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Abstract

The application of informative frequency band identification methods makes it possible

to enhance weak damage components in the vibration signals acquired from rotating ma-

chines. Some rotating machines (e.g. wind turbines) operate inherently under time-varying

operating conditions, however, very few frequency band identification methods have been

developed with varying operating conditions in mind. Therefore, in this work, a systematic

framework for obtaining consistent feature planes under time-varying operating conditions

is proposed. This framework utilises the angle-frequency instantaneous power spectrum

and the order-frequency cyclic modulation spectrum to construct feature planes. The kur-

togram, the sparsogram, the infogram, the ICS2gram and the log-cycligram are obtained

on numerical and experimental datasets acquired under time-varying operating conditions

using this framework. In addition to this, we also implement the Informative Frequency

Band Identification method using targeted cyclic orders, abbreviated to IFBIαgram, in this

framework and compare the performance of this method against the other frequency band

identification methods. Ultimately, we found that the feature used in the construction of

the IFBIαgram is very well-suited for gear and bearing fault diagnosis under time-varying

operating conditions.
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1. Introduction

Condition monitoring forms an essential part of predictive maintenance programmes

[1, 2] and has been a very active research field for gearboxes and bearings the past few

decades [3–6]. This is due to the fact that gearboxes, which consist of bearings and gears,

are critical subsystems in machines such as helicopters [7, 8], bucket wheel excavators [9]

and wind turbines [10–13] and there usually are serious consequences and long downtimes

associated with their failures [7, 14].

Vibration-based condition monitoring, which uses vibration data to infer the condition

of the machine, is very popular for rotating machines, because it contains much information

related to the condition of the gearbox. Machine learning [15, 16], deep learning [17–19]

and signal processing methods [20, 21] have been developed to solve this problem. The

measured vibration signals are typically contaminated by strong deterministic components

[22–24], non-Gaussian noise [25] and time-varying operating conditions [9, 10, 26], which

impede the ability to perform effective fault diagnosis. It is very important to find signal

processing and analysis techniques that are capable of enhancing the signal or extracting

the diagnostic information from the signal under such time-varying operating conditions.

Typically, synchronous averaging methods [26, 27], time-frequency methods and re-

lated techniques [12, 28–30], as well as squared envelope spectra [23] are used in the fault

diagnosis process. It is possible to enhance the signal by applying Cepstrum-Pre Whiten-

ing (CPW) [24]; subtracting the generalised synchronous average from the signal [22, 23];

applying vibrational or stochastic resonance [31, 32]; designing matched and deconvolution

filters [6, 33, 34]; or identifying informative frequency bands with Frequency Band Identifi-

cation (FBI) methods [35–38]. FBI methods such as the kurtogram and the kurtosis-based

methods [11, 33, 35, 39–42], the sparsogram [43], the infogram [44, 45], the autogram [46],

the IESFOgram [47, 48], the IFBIαgram [49], the distcsgram [50], the ICS2gram [36], the

log-cycligram [36] and the accugram [51] have been successfully used for rotating machine

fault diagnosis. These methods have also been used as an integral part of more exten-

sive methodologies to perform gearbox diagnostics [27, 52–54]. Smith et al. [36] made a

distinction between blind methods and targeted FBI methods; targeted methods such as

the ICS2gram and IFBIαgram target specific cyclic frequency content (e.g. characteristic
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fault frequencies), while blind methods such as the kurtogram and sparsogram do not use

any information related to the kinematics of the machine for FBI. However, many of the

aforementioned methods have only been used under constant or quasi-stationary operat-

ing conditions or were specifically developed with constant or quasi-stationary operating

conditions in mind. Critical rotating machines such as wind turbines operate inherently

under time-varying operating conditions [10, 12] and therefore it is essential to find in-

formative frequency band methods that are well-suited for varying operating conditions

[36, 49].

The angular periodic impacts from damaged mechanical components (e.g. bearing

damage) manifest in time-invariant frequency bands [55, 56], which have been used as ba-

sis for developing angle-time cyclostationary theory [55–58]. This means that conventional

FBI methods, using time-frequency Short-Time Fourier Transform (STFT) and wavelet

packet estimators to construct feature planes, do not necessarily preserve the fault in-

formation. This could adversely affect the performance of frequency band identification

methods, especially targeted methods, under time-varying operating conditions and there-

fore a framework for identifying informative frequency bands is necessary.

The Angle-Frequency Instantaneous Power Spectrum (AF-IPS) and the Order-Frequency

Cyclic Modulation Spectrum (OFCMS) provide a representation that preserves the angle-

time properties of vibration signals acquired under time-varying speed conditions [12, 56].

In Ref. [56], a thorough analysis of the statistical properties of the OFCMS is performed

and the OFCMS is used for damage detection under time-varying speed conditions. By

combining the conventional FBI methods with the AF-IPS and OFCMS, it would be pos-

sible to perform FBI under time-varying operating conditions. Therefore, we develop a

framework that utilises the recently published AF-IPS and OFCMS [56] for frequency

band identification under time-varying operating conditions.

In summary, the following contributions are made with this work:

• A framework is proposed for identifying informative frequency bands under time-

varying operating conditions.

• Different conventional frequency band identification methods, implemented using

this method, are compared in this work under time-varying operating conditions.
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This makes it possible to compare the performance of different features for frequency

band identification under time-varying operating conditions, e.g. the kurtosis feature

can be compared against the feature used in the original IFBIαgram [49].

• The IFBIαgram is implemented with this framework and it is compared to the order-

frequency spectral coherence-based IFBIαgram used in Ref. [49].

The layout of the paper is as follows: An overview of the proposed frequency band

identification framework is presented in Section 2 and an overview of different features

is given, including the new IFBIαgram. Thereafter, the performance of the different fea-

tures are compared in Section 3 on numerical gearbox data that simulate distributed gear

damage, inner race bearing damage and outer race bearing damage. Lastly, the different

features are compared on two experimental datasets that were acquired under time-varying

operating conditions in Section 4, whereafter conclusions are drawn in Section 5. Lastly,

Appendix A contains additional information pertaining to the numerical gearbox model.

2. Frequency Band Identification under time-varying operating conditions

The objective of the Frequency Band Identification (FBI) problem is to identify a

frequency band [f − ∆f/2, f + ∆f/2] in a signal x = [x[0], x[1], . . . x[Nx − 1]], with a

length of Nx and sampled at a rate of fs Hz, which would improve the signal-to-noise

ratio of the characteristic-of-interest (e.g. improve the detectability of the damage). The

bandpass filtered signal

xf = [x[0; f,∆f ], x[1; f,∆f ], . . . , x[Nx − 1; f,∆f ]], (1)

can then be analysed for damage with techniques such as the Squared Envelope Spectrum

(SES) and the synchronous average of the squared envelope [27, 59].

