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Abstract

Incipient damage detection is important for critical rotating machines such as gearboxes found in the power

generation, mining and aeronautical industries. However, the fault information frequently manifests in

weak frequency bands in the vibration signals and the fault diagnosis process is impeded by time-varying

operating conditions. Frequency band identification methods can be used to enhance the weak fault

information in the vibration signal, however, this process is impeded by impulsive components unrelated

to the component-of-interest and time-varying operating conditions. Hence, in this work, an optimisation-

based frequency band identification method is developed to address these shortcomings. This method

comprises of two steps; in the first step, a coarse informative frequency band procedure is used, whereafter

a derivative-free optimisation algorithm is utilised to find the optimal frequency band for fault diagnosis.

Since many rotating machines operate for long periods of time in a healthy condition, much healthy

historical data are usually available when continuous monitoring is performed. Hence, this historical data

are used with the proposed frequency band identification approach for automatic fault detection. The

method is investigated on two experimental datasets acquired under time-varying operating conditions

and compared to other existing approaches for fault diagnosis. The results indicate that the method

is very capable of enhancing the fault information and can be used for automatic fault detection under

time-varying operating conditions.
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1. Introduction

Damaged rotating machines such as gearboxes could result in unexpected failures of expensive critical

assets such as wind turbines [1, 2]. The damage could manifest such as changes in the machine’s response

signature or the machine’s performance and can be detected with the appropriate condition monitoring

measurements [3]. The condition of rotating machines such as gearboxes and motors can for example be

inferred from vibration measurements [2], acoustic measurements [4–7], current measurements [8, 9], oil

debris monitoring [3] and temperature measurements [3, 10, 11]. Temperature measurements are not as

effective as other methods for incipient damage detection; and even though oil debris monitoring is much

more sensitive to damage, it is usually performed by taking periodic samples from the data [3]. Acoustic

emission measurements could offer early fault detection, but its performance is impeded by difficulties

in signal processing, it is sensitive to background noise, and it is sensitive to the transmission path [6].

In Ref. [6], the performance of acoustic emission was improved by placing the sensor inside the gearbox

casing and it showed much earlier signs of damage when compared to vibration measurements.

Vibration-based condition monitoring methods are widely used for gearbox condition monitoring and

is considered the most common condition monitoring method for rotating machines [3]. This is because

the measured vibration signals contain much information related to the instantaneous condition of the

machine and it has relatively low costs involved with their implementation [3, 12]. However, it can be

difficult to observe the fault signatures associated with the damaged components, because they can be

masked by time-varying operating conditions [12–14], impulsive noise [15, 16] and dominant deterministic

phenomena such as gear mesh interactions [17].

Impulses generated by the damaged components often excite the structural time-invariant resonances,

which results in the diagnostic information to manifest in narrow frequency bands [18, 19]. It is possible

to increase the signal-to-noise ratio of the components-of-interest by amplifying these frequency bands.

This is one of the motivations behind using the spectral kurtosis and the kurtogram for fault diagnosis

applications [20]. The kurtogram is used to automatically identify the frequency band that maximises

the kurtosis, which can subsequently be used to design a bandpass filter to automatically extract this

component [21]. Even though the kurtogram has been successful for bearing [21] and gear diagnostics

[19], it cannot distinguish between a single transient and repetitive transients and the original kurtogram

used a spectrogram-based estimator. This could lead to the wrong or suboptimal frequency band to

be identified [22]. Hence, various other methods such as the protrugram [23], the improved kurtogram

[24], the optimised spectral kurtosis [25], the infogram [22], and the envelope harmonic-to-noise ratio [26]

have been proposed as alternatives to the original kurtogram. Hebda-Sobkowicz et al. [16] performed a

comparison of different frequency band identification methods under non-Gaussian noise conditions.
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The aforementioned techniques do not require any prior knowledge about the kinematics of the machine

and are therefore referred to as blind methods [27]. It is possible to incorporate prior knowledge about the

kinematics of the machine to determine frequency bands that are optimal to identify specific components

(e.g. the Ball-Pass Order of the Outer race (BPOO) component of a bearing). These methods are referred

to as targeted methods [27]. Smith et al. [27] compared different frequency band identification methods

for fault diagnosis and found that targeted methods perform better than blind methods. Mauricio et al.

[28] developed the IESFOgram to automatically determine the optimal frequency band for calculating the

Improved Envelope Spectrum (IES), which has been very successful for bearing fault diagnosis. Schmidt

et al. [29] proposed the IFBIαgram, which uses a targeted signal-to-noise ratio feature for bearing and

gear fault diagnosis. The distcsgram is another targeted method that uses an indicator developed for

identifying frequency bands that contain much evidence that the bandlimited signal is generalised Gaussian

cyclostationary rather than generalised Gaussian stationary [30].

Historical data can be also be combined with the frequency band identification to find informative

frequency bands or to enhance the fault information. Wang et al. [31] proposed the SKRgram which

selects the frequency band with the largest increase in kurtosis when compared to a reference signal.

Schmidt et al. [18] developed a methodology that enhances the novel information in frequency bands by

combining empirical models with frequency band identification approaches. Liu et al. [32] developed the

accugram; a frequency band identification method that uses the classification accuracy as a metric.

