that these catalysts were even effective after more three successive cycling
runs. The catalytic activity of the MNPs as catalysts is a direct outcome of its intrinsic
characteristics as well as of its synthesis method; nevertheless, the catalytic performance
can be influenced by conditions that are imposed on these materials to prepare them for
a given application. Additionally, the method of synthesis plays a principal role in the
physicochemical properties of the catalyst obtained. However, the synthesis of magnetic
nanoparticles and their relevance for organic dyes removal from water and wastewater still
require more investigation in order to achieve the optimum optimization for large-scale for
subsequent practical applications. Finally, studies of the application of MNPs-based oxides
nanocomposites in water and wastewater treatment are still few; however, more studies
are still required. Additionally, with this technology in progress, scientists have enough
supporting theory to upscale and provide a cleaner environment and safe drinking water
to human populations.
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