The frequency band of interest [f −∆f/2, f + ∆f/2] can be determined by calculating

a metric, a health index, or a feature, denoted by Ψ, of the bandlimited signal xf for each

potential combination of candidate centre frequencies f and bandwidths ∆f , whereafter

the band is selected by maximising the feature, i.e.

max
f,∆f

Ψ(f,∆f). (2)
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Different features such as the kurtosis of the time signal [39], the kurtosis of the cyclic

spectrum [37], the L2/L1-norm [43], the spectral negentropy [44], the ratio-of-cyclic con-

tent [60], the indicator-of-second order cyclostationarity (ICS2) [36], the amount of novel

information in frequency bands [27, 52, 54], the envelope harmonic-to-noise ratio [61], the

Gini index [62], and the classification accuracy [51] can be used to identify informative

frequency bands. The blind features (e.g. kurtosis) have the advantage that they do not

require any prior knowledge before being implemented, while in contrast, the targeted

methods (e.g. ICS2) require the rotational speed and the fault frequencies of the damaged

components to be known a priori. The vibration signals acquired from mining machines

typically contain non-Gaussian noise, which makes it necessary to carefully select the

features for identifying informative frequency bands [38, 63, 64].

In this work, the Instantaneous Power Spectrum (IPS) and the Cyclic Modulation

Spectrum (CMS), both linked to the Short-Time Fourier Transform (STFT), are used

to construct feature planes for the different combinations of the spectral frequency f

and the bandwidth ∆f . This would allow us to perform frequency band identification

with temporal blind, spectral blind and targeted features under time-varying operating

conditions using the same framework. This is in contrast to using the order-frequency

spectral coherence for constructing the feature plane (e.g. [48, 49]). Hence, brief overviews

of the STFT, IPS and CMS are given in the next subsection, whereafter the different

features considered in this work are discussed. The reader is referred to Ref. [12, 56, 65]

for a more detailed overview of these estimators. Lastly, the framework is presented in

Section 2.3.

2.1. STFT-based estimators

The Short-Time Fourier Transform (STFT) of the discrete time domain signal x ∈ RNx

is given by [66]

XTF [m, k; ∆f ] =
Nw−1∑
b=0

x[m ·R + b] · w[b] · e−2πjb
fk
fs . (3)

In Equation (3), the value of the STFT at a time of tm = m·∆tTF , withm = 0, 1, . . . ,MTF−
1, and a frequency of fk = k·∆fTF , with k = 0, 1, . . . , Nw−1 is denotedXTF [m, k; ∆f ] ∈ C.

In Equation (3), w is a symmetric window such as a Hamming window, Nw is the num-
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ber of time increments, and R is the overlap between successive windows. The STFT

adheres to the uncertainty principle, which means that there is a compromise between

the time resolution ∆tTF and the frequency resolution ∆fTF that are attainable by the

Time-Frequency STFT (TF-STFT). The subscript TF of XTF [m, k; ∆f ] emphasises that

the distribution is on a time-frequency plane and it also indicates the order of the variables

in XTF [m, k; ∆f ], i.e. m corresponds to the time-axis and k corresponds to the frequency

axis.

The corresponding Time-Frequency Instantaneous Power Spectrum (TF-IPS) of the

signal can then be estimated with [56]

ITF [m, k; ∆f ] =
1

||w||2 · fs
XTF [m, k; ∆f ]X∗TF [m, k; ∆f ], (4)

where the factor (||w||2 · fs)−1
ensures that the spectrum is calibrated and the superscript

∗ denotes the complex conjugate. The Power Spectral Density (PSD) can subsequently be

estimated as the time-average of the IPS, i.e. [33]

PTF [k; ∆f ] =
1

MTF

MTF−1∑
m=0

ITF [m, k; ∆f ], (5)

or more succinctly denoted PTF [k] =
〈
ITF [m, k]

〉
m

.

The impulses generated by rotating machine damage tend to excite structural reso-

nances, which means that there will be cyclostationary components in specific bands of

the instantaneous power spectrum [21, 22]. These periodicities can be detected with the

Cyclic Modulation Spectrum (CMS) [56, 65, 66]

CFF [a, k; ∆f ] =
1

MTF

MTF−1∑
m=0

ITF [m, k; ∆f ] · e−2πj ma
MTF , (6)

which is a bi-frequency distribution as indicated by the subscript FF over cyclic frequencies

αa = a ·∆α, with a = 0, 1, . . .MTF −1, and spectral frequencies fk. Even though the CMS

is computationally fast to calculate, it is a biased estimator of the spectral correlation [55].

Recently, estimators of the spectral correlation were proposed which are much faster than

the Welch estimator of the spectral correlation and are not biased like the CMS [66, 67].

However, their investigation is beyond the scope of this work.

Under time-varying speed conditions, vibration signals lose their time and angle cy-

clostationary characteristics, making TF-based estimators ill-suited [56]. An example of
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this is shown in Figures 1(a) and 1(d) for a synthetic signal emulating a ramp-up scenario.

The CMS spectrum in Figure 1(d) contains much smearing which makes it difficult to

detect the impulses. It is possible to order track the signal under mild speed fluctuations,

however, this would result in the spectral order axis to smear under large speed conditions

as seen in Figures 1(b) and 1(e). This is because the signal contains angle-time cyclo-

stationary properties, i.e. the impulses are periodic in the angle domain, but manifest

in time-invariant frequency bands [55–57]. This would result in the damage components

to lose their repetitive transient signature when considering a specific spectral frequency

band. Ultimately, the signal-to-noise ratio of the components-of-interest is reduced by

using the angle-order framework and this could result in the wrong frequency band to be

identified. Hence, Angle-Frequency (AF) estimators [55–57] need to be used to ensure that

consistent representations are obtained for analysing the signals under large time-varying

speed conditions. This is highlighted in Figures 1(c) and 1(f).

The AF-IPS is obtained by order tracking the TF-IPS [56]

IAF [u, k; ∆f ] = OTm→u{ITF [m, k; ∆f ]}, (7)

where m→ u indicates that the time index m is converted to an angle index u in the order

tracking process. Order tracking can be performed by using the measured speed or phase

of the signal [68] or with tacholess order tracking methods [69]. The Order-Frequency

CMS (OFCMS) [56]

COF [a, k; ∆f ] =
1

Nu

Nu−1∑
u=1

IAF [u, k; ∆f ] · e−2πjua/Nu , (8)

can then be used to detect periodicities in specific frequency bands. A detailed analysis of

this estimator as well as the corresponding Matlab code is provided in Ref. [55]. Since the

STFT adheres to the uncertainty principle, it is only possible to obtain reliable estimates

with the OFCMS for cyclic orders α < αcut, where the cut-off frequency is given by [56]

αcut = π ·∆fAF ·
ω̄

||ω||22
. (9)

The frequency resolution of the AF-IPS or OFCMS is denoted by ∆fAF , while ω̄ is the

mean rotational speed and ||ω||2 denotes the L2-norm of the speed. An equivalent limit

αcut is present for the FF-CMS, an estimate that is implicitly used in some conventional
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Figure 1: The instantaneous power spectrum and cyclic modulation spectrum of a synthetic signal, which

simulates a train-of-impulses undergoing a ramp-up scenario, are presented for different estimators. (a)

Time-Frequency Instantaneous Power Spectrum (TF-IPS); (b) Frequency-Frequency Cyclic Modulation

Spectrum (FF-CMS); (c) Angle-Order Instantaneous Power Spectrum (AO-IPS); (d) Order-Order Cyclic

Modulation Spectrum (OO-CMS); (e) Angle-Frequency Instantaneous Power Spectrum (AF-IPS); (f)

Order-Frequency Cyclic Modulation Spectrum (OFCMS).
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FBI methods. This means that the applicability of these CMS-based estimators depends

on the rotational speed of the machine and care needs to be taken when the characteristic

orders of the components-of-interest are large.

