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Pacheco-Fuentes et al. (n.d.) argue that the effects of rapid
global heating on Australia’s arid-zone avifauna will be far
less severe than suggested by our recent analysis (Conradie et
al., 2020). We hope they are correct. But the arguments these
authors present to support their view that we used unrealis-
tically low threshold air temperature (Tair) values for rapid
increases in the risks of lethal dehydration or hyperthermia
are unconvincing and, in several cases, not supported by the
studies they cite.

Before addressing the four assumptions Pacheco-Fuentes
et al. (n.d.) criticize in their commentary, we reiterate that
the threshold Tair values we used are based on empirical
studies of heat tolerance and evaporative cooling in the
species concerned (McKechnie et al., 2016; McKechnie et
al., 2017; McWhorter et al., 2018; Talbot et al., 2017). The
relatively high vulnerability of several Australian species we
modelled, particularly in terms of lethal hyperthermia, stems
from the Australian passerines examined to date generally
having lower heat tolerance limits [i.e. maximum environ-
mental temperature at which body temperature (Tb) can
be defended at sublethal levels during acute heat exposure]

compared to passerines from the arid zones of southern Africa
and southwestern North America (Fig. 1).

Assumption 1. Water is unavailable to
birds throughout much of Australia’s
arid zone
This assumption is one we did not explicitly make. In the case
of zebra finches, we noted that the low heat tolerance of this
species suggests they likely continue drinking during the heat
of the day, and that this prediction was supported by Cooper
et al.’s (2019) observations of this species drinking at air
temperature (Tair) > 40◦C at their study site at Fowlers Gap.
Conditions at this site differ in several respects from those
typically experienced by zebra finches, as approximately 200
nest boxes are available throughout a 1.8-km radius vege-
tated area surrounding a dam (Mariette and Griffith, 2012).
Moreover, ad libitum food is provided in artificial feeders
throughout the breeding season; these feeders provide ∼70%
of the food provisioned to offspring (Mariette et al., 2011).
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During Cooper et al.’s (2019) study, the dam was dry but zebra
finches had ad libitum access to two artificial water sources
100 and 800 m from the dam. Thus, zebra finches at this site
have much more reliable access to water and food in close
proximity compared to many of their conspecifics.

We noted that artificial water sources will likely prove
vital for mitigating the impacts of climate change, but we do
not agree with Pacheco-Fuentes et al. (n.d.) that availability
of water sources necessarily prevents avian mortality during
extreme heat (see McKechnie and Wolf, 2010). In our dis-
cussion (Conradie et al., 2020), we pointed out that lethal
hyperthermia, rather than dehydration, appeared to be the
major cause of mortality during historical and recent heat-
related mortality events in Australia, a point also noted by
Davies (1982). More recent events also support the view that
a lack of water availability is often not the primary driver
of mortality: during southern Africa’s first documented avian
mortality event associated with extreme heat in November
2020, birds died in large numbers despite many being within a
few hundred metres of the shore of the 133-km2 Pongolapoort
Dam (McKechnie et al., 2021b).

Pacheco-Fuentes et al. (n.d.) argue that a high density of
artificial water points in parts of northwestern Australia pro-
jected to be the most challenging for zebra finches will provide
a significant buffer against the impacts of rising temperatures.
Yet they offer no alternate explanation for atlas data revealing
a virtual absence of this species in these areas during summer
(despite being a summer rainfall area), nor the large declines
in reporting rates over the past two decades (Conradie et al.,
2020, Figure 5). Indeed, we included this analysis for zebra
finches to ground-truth our predictive model for this species,
which is exactly what Pacheco-Fuentes et al. (n.d.) call for in
the last sentence of their opening paragraph.

Assumption 2. Birds do not drink to
replace water lost during periods of
extreme heat
Pacheco-Fuentes et al. (n.d.) begin their critique of this
assumption by implying that birds can tolerate extremely
high temperatures indefinitely if sufficient water is available.
Even in well-hydrated birds, however, evaporative cooling is
constrained by upper limits for rates of evaporative water
loss and, particularly among passerines, the metabolic costs
of panting (reviewed by McKechnie et al., 2021a). As already
noted, the heat tolerance limits of Australian passerines
investigated so far are generally low (Fig. 1).

The two studies cited by Pacheco-Fuentes et al. (n.d.) to
support their argument that most birds of the Australian
arid zone continue drinking in the middle of day even when
Tair = 40–50◦C actually suggest the opposite. Fisher et al.’s
(1972) data on drinking patterns were obtained in 20 days,
with only one day of maximum Tair above normothermic

Figure 1: Heat tolerance limits (HTL, i.e. the maximum air
temperatures tolerated under respirometry conditions) in passerines
with body mass of 10–100 g occurring in arid Australia (blue circles;
data from McKechnie et al., 2017), the Sonoran Desert in Arizona (red
triangles; data from Smith et al., 2017) or South Africa (green squares;
data from Czenze et al., 2020; Whitfield et al., 2015; and S.J.
Cunningham, unpublished data). The blue downward-pointing
triangle is the estimated HTL for Zebra Finches (Cade et al., 1965).

avian Tb (Tair = 46.5◦C). For the subset of five species for
which drinking data were obtained on the single day with
maximum Tair = 46.5◦C, three (common bronzewing, Phaps
chalcoptera; mulga parrot, Psephotellus varius; Port Lincoln
parrot, Barnardius zonarius) showed zero evidence of drink-
ing during the heat of the day (Fisher et al. 1972, Figures
4–6). Spiny-cheeked honeyeaters (Acanthagenys rufogularis)
drank mainly in the early morning, with only a handful of
drinking events during the heat of the day. Data for species
that drank throughout the day (including zebra finches) were
typically collected on days with Tair < 36◦C and none with
Tair > 40◦C (Fisher et al. 1972, Figures 4 and 6). The second
study cited by Pacheco-Fuentes et al. (n.d.) is Davies’ (1982)
review of drinking behaviour in arid-zone birds. It provides
no additional data for Australian species’ drinking patterns
on hot days beyond those reported by Fisher et al. (1972). In
his abstract, Davies (1982) writes: ‘Many species have evolved
hunting behaviour that enables them to remain inactive dur-
ing the hottest parts of the day and thus greatly reduce the
amount of metabolic heat that they need to dissipate. Flights
to water are made at low ambient temperatures, either early
in the morning or late in the evening’.