2.2. Features

Damaged machine components could result in the signals to become more leptokurtic,

it could result in an increase in cyclostationarity and it could result in the signals’ spectra to

become more sparse. Therefore, there many potential scalars that can be used to identify

the frequency bands with potential damage information. These features (also referred to

as health indices or indicators) can be extracted from the spectral frequency bands of the

IPS or the CMS to identify the informative frequency bands. The performance of the

frequency band identification method is much dependent on the feature used to construct

the feature plane [36, 62]. Since time-frequency, angle-order or angle-frequency estimators

can be used in FBI methods, no distinctions are made between the domains of the different

estimators in this section.

2.2.1. Kurtogram

The kurtogram

Ψkurt(fk,∆f) =

〈
|I[n, k; ∆f ]|2

〉
n

|P [k; ∆f ]|2 − c, (10)

was proposed in Refs. [33, 35, 39] as a method to automatically determine the frequency

band that maximises the impulsivity in the signal. It has been successful under constant

and time-varying speed conditions, however, it is very sensitive to non-repetitive transients,

which could lead to frequency bands without damage information to be identified, and its

value decreases with cyclic frequency [37, 44]. The constant c is used to ensure that

Ψkurt[n, k] = 0 if the signal is Gaussian, however, for the purposes of the frequency band

identification problem, the constant does not influence the optimisation problem. The

kurtosis of the cyclic spectrum, as opposed to the temporal signal, has been used to

overcome the inability of the conventional kurtogram to distinguish between non-periodic

and periodic transients [70].
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2.2.2. Infogram

The infogram uses the spectral negentropy to identify informative frequency bands.

The infogram can be calculated based on the squared envelope of the signal (i.e. the

instantaneous power) which is used to obtain the Squared Envelope (SE) infogram [44]

ΨSE(fk,∆f) =

〈 |I[n, k; ∆f ]|2〈
|I[n, k; ∆f ]|2

〉
n

ln

(
|I[n, k; ∆f ]|2〈
|I[n, k; ∆f ]|2

〉
n

)〉
n

, (11)

which measures the degree-of-organisation in the time (or angle) domain of the bandlimited

signal [44]. The degree-of-organisation in the cyclic spectrum can be calculated with the

SES infogram [44]

ΨSES(fk,∆f) =

〈 |C[a, k; ∆f ]|2〈
|C[a, k; ∆f ]|2

〉
a

ln

(
|C[a, k; ∆f ]|2〈
|C[a, k; ∆f ]|2

〉
a

)〉
a

. (12)

The SE infogram is often maximised by similar phenomena as the kurtogram and therefore

only the SES infogram is considered in this work. Wang et al. [71] presented a unified

framework for the spectral kurtosis, the spectral negentropy, the spectral Gini index and

spectral smoothness index, where the aforementioned statistics can be obtained from the

sum of the normalised squared envelope.

2.2.3. Sparsogram

The impulses, generated by damaged rotating machine components such as bearings,

manifest in the cyclic spectrum at their cyclic frequency (or orders) and its harmonics.

These signal components increase the sparsity of the cyclic spectrum and therefore the

sparsogram can be used to identify frequency bands that contain much fault information.

Tse and Wang [43] proposed that the L2/L1-norm should be used as a sparsity measure,

which is used to construct the sparsogram. We used the following feature to construct the

sparsogram

ΨL2/L1(fk,∆f) =
√
Na ·

||C[a, k; ∆f ]||2
||C[a, k; ∆f ]||1

, (13)

the factor
√
Na is added to correct for the bias of the L2/L1 ratio [62] and this makes

a significant difference in the frequency band identification problem. The L2- and L1-

norms, denoted by ||C[a, k; ∆f ]||2 and ||C[a, k; ∆f ]||1, respectively are calculated over the

a variable, with the OFCMS having Na values in each frequency band.
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2.2.4. ICS2gram

The ICS2gram is based on a cyclostationary indicator of the second-order [36]

ΨICS2(fk,∆f) =
∑
a∈A

|C[a, k; ∆f ]|2
|C[0, k; ∆f ]|2 , (14)

where A denotes the indices of the cyclic components-of-interest. The ICS2 is a powerful

condition indicator for rotating machine condition monitoring [36, 72]. In the work of Ref.

[73], the ICS2 was shown to be a good indicator to determine the wear mechanism and it

could also detect the severity of the wear.

The estimator as presented in Equation (14) could lead to sub-optimal estimations due

to the picket-fence effect and the actual cyclic orders of the components-of-interest could

be slightly different from the analytical cyclic orders due to slip for example. Hence, a

more appropriate estimator of the ICS2gram is given by [36]

ΨICS2(fk,∆f) =

Nh∑
h=1

max{|C[a, k; ∆f ]|2}a∈Ah

|C[0, k; ∆f ]|2
, (15)

where Ah is the set of indices associated with the hth harmonic and given by

Ah =
{
a ∈ N|h ·

(
1− κ

2

)
· αc ≤ αa ≤ h · αc

(
1 +

κ

2

)}
. (16)

The analytical cyclic order of the component-of-interest is denoted αc and the cyclic order

tolerance is governed by the factor κ. The following notation is used in Equation (15)

{x[n]}n∈{0,1,...,Nx−1} = {x[0], x[1], . . . , x[Nx − 1]}, (17)

where max{x[n]}n∈{0,1,...,Nx−1} would return the maximum value in the set given by Equa-

tion (17). This means that in Equation (15), the hth harmonic of the signal component-

of-interest is defined as the maximum component in the cyclic order band h ·
(
1− κ

2

)
·αc ≤

αa ≤ h ·αc
(
1 + κ

2

)
. If κ is too small, it would be equivalent to using Equation (14), while

a too large κ would result in other signal components to be perceived as the component-

of-interest and could lead to the wrong frequency band being detected. Bearing slip for

example could result in 1-2% variation from the mean frequency of the component-of-

interest [20] and therefore, in this work, κ = 0.02 for all considered cases.
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2.2.5. Log-Cycligram

In the paper by Smith et al. [36], the authors also proposed the log-cycligram as an

estimator. The log-cycligram uses the cyclic spectrum of the logarithm of the envelope

instead of the envelope in the calculation of the cyclic spectrum, which makes it more

robust to non-Gaussian noise [36]. The Log-CycliGram (LCG) is ultimately estimated

with [36]

ΨLCG(fk,∆f) =

Nh∑
h=1

max{|CL[a, k; ∆f ]|2}a∈Ah
, (18)

where CL[a, k; ∆f ] denotes the CMS calculated with the logarithm of the IPS.

2.2.6. IFBIαgram

The IFBIαgram [59]

ΨIFBI(fk,∆f) =

Nh∑
h=1

max{|C[a, k; ∆f ]|}a∈Ah

median{|C[a, k; ∆f ]|}a∈Bh
, (19)

calculates the signal-to-noise ratio in the cyclic spectrum to identify frequency bands where

the component-of-interest is most prominent. In the original paper [59], the OFSCoh was

used to estimate the IFBIαgram, where the OFCMS is used as an estimator for the first

time in this paper. The numerator is exactly the same as the ICS2gram in Equation (15),

however, the denominator estimates the localised noise level with the median. The median

of the cyclic spectrum associated with the indices

Bh =
{
a ∈ N+|h · αc − 1 ≤ αa ≤ h · αc + 1

}
, (20)

is calculated to estimate the noise level. The median is more robust to spurious signal com-

ponents and sidebands than other measures of central tendency and is therefore expected

to be a more reliable estimate of the noise level in the cyclic spectrum, as it would be

less affected by the presence of sparse components [49]. Since the IFBIαgram is estimated

with the same estimator as ICS2gram and the log-cycligram, i.e., the CMS, it is possible

to compare the performance of the features under time-varying operating conditions.

2.3. Application of FBI methods under time-varying operating conditions

Due to the angle-time cyclostationary properties of the impacts generated by the dam-

aged components [55, 57], we propose that frequency band identification methods should
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be applied as shown in Figure 2 under time-varying operating conditions to ensure that a

consistent feature plane is obtained. The STFT and TF-IPS are calculated for a specific

Vibration
signal x

STFT∆f

TF-IPS

AF-IPSSpeed

OFCMS

Log-OFCMS

Feature
extraction

Feature
extraction

Feature
extraction

Ψ(1)(fk,∆f)

Ψ(2)(fk,∆f)

Ψ(3)(fk,∆f)

XTF [m, k; ∆f ]

ITF [m, k; ∆f ]

IAF [u, k; ∆f ]

IAF [u, k; ∆f ]

COF [a, k; ∆f ]

CLOF [a, k; ∆f ]

log IAF [u, k; ∆f ]

Figure 2: A broad overview of the proposed framework that can be used to extract three classes of

narrowband features under time-varying operating conditions. The three identified classes are as follows:

Ψ(1)(fk,∆f) denotes the feature plane obtained from angular features (e.g. kurtogram); Ψ(2)(fk,∆f)

denotes to features obtained from spectral features (e.g. sparsogram or ICS2gram); and Ψ(3)(fk,∆f)

obtained from spectral logarithm features (e.g. log-cycligram).

frequency resolution ∆f , whereafter the AF-IPS, the OFCMS or the Log-OFCMS can be

calculated depending on the class of the feature under consideration. This process can

be repeated for all the frequency resolutions ∆f under consideration to construct a fea-

ture plane Ψ(fk,∆f). The features considered in the previous section can be classified as

follows using the classes in Figure 2:

• Angular features, denoted Ψ(1)(fk,∆f), include the conventional kurtogram and SE

infogram.

• Spectral features, denoted Ψ(2)(fk,∆f), include the sparsogram, the SES infogram,

the ICS2gram and the IFBIαgram.

• Spectral logarithm features, denoted Ψ(3)(fk,∆f), include the log-cycligram.
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Ultimately, the specific feature is extracted from each frequency band to construct the

feature plane Ψ(fk,∆f), which is subsequently maximised to identify the informative

frequency band using Equation (2). In this work, blind methods refer to frequency band

identification methods that do not require the cyclic orders of the components-of-interest

to be known a priori. In contrast, targeted methods refer to frequency band identification

methods that target the cyclic orders of the components-of-interest to find the informative

frequency bands [36].

The framework proposed in Figure 2, which relies on the theory developed by Abboud

et al. [55, 57], is a subtle extension of conventional frequency band identification methods,

but is essential to ensure that the angle-time cyclostationary properties of the signals

are preserved under time-varying operating conditions. This allows the performance of

the angular, spectral, and spectral logarithm features to be compared using the same

framework under time-varying operating conditions.

In the next section, the IFBIαgram is compared against different features using the

proposed framework on numerical gearbox data acquired under time-varying operating

conditions. Thereafter, in Section 4, the IFBIαgram is compared to other methods using

the proposed framework on two experimental gearbox datasets, both acquired under time-

varying operating conditions.

3. Numerical gearbox data

The phenomenological gearbox model used by Abboud et al. [23] and extended by

Schmidt et al. [27] to include inner race bearing damage, is used in this work to compare

the performance of the different methods. In the next section, a brief overview of the

model is given. Thereafter, the feature planes and the resulting squared envelope spectra

of the different frequency band identification methods are compared on a single signal in

Section 3.2. Lastly, in Section 3.3, the performance of the different methods are compared

by incrementally increasing the bearing damage component under time-varying operating

conditions.
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Figure 3: The casing vibration signal and the rotational speed that were used to generate the data are

presented in Figures 3(a) and 3(b) respectively. Since the signal of the phenomenological gearbox model

is not calibrated to have specific units, the units of the signal and its instantaneous power are U and U2

respectively.

3.1. Overview of model

The measured signal of the phenomenological bearing model is decomposed in terms

of five independent components [27]

xc = xgmc(t) + xbo(t) + xbi(t) + xdgd(t) + xn(t), (21)

where xgmc(t) is the deterministic gear component attributed to gear meshing, xbo(t) is

the outer racing bearing damage component, xbi(t) is the inner race bearing damage

component, xdgd(t) is the distributed gear damage component and xn(t) is the broad band

noise component. The cyclic order of the gear is 1.0 shaft order, the Ball-Pass Order of

the Outer race (BPOO) component of the bearing is 4.12 shaft orders, and the Ball-Pass

Order of the Inner race (BPOI) component of the damaged bearing is 5.88 shaft orders.

More information related to the model, such as the signal-to-noise ratios of the different

components, can be found in Appendix A. The gear components are purposefully made

very dominant to mask the weak bearing damage components and therefore the objective

is to detect the weak bearing components despite the dominant gear component.

The casing vibration signal and the rotational speed of the shaft are presented in Figure

3. The time-varying speed in Figure 3 necessitates using the proposed framework.
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3.2. Frequency Band Identification: Illustration on a single signal

The following FBI methods are applied on the signal in Figure 3: IFBIαgram, ICS2gram,

Log-Cycligram, SES infogram, kurtogram and sparsogram. For the targeted methods,

the cyclic order vector is α = [1.0, 2.0, 3.0] for the distributed gear damage compo-

nent, α = [4.12, 8.24, 12.36] for the outer race bearing damage component, and α =

[5.88, 11.76, 17.64] for the inner race bearing components. The blind methods do not

require this information when identifying the frequency bands, however, the signal com-

ponent that is extracted by the blind method needs to be determined a posteriori (i.e. by

looking for evidence of cyclostationary components in the filtered signal).

The resulting feature planes and the Squared Envelope Spectra (SES), obtained by

bandpass filtering the signal with the parameters identified by maximising the features,

are presented for the IFBIαgram in Figure 4. The vertical markers in the SES indicate

the position of the cyclic components that were targeted as well as all related harmonics.

The first harmonic of the distributed gear damage component is very clearly seen in

Figure 4(d). The feature plane of the distributed gear damage component, shown in

Figure 4(a), contains two frequency bands; the lower frequency band is attributed to the

gear component, while the higher frequency band is associated with the inner race bearing

damage component. The inner race bearing damage component is seen because it contains

modulation from the damage moving through the load zone as the shaft is rotating. The

sidebands are spaced at the rotational order of the shaft and the squared envelope spectrum

also contains a fundamental component related to the rotation of the shaft [27]. The ball-

pass inner race components as well as their sidebands are very prominent in Figure 4(f).

The outer race bearing component and its four harmonics are also very prominent in the

cyclic spectrum in Figure 4(e). Hence, the IFBIαgram is able to identify the frequency

bands of the targeted components very well.