Assumption 3. Operative temperature
experienced by a bird is equivalent to
air temperature
Pacheco-Fuentes et al. (n.d.) present this assumption out of
context by failing to note that we applied it only to birds
resting in completely shaded microsites. Moreover, in the
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‘Assumptions and limitations’ section of our discussion, we
noted that Te will indeed often differ from Tair because
of factors such as partial shading (i.e. Te > Tair) or birds
having access to microsites where Te < Tair (e.g. interiors of
mistletoes). Radiative heat loss to a clear sky can certainly
result in Te well below Tair. But for Pacheco-Fuentes et al.’s
argument that small birds experience daytime Te more than
10◦C below Tair to hold, the birds would need to simul-
taneously be completely shielded from direct and reflected
solar radiation and completely exposed to the sky. These are
circumstances unlikely ever encountered by birds inhabiting
subtropical latitudes where the sun is approximately overhead
in summer.

Assumption 4. Physiological traits that
determine thermal tolerance are fixed
In our paper, we noted that ‘Phenotypic plasticity in
physiological traits related to heat tolerance via acclima-
tion or acclimatization has the potential to alter tem-
perature thresholds for hyperthermia and dehydration’.
Arid-zone birds do indeed show considerable phenotypic
plasticity in traits related to energy and water balance
under hot conditions (e.g. Noakes and McKechnie, 2019;
Noakes et al., 2016; Smit et al., 2013). A key issue Pacheco–
Fuentes et al. (n.d.) overlook, however, is that for phenotypic
plasticity to provide the basis for resilience to novel future
environments, reaction norms for plastic traits and the range
of environmental conditions over which phenotypes can
be adjusted would need to extend beyond the conditions
currently experienced by these species. In other words,
the scope of phenotypic plasticity would need to permit
birds to adjust their phenotypes to match conditions more
extreme than any during their recent evolutionary history. It
remains unclear whether observed avian phenotypic plasticity
can be extrapolated to conditions hotter than those birds
have experienced in the past. Moreover, whereas adaptive
phenotypic plasticity in response to recent climate change has
been demonstrated in some studies (e.g. Charmantier et al.,
2008), limits to reaction norms and the potential for plastic
traits to be buffered from selection (e.g. Duputié et al., 2015;
Murren et al., 2015; Oostra et al., 2018) mean phenotypic
plasticity is not necessarily the silver bullet suggested by
Pacheco-Fuentes et al. (n.d.).

Pacheco-Fuentes et al. (n.d.) cite personal observations of
zebra finches persisting at Tair > 46.5◦C, for example in shade
under dripping stock troughs, as evidence that our estimated
threshold Tair for lethal hyperthermia risk is not realistic. This
argument, however, rests on an incorrect interpretation of our
species-specific thresholds as precise Tair values above which
no individuals of a species can survive, thereby implicitly
assuming zero among-individual variation in body condition
and thermoregulatory performance. To make a convincing
argument for no negative effects of weather conditions we

Figure 2: The frequency of days with maximum air temperature
(Tmax) ≥ 45◦C at Fowlers Gap (2005 to present) and Broken Hill (1991
to present) during each austral summer, taken from 1 October to 31
March. Each year indicates the midpoint of the corresponding
summer; for instance, the value for 2006 is the sum of days with
Tmax ≥ 45◦C between 1 October 2005 and 31 March 2006. Daily
weather data were obtained from the Australian Bureau of
Meteorology (http://www.bom.gov.au/climate/data/) for weather
stations 46 128 (Fowlers Gap) and 47 048 (Broken Hill Airport).

predicted as being associated with the risk of lethal hyperther-
mia, Pacheco-Fuentes et al. (n.d.) need to demonstrate that
survival for the entire study population of several hundred
tagged individuals (Cooper et al., 2019) on extremely hot days
was indistinguishable from survival on cooler days. Pacheco–
Fuentes et al. (n.d.) also fail to make it clear that zebra finches
in the Fowlers Gap population experience Tair > 45◦C only
rarely and mainly in the past decade (Fig. 2). The summer of
2018–2019 was the only one during which the frequency of
days with maximum Tair ≥ 45◦C exceeded 4 d yr−1 at Fowlers
Gap, with the available data for Broken Hill (∼120 km south)
suggesting these extremely hot days were very rare prior to
2010 (Fig. 2).

In conclusion, we welcome Pacheco-Fuentes et al.’s com-
mentary on our study but, for the reasons outlined above,
believe their criticisms are largely unfounded. Australia has
long been something of a ‘poster continent’ for avian mortal-
ity during extreme heat waves, with both historic (Finlayson,
1932; McGilp, 1932; Serventy, 1971) and recent (McCowan
and Griffith, 2021; Saunders et al., 2011; Sharpe et al.,
2021) accounts highlighting the risks of lethal effects of
acute heat exposure for arid-zone birds and their embryos on
very hot days. The occurrence of these events under recent
and current climates lends support to our central argument
that Australian arid-zone birds will face greatly increased
risks of lethal hyperthermia and dehydration during extreme
heat events in coming decades, unless global greenhouse gas
emissions are urgently reduced.
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