The same analysis was performed for the ICS2gram with the results presented in Fig-

ure 5. The ICS2gram of the distributed gear damage component also detects the inner

race bearing damage component in Figure 5(a), but the inner race bearing damage com-

ponent is much weaker when compared to the IFBIαgram. This highlights two things;

the IFBIαgram is more sensitive to the presence of cyclostationary components and the

targeted methods could be affected by periodic components attributed to other machine
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Figure 4: The IFBIαgram and the corresponding SES of the filtered signal for different targeted cyclic

orders applied to the phenomenological gearbox model’s signal. (a) IFBIαgram for the distributed gear

damage component with αc = 1.0; (b) IFBIαgram for the outer race bearing damage component with

αc = 4.12; (c) IFBIαgram for the inner race bearing damage component with αc = 5.88; (d) SES for the

distributed gear damage component with αc = 1.0; (e) SES for the outer race bearing damage component

with αc = 4.12; (f) SES for the inner race bearing damage component with αc = 5.88.
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Figure 5: The ICS2gram and the corresponding SES of the filtered signal for different targeted cyclic

orders applied to the phenomenological gearbox model’s signal.

components if the components or their sidebands have nearly the same cyclic order as the

component-of-interest. Even though the components-of-interest can be identified in the

SES of the filtered signals obtained with the ICS2gram in Figure 5, only one harmonic

can be seen for the inner race bearing damage case in Figure 5(f) . This is in contrast to

the IFBIαgram, were the inner race bearing damage components were very prominent in

the SES.

The log-cycligram, presented in Figure 6, performs similarly to the ICS2gram for the

distributed gear damage and inner bearing damage components. In contrast, the outer race

bearing damage component is more prominent in the ICS2gram, with only two harmonics

present in Figure 6(e) compared to the four harmonics seen in Figure 5(e).

Lastly, the kurtogram, the sparsogram and the SES infogram are compared for the same

signal on Figure 7. The squared envelope spectra do not have any marks to highlight the

position of the cyclic components, because these methods are blind and the component

needs to be identified by interrogating the SES. The SES obtained from all three methods

contain the distributed gear component, which indicates that it is most impulsive or sparse
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Figure 6: The log-cycligram and the corresponding SES of the filtered signal for different targeted cyclic

orders applied to the phenomenological gearbox model’s signal.

component in the signal.

Hence, the results indicate that the targeted methods are more sensitive to incipient

damage than the blind methods, with the IFBIαgram performing the best at extracting

the components-of-interest under time-varying operating conditions. In the next section,

the magnitude of the bearing components is changed to investigate the sensitivity of the

considered frequency band identification methods under time-varying operating conditions.

3.3. Frequency Band Identification: Sensitivity analysis with respect to damage

In this section, the performance of the different methods is compared by incrementally

increasing the outer race bearing damage over measurement number, while the statistical

properties of the distributed gear damage, gear mesh components and noise are kept

constant. The signal-to-noise ratio of the bearing component is shown in Figure 8(a)

over measurement number, with the corresponding speed profiles shown in Figure 8(b) for

the 400 measurements considered. The SNR range enables us to critically compare the

performance of the methods from a healthy bearing to a bearing with dominant impulses.

The speed profile allows us to compare the performance of the methods under varying
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Figure 7: The result of three blind methods, the kurtogram, sparsogram and infogram are presented for

the phenomenological gearbox model’s signal.

operating conditions.

The RMS and the kurtosis of the raw measurements are presented in Figure 8, with

only clear changes in the metrics observed after Measurement 300. The sensitivity of the

RMS to speed variation is prevalent in Figure 8(c); with large variations seen in consecutive

measurements. In contrast, the kurtosis is much more robust to the speed variation and

a clear degradation of the bearing is seen in Figure 8(d). Even though this monotonic

degradation is seldom seen in actual bearings [74, 75], it can be used to compare the

performance of the different features using the proposed framework.

The centre frequency fc of the frequency bands identified by the different FBI methods

are presented in Figure 9 with the analytical centre frequencies of the outer race bearing

damage and distributed gear damage components presented as well. The results indicate

that for the cases where the damage component is very small, the blind features (e.g.

kurtogram, SES infogram, sparsogram) and the ICS2gram identify in some cases a fre-

quency band in the region of the distributed gear damage component. The log-cycligram

and the IFBIαgram identifies random frequency bands for the initial measurements. The
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Figure 8: An overview of the dataset used in the investigation is given. (a) The Signal-to-Noise Ratio

(SNR) of the Bearing Outer (BO) component is presented over measurement number. The SNR is defined

as 10 · log10

(
σ2
b/σ

2
n

)
where σ2

b is the variance of the bearing component and σ2
n is the variance of the noise.

(b) The rotational speed of the shaft is presented for the different datasets. (c) The Root-Mean-Square

(RMS) of the raw vibration signals. (d) The kurtosis of the raw vibration signal.

log-cycligram only uses the peaks of the components-of-interest in the spectrum of the

logarithm of the instantaneous power, while the IFBIαgram only uses the peaks of the

component-of-interest and an estimate of the noise floor. Since the component-of-interest

is non-existent in the initial measurements, the identified peaks in the cyclic spectrum are

essentially random, which ultimately results in this random behaviour to be observed.

The results in Figure 9 are used to determine at which measurement the appropriate

frequency band is identified. The kurtogram detects the random component at approxi-

mately the 266th measurement, the sparsogram detects it at approximately the 305th mea-

surement, the SES infogram detects the damage at the 308th measurement, the ICS2gram

detects the damage at the 185th measurement, the log-cyligram detects the damage at

the 175th measurement and lastly the IFBIαgram detects the damage at the 179th mea-

surement. The targeted methods detect the damage much earlier than the blind methods.
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(e) Log-Cycligram
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(f) IFBIαgram
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Figure 9: The centre frequency of the identified frequency band is presented over measurement number for

the different frequency band identification methods. The analytical centre frequency of the Distributed

Gear Damage component (DGD) and the Bearing Outer (BO) race component are presented as well.

The ICS2gram in Figure 9(d) and IFBIαgram in Figure 9(f) have some variation in the

centre frequency for the last few measurements, while in contrast the log-cycligram in

Figure 9(e) is very stable.

The maximum value of the feature plane (i.e. the feature that corresponds to the opti-

mal frequency band) is used as a condition indicator in this work. The condition indicator

is presented in Figure 10 over measurement number for the different FBI methods. The

kurtogram performs the best of the blind methods, since it shows changes earlier than the

sparsogram and the SES infogram. The targeted methods perform much better than the

blind methods, with the damaged detected before the 200th measurement.

A threshold, calculated using the first 100 measurements and denoted by µ + 3 · σ,

is compared against the smoothed condition indicator to determine the detection point

of the targeted methods. The condition indicator of the ICS2gram exceeds the threshold

at the 191th measurement, and both the condition indicator of the log-cycligram and the

IFBIαgram exceed the threshold at the 181th measurement. The condition indicator of

the IFBIαgram in Figure 11(c) seems to increase linearly from the 181th measurement,

while the condition indicator of the log-cycligram in Figure 11(b) increases step-wise from
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Figure 10: The maximum value of the Feature Plane (FP) is presented for the different FBI methods

over measurement number. The smoothed condition indicator is obtained by applying a moving median

filter with a window length of 10. The condition indicators associated with the targeted FBI methods are

presented on a logarithmic scale for easier visualisation.

the 181th measurement.

In conclusion, the targeted methods perform much better than the blind methods for

detecting the damage components under time-varying operating conditions; the targeted

methods detect the damage at least 60 measurements earlier and the condition indica-

tors show a clear degradation trend. Of the targeted methods, the log-cyligram and the

IFBIαgram perform the best at detecting the damage.

In the next section, two experimental datasets are investigated to compare the per-

formance of the methods for localised and distributed gear damage detection under time-

varying operating conditions.
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Figure 11: The smoothed estimate in Figure 10 is compared against a threshold for the three targeted

features to compare the performance of the features. The parameters of the threshold µ+3·σ are obtained

from the mean µ and the standard deviation σ of the first 100 measurements.

4. Experimental gearbox data

In this section, the different FBI methods are applied on two experimental datasets

with the results critically compared. In the next section, an overview of the experimental

test-rig is given, whereafter a gearbox with localised gear damage is investigated in Section

4.2 and a gearbox with distributed gear damage is investigated in Section 4.3. Lastly, the

OFCMS estimator of the IFBIαgram is compared against the OFSCoh estimator of the

IFBIαgram in Section 4.4.

4.1. Experimental test-rig

The experimental test-rig shown in Figure 12 comprises of three helical gearboxes,

an alternator and an electrical motor. The centre gearbox, indicated as the monitored

gearbox, is monitored for damage with accelerometers and an optical probe and zebra

tape shaft encoder are located on the coupling of the input shaft of this gearbox (i.e.

S2 in Figure 12) to measure its instantaneous rotational speed. The rotational speed of

the electrical motor and the load applied by the alternator are separately controlled by

a personal computer. The accelerometer signal, located on the back of the monitored

gearbox, is sampled at 25.6 kHz and the optical probe signal is sampled at 51.2 kHz with

an OROS OR35 data acquisition system. Since a helical gearbox is being monitored,

the axial component of the tri-axial component is used in this work. The time-varying

operating conditions that are investigated in this section are shown in Figure 12.

24



(a) (b)

Figure 12: The experimental test-rig is shown with the important components and sensors being clearly

annotated. (a) An overview of the test-rig is presented with the shaft numbers given by S1, S2, S3, and

S4; (b) The back of the monitored gearbox is presented with the tri-axial accelerometer and the speed

measurement equipment being highlighted.
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Figure 13: The operating conditions that were present at the input shaft (i.e. Shaft S2) of the monitored

gearbox. In Figures 13(a) and 13(b) the estimated torque and rotational speed are presented for different

Operating Condition (OC) cases respectively.
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(a) (b)

Figure 14: The gear with localised gear damage (a) before the experiment started and (b) after the fatigue

experiment was completed.

4.2. Localised gear damage

Localised gear damage such as root cracks results in stress concentrations which could

adversely influence the remaining useful life of the gear. Additionally, since the stiffness

of the gear tooth would decrease, the adjacent gear teeth would be exposed to higher

forces, which could result in further damage in the gearbox [76]. Therefore, detecting

localised gear damage is extremely important to ensure that the gearbox operates as

intended. Hence, an experiment was performed with a gearbox that had a gear with

localised damage and a healthy pinion. The gear, seeded with damage shown in Figure

14(a), was operated for approximately twenty days before the gear tooth failed as shown

in Figure 14(b). Regular measurements were taken of the gearbox while it was operating

under Condition 1 shown in Figure 13. Even though the initial gear fault may seem severe

(i.e. it does not constitute a root crack), it is not easy to detect the damage due to the fact

that helical gears are used and the data were contaminated with impulsive components

attributed to a floating bearing.

Two signals are considered in this section, with the signals and their squared envelope

spectra being shown in Figure 15. Measurements 1 and 2 were respectively taken approx-

imately 16 and 2 days before the estimated failure of the gear tooth. Since the damage

is located on the gear and the gear rotates at 1.0 shaft order, it is expected that the SES

would contain signal components at 1.0 shaft order and its harmonics. However, it is

not possible to detect these components in the SES, which therefore erroneously indicates
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Figure 15: Two measurements are presented for the gearbox that had Localised Gear Damage (LGD).

(a) Vibration signal of measurement 1; (b) SES of measurement 1; (c) Vibration signal of measurement

2; (d) SES of measurement 2.

that the gearbox is healthy. There is a strong component at 5.72 shaft orders, but this

component is not associated with the damaged gearbox, since it is even present in the SES

of a healthy gearbox. Therefore, FBI methods are investigated to enhance the vibration

signals which could aid in detecting the damage.

The performance of the different FBI methods are compared for Measurement 1 in

Figure 16. The cyclic orders of the gear α = [1.0, 2.0, 3.0] are targeted by the IFBIαgram,

ICS2gram and the log-cyclicgram. The cyclic orders of the damaged component of 1.0 and

its harmonics are clearly seen in the SES of the IFBIαgram, however, none of the other

methods are able to extract the component-of-interest sufficiently well. The ICS2gram

and the kurtogram are maximised in the low energy region in the higher frequency bands,

which leads to only the 5.72 component to be present in the SES. This behaviour could

result from the fact that the term in the dominator of the ICS2gram and the kurtogram

is the energy of the narrowband signal. The log-cycligram identifies a dominant frequency

band at approximately 4 kHz, however, this band does not contain much information

of the component-of-interest. The targeted methods (i.e. IFBIαgram, ICS2gram, log-
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(c) Log-Cycligram
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(d) SES of IFBIαgram
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Figure 16: The feature planes and resulting SES of the filtered signals are presented for measurement 1

of the localised gear damage experiment. The feature planes are presented in (a), (b), (c), (g), (h), and

(i). The SES of the bandlimited signals, with the frequency band of the filter determined by maximising

the corresponding feature plane, are presented in (d), (e), (f), (j), (k), and (l).
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cycligram) estimate the component-of-interest with a maximum operator. This means that

any noise in the signal or the estimated cyclic spectrum, could result in the amplitude of

the component-of-interest to increase, which can easily lead to the wrong frequency band

to be identified. This is why the signal-to-noise measure used in the construction of the

IFBIαgram is important when a targeted approach is used for the FBI problem. Even if

a large signal component is detected in the numerator of Equation (19), it would lead to

a small feature if the estimated noise level in the denominator of Equation (19) is large.

The same analysis is performed for the second measurement that is considered in this

section. The gearbox was in a worse condition for this measurement, since it was taken two

days before the failure of the gear tooth. Therefore, it is expected that the damage would

be easier to detect. The feature planes of the different FBI methods and the associated

SES are presented in Figure 17. In this second measurement, both the IFBIαgram and

the ICS2gram are capable of identifying the best frequency band to identify the damage

component, while the other methods fail to enhance the damage. The frequency band that

was identified previously by the log-cycligram is detected again. The noise level of this

frequency band is quite high, and since the log-cycligram only uses the maximum operator

in its estimation as seen in Equation (18), it is susceptible to these frequency bands.

When comparing the feature planes obtained by the ICS2gram between the two mea-

surements, i.e. Figures 16(e) and 17(e), it is observed that the dominant frequency band,

which was erroneously identified in the first measurement, is still very dominant in the

feature plane of the second measurement. This indicates that the damage would need to

be further developed in this gearbox, before the correct frequency band is identified with

the ICS2gram. Since the IFBIαgram searches for the frequency band where the damage

component is the most prominent, it performed very well in detecting the localised gear

damage for both measurements.

In the next section, the same analysis is applied to measurements that were taken from

a gearbox with distributed gear damage.

4.3. Distributed gear damage

A healthy gear of the monitored gearbox was left in a corrosive environment for an

extended period of time, which resulted in damage to develop on the surface of the gear
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Figure 17: The feature planes and resulting SES of the filtered signals are presented for measurement 2

of the localised gear damage experiment. The feature planes are presented in (a), (b), (c), (g), (h), and

(i). The SES of the bandlimited signals, with the frequency band of the filter determined by maximising

the corresponding feature plane, are presented in (d), (e), (f), (j), (k), and (l).
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(a)

(b)

Figure 18: The gear with distributed gear damage is presented in (a) before the experiment started and

in (b) after the experiment was completed, with the failed gear teeth clearly highlighted.

as shown in Figure 18(b). Even though the damage depicted in this figure is worse than

what would be expected in the early stages of gear pitting or wear (e.g. Ref. [73]), it still

provides an opportunity to critically compare the performance of different FBI methods

in detecting distributed gear damage under time-varying operating conditions.

The gearbox was operated with the damaged gear and an healthy pinion for a few days

before localised gear damage started to develop in one of the gear teeth which resulted in

its failure. After this first event, the adjacent gear teeth were exposed to larger stresses

and impacts, which ultimately resulted in the adjacent gear teeth to become severely

damaged as shown in Figure 18(b). Two measurements that were acquired before the

failure of any gear tooth (i.e. before the first event) are analysed to determine whether the

distributed gear damage can be detected. Measurement 1 was taken approximately a day

before the first event, while measurement 2 was taken approximately 30 minutes before this

event. In Figures 19(b) and 19(d), the SES of the Cepstrum Pre-Whitened (CPW) signals,

calculated as described in Ref. [24], are investigated so that the first order cyclostationary

components are attenuated which could impede the detection of the damaged gear. In
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Figure 19: The raw vibration signal and SES for two measurements taken during the Distributed Gear

Damage (DGD) experiment. (a) Vibration signal of measurement 1; (b) The SES of the CPW signal of

measurement 1; (c) Vibration signal of measurement 2; (d) The SES of the CPW signal of measurement

2.
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the SES of measurement 1, there are no clear components associated with 1.0 shaft orders

and their harmonics. The SES of measurement 2 contains two harmonics associated with

the gear damage (i.e. at 1.0 and 2.0 shaft orders). The suitability of the different FBI

methods to enhance the gear damage is investigated in Figure 20 for the first measurement

and in Figure 21 for the second measurement.

The feature planes and the SES of the different FBI methods are compared in Figure

20 for the first measurement. The targeted methods, targeted the cyclic orders associated

with the gear, i.e. α = [1.0, 2.0, 3.0]. The IFBIαgram, the log-cycligram, the sparsogram

and the SES infogram are capable of enhancing the signal components, while the kur-

togram and the ICS2gram could not. The SES obtained with the IFBIαgram and the

log-cycligram are much clearer than the SES obtained with the blind methods as well as

the SES shown in Figure 19(b). The ICS2gram and the kurtogram are again adversely

influenced by the low energy components in the high frequency regions of the signal.

The feature planes and the SES of the different FBI methods are compared in Figure 21

for the second measurement. A similar performance is obtained by the different methods

as the previous measurement. A few harmonics of the gear damage are very prominent

in the SES of the IFBIαgram and SES infogram, which is in contrast to the SES shown

in Figure 19(d). Even though the log-cycligram and the sparsogram are able to detect

the damaged components, the SES of the log-cycligram only contains one harmonic of

the component-of-interest, while the SES of the sparsogram contains much noise which

could make it difficult to detect and to diagnose the damage. The results indicate that

the IFBIαgram and the log-cycligram are very capable of detecting the distributed gear

damage, while the ICS2gram does not perform very well.

The targeted methods performed much better than the blind methods on the exper-

imental measurements under time-varying operating conditions. This was because the

signals associated with the gear damage was not the most impulsive or most sparse in

the frequency bands of the signal and therefore the blind methods were easily distracted

by the wrong phenomena. The IFBIαgram is the only targeted method that performed

consistently well on all measurements. The ICS2gram was only capable of detecting the

localised gear damage of the second measurement, but could not detect the localised gear

damage in the first measurement and did not perform well on the distributed gear dam-
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Figure 20: The feature planes and resulting SES of the filtered signals are presented for measurement 1

of the distributed gear damage experiment.
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Figure 21: The feature planes and resulting SES of the filtered signals are presented for measurement 2

of the localised gear damage experiment.
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age measurements. The log-cycligram performed well in detecting the distributed gear

damage for both cases, but could not detect the localised gear damage. This is attributed

to the fact that the IFBIαgram uses a signal-to-noise ratio measure (or measure of the

prominence of the components-of-interest) to identify informative frequency bands and is

more robust to spurious components in the spectral frequency bands.

4.4. Comparison between OFSCoh and OFCMS estimators

The IFBIαgram, originally proposed in Ref. [49], decomposes the vibration signal into

a set of Order-Frequency Spectral Coherences (OFSCoh), whereafter the SNR feature

given by Equation (19) is calculated to obtain the feature plane. In Section 2, we propose

a framework that allows different targeted FBI methods to be applied under time-varying

operating conditions by using the OFCMS as an estimator. This makes it possible to

compare the performance of the features (e.g. SNR feature vs. Kurtosis feature), since all

FBI methods are calculated using the same STFT estimators as basis.

In this section, the original IFBIαgram (i.e. estimated with the OFSCoh [49]) is cal-

culated using the Welch-based estimator of the OFSCoh [55] and presented in Figure 22

for the localised and distributed gear damage measurements considered in this work.
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Figure 22: The IFBIαgram, calculated with the OFSCoh, are compared for the different measurements

considered in this work.

The gear components (i.e. 1.0 shaft orders and its harmonics) are seen in all measure-
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ments. However, the results in Figures 16, 17, 20, 21 and 22 indicate that the OFCMS-

based IFBIαgram performs slightly better than the OFSCoh-based IFBIαgram. For ex-

ample, the gear components are more clearly seen in Figure 16(d) than in Figure 22(e).

Furthermore, the performance of the two estimators are quantified in Table 1 and it cor-

roborates the observation that the OFCMS-based IFBIαgram performs slightly better than

the OFSCoh-based IFBIαgram on the considered measurements.

Table 1: The performance of the OFCMS-based and OFSCoh-based IFBIαgram is compared for the

different considered measurements using the measure in Ref. [27]. A larger feature indicates that the gear

component is more prominent. The feature is estimated as follows: The amplitude of a specific harmonic

of the gear component (e.g. H1 is the first harmonic) in the SES is divided by the median of the SES in

the range [0, 10]. The median is calculated as a measure of the noise level.

Meas. name Estimator Feat H1 Feat H2 Feat H3

LGD Meas. 1 OFCMS 6.708 7.504 6.708

LGD Meas. 1 OFSCoh 2.711 3.652 2.711

LGD Meas. 2 OFCMS 10.695 10.784 10.695

LGD Meas. 2 OFSCoh 9.618 9.177 9.618

DGD Meas. 1 OFCMS 10.836 7.559 10.836

DGD Meas. 1 OFSCoh 8.202 7.218 8.202

DGD Meas. 2 OFCMS 9.755 7.994 9.755

DGD Meas. 2 OFSCoh 8.202 3.9 8.202

The computational time between the two methods are compared in Table 2 for the

different measurements. The results supports the well-known fact that the OFCMS is much

more efficient to calculate than the Welch-estimator of the OFSCoh [56]. However, since

the OFCMS has a limited cyclic order range (i.e. see Equation (9)) it is not necessarily

well-suited for all applications and therefore care needs to be taken when using it to

estimate targeted feature planes (e.g. IFBIαgram, ICS2gram).
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Table 2: The computational time to construct the OFSCoh-IFBIαgram and OFCMS-IFBIαgram is com-

pared. This was implemented in Python 3.7.3 on a computer with a 32 Gb RAM with an AMD Ryzen 7

2700X Eight-Core processor.

OFSCoh OFCMS

Meas. 1 Meas. 2 Meas. 1 Meas. 2

LGD 14757.2 [s] 14407.3 [s] 24.8 [s] 23.8 [s]

DGD 12390.5 [s] 15897.8 [s] 25.81 [s] 26.1 [s]

5. Conclusion

In this work, a framework is presented for applying frequency band identification meth-

ods under time-varying operating conditions. This framework utilises the instantaneous

power spectrum and the cyclic modulation spectrum to estimate blind and targeted fea-

tures that indicate the frequency bands with potential fault information. Since the same

framework is used for all the considered features, it makes it possible to compare the per-

formance of the features under time-varying operating conditions. The results from the

two numerical and the two experimental investigations indicate the following:

• Targeted methods perform much better than blind methods for frequency band iden-

tification under time-varying operating conditions.

• The performance of the frequency band identification is much dependent on the

feature that is used.

• The IFBIαgram, when compared to the established blind and targeted features, has

much potential for bearing and gear fault diagnosis under time-varying operating

conditions.

Even though targeted methods perform the best, they require the cyclic components to

be known a priori, which could be difficult for drive-trains with many cyclic components

that need to be monitored. Therefore, there is still much value in obtaining blind methods

that perform well and therefore it is necessary to find blind features that are capable of

reliably identifying informative frequency bands. Lastly, even though the investigations

were performed under varying load and speed conditions; the influence of time-varying

38



load on the frequency band identification process is not well understood and needs to be

investigated in the future.
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Appendix A. Phenomenological gearbox model: Additional information

This model is based on the work by Abboud et al. [23] that was extended to include

inner race bearing damage in Ref. [27]. The measured (or casing) vibration signal

xc(t) = xgmc(t) + xdgd(t) + xbo(t) + xbi(t) + xn(t), (A.1)

consists of a gear mesh component xgmc(t), a distributed gear damage component xdgd(t),

an outer race bearing damage component xbo(t), an inner race bearing damage component

xbi(t) and a broadband noise component xn(t).

The gear mesh component of the gearbox

xgmc(t) = M (ω(t)) · hgmc(t)⊗
(
Ngmc∑
k=1

A(k)
gmc · sin

(
k ·Nteeth ·

∫ t

0

ω(τ)dτ + ϕ(k)
gmc

))
, (A.2)

simulates the interaction between healthy gear teeth of a parallel shaft gearbox, where

M (ω(t)) changes the amplitude of the signal as the rotational speed ω [rad/s] changes,

hgmc(t) is the impulse response function of a single degree-of-freedom signal, Nteeth is the

number of teeth of the gear, which can be used to calculate the instantaneous gear mesh

frequency with Nteeth · ω(t). There are Ngmc harmonics in the signal with A
(i)
gmc and ϕ

(k)
gmc

being the amplitude and phase of the kth harmonic. The natural frequency and the

damping ratio of hgmc(t) are 2000 Hz and 0.05 respectively.

The distributed gear damage component

xdgd(t) = M(ω(t)) · hdgd ⊗

εσ(t) ·
Ndgd∑
k=1

A
(k)
dgd · sin

(
k ·
∫ t

0

ω(τ)dτ + ϕ
(k)
dgd

) , (A.3)

has the same form as the gear mesh signal given by Equation (A.2), except for the addition

of εσ(t). The function εσ(t) is a sample from a standardised Gaussian, which makes the
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distributed gear damage component random as opposed to gear mesh component which

is deterministic. The natural frequency and the damping ratio of hgmc(t) are 1300 Hz and

0.05 respectively.

The outer race bearing damage component

xbo(t) = M(ω(t)) · hbo(t)⊗

Nimp−1∑
k=0

A
(k)
bo · δ

(
t− T (k)

bo

) , (A.4)

comprises of a train of impulses, where the kth impulse δ
(
t− T (k)

bo

)
occurs at the time

where t = T
(k)
bo and has an amplitude of A

(k)
bo . The T

(k)
bo is dependent on the rotational

speed of the system as well as on slip. However, the signal is simulated in the time

domain to retain the angle-time cyclostationary properties of the signal [57]. The impulse

is ultimately filtered through the structure which is assumed to have an impulse response

function hbo(t) of a single degree-of-freedom system with a natural frequency and damping

ratio of 7000 Hz and 0.05 respectively.

The inner race damage component

xbi(t) = zstribeck

(∫ t

0

ω(τ)dτ

)
·M(ω(t)) · hbi ⊗

Nimp−1∑
k=0

A
(k)
bi · δ

(
t− T (k)

bi

) , (A.5)

has a similar form as the outer race bearing damage component, however, there is ad-

ditional modulation simulated with zstribeck

(∫ t
0
ω(τ)dτ

)
as the bearing damage moves

in-and-through the load zone. This phenomenon is simulated with the Stribeck equation

[5]

zstribeck(ϕ) =

 z0 ·
(
1− 1

2ε
(1− cos(ϕ))

)cstr
for |wrp(ϕ)| < ϕmax

0 otherwise,
(A.6)

The wrap function, denoted by wrp(ϕ), returns the phase of the shaft ϕ in the domain of

[−π, π]. The constants associated with the Stribeck equation is as follows in this work

[5]: cstr = 3/2, ε = 0.49, ϕmax = 0.99π/2rad, and z0 = 1. The natural frequency and the

damping ratio of hbi(t) are 5500 Hz and 0.05 respectively.

The broadband noise component in the signal

xn(t) = σn · εσ(t) ·M(ω(t)), (A.7)
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Table A.3: Different statistics of the signal components of the model are presented. The SNR of signal

xi is calculated with 10 · log10(Ei/En), where Ei is the energy of xi and En is the energy of the noise

component.

xgmc xdgd xbi xbo

SNR 2.91 1.01 -17.75 -17.75

Max. 1210.95 2526.24 829.97 535.9

RMS 347.65 279.12 32.21 32.21

is simulated by drawing samples from a standardized Gaussian εσ(t) and scaling them with

a factor σn and the rotational speed of the system M(ω(t)). The scaling of the amplitude

due to the rotational speed is simulated by M(ω(t)) = ω2.

The signal-to-noise ratio, the maximum value and the RMS of the different signal

components are given in Table A.3. The distributed gear damage is clearly much more

dominant than the bearing damage components.
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