The aforementioned frequency band identification methods are usually estimated with the Short-Time

Fourier Transform (STFT) or the Wavelet Packet Transform (WPT) estimators [21, 27] and therefore the

resulting feature planes have fixed resolutions. Hence, Zhang and Randall [33] used genetic algorithms

to refine the frequency band that was identified with the kurtogram to improve its performance. Wang

et al. [34] proposed a ratio of harmonics of the defect component-to-residual component measure and

combined it with a genetic algorithm to find the optimal frequency band. Blind deconvolution methods

use an estimated deconvolution filter to extract the impulsive or cyclostationary information from the

signals [35].

However, many rotating machines operate inherently under time-varying operating conditions (e.g.

wind turbines) and could adversely influence the application of the conventional frequency band iden-

tification methods. Only few methods have made a systematic attempt to solve the frequency band

identification problem under time-varying operating conditions (e.g. [18, 28, 29]). In addition to this, the

cyclic spectrum of the spectrogram is biased [17], which could adversely influence the results if targeted

frequency band identification methods are used. Lastly, rotating machines operate in healthy conditions

for long periods, which makes healthy data easily available when continuous condition monitoring is per-
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formed. This information can be used to perform automatic novelty detection using the frequency band

identification methods. The authors are not aware of any methods combining healthy historical data

with frequency band identification methods for novelty detection. We therefore propose a method to find

the optimal informative frequency band under time-varying operating conditions and combine this with

historical data from a healthy machine to perform novelty detection. The performance of this method is

demonstrated on experimental datasets that were acquired under time-varying operating conditions. The

contributions of this work are summarised here:

• A new framework is proposed that finds the optimal frequency band to enhance the fault information

in a vibration signal in two-steps, namely, an initialisation step and an optimisation step. The

method is developed for blind and targeted features.

• The method is specifically developed for applications under time-varying operating conditions.

• A novelty detection procedure is proposed that combined with frequency band identification methods

under time-varying operating conditions.

The layout of the paper is as follows: In Section 2, the proposed method is presented, whereafter it is

critically applied and evaluated in Section 3 on two experimental datasets. Existing methods are applied

on the experimental data in Section 4 to highlight the performance of the proposed method. Finally, the

paper is concluded in Section 5 with recommendations also made for future work. Three appendices are

included with additional information; Appendix A contains information pertaining to the optimisation

algorithm used in this work; Appendix B contains the results obtained with the raw experimental signals;

and Appendix C investigates the influence of the initialisation parameters.

2. Proposed method

We desire to extract a bandlimited signal xf from the measured vibration signal x ∈ RNx with a

bandpass filter hf that has a passband f = [fl, fh]. The resulting filtered signal

xf = hf ⊗ x, (1)

= [x[0; fl, fh], x[1; fl, fh], . . . , x[Nx − 1; fl, fh]]
T
, (2)

can then subsequently be used in combination with signal analysis methods (e.g. synchronous average,

squared envelope spectrum, improved envelope spectrum [18, 22, 23]) for fault diagnosis. We can formulate
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the informative frequency band identification problem as

maximise
f

Ψ(f ;x) (3)

subjected to ∆fmin − fl ≤ 0 (4)

fh −
fs
2

+ ∆fmax ≤ 0 (5)

∆flh + fl − fh ≤ 0, (6)

with the value for min{fl} = ∆fmin, the value for max{fh} = fs/2 − ∆fmax, the minimum allowable

bandwidth of the bandpass filter min{fh − fl} = ∆flh and the score assigned to the frequency band f

for the signal x is denoted Ψ(f ;x) : R2 → R. This score function, which aims to quantify the amount of

fault information in the frequency band f , can be blind (e.g. kurtosis) or targeted (e.g. an indicator-of-

cyclostationarity) and can be calculated from the raw signal; the cyclic spectrum of the signal or from the

order-frequency spectral coherence of the signal. Since the bandpass filter has roll-off effects and it is not

expected that the informative frequency band will be close to 0 Hz or close to the Nyquist frequency fs/2,

∆fmin = 50 Hz and ∆fmax = 50 Hz is used in this work. The minimum bandwidth ∆flh was set equal

to 20 Hz, since it is suggested in Refs. [23, 25] that the passband should contain at least three harmonics

of the fault component.

The optimisation problem in Equations (3) - (6) can easily be written in an equivalent unconstrained

minimisation form

maximise
f

κ(f), (7)

by using the penalty method [36], where

κ(f) = Ψ(f ;x)− r ·
(

max {∆fmin − fl, 0}2 + max {fh − fs/2 + ∆fmax, 0}2 + max {∆flh + fl − fh, 0}2
)
,

(8)

is the unconstrained objective function that needs to be maximised. In Equation (8), r ∈ R+ is a penalty

parameter and max{a, b} returns the largest number between a and b. Unconstrained minimisation solvers

[37, 38] can be used if the objective function is written as −κ(f). The r in this work is set equal to 109.

The proposed method to find the optimal frequency band f using a score function Ψ(f ;x) and the

unconstrained objective function in Equation (8) is summarised in Figure 1. The optimal passband

f = [fl, fh] is determined in two steps for a vibration signal x acquired from a machine in an unknown

condition, namely, the initialisation procedure and the optimisation procedure. The initialisation proce-

dure, discussed in Section 2.2, is guided by the cost function in Equation (8) to determine a good initial

value for the centre of the bandpass filter fc = (fl + fh)/2. The optimisation procedure, discussed in
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Unknown
vibration
signal x

Speed
of

shaft ω

Initialisation
procedure

Optimisation
procedure

Design of
bandpass

filter

hf

fc fl, fh

Figure 1: The proposed procedure to find an optimal bandpass filter hf , with a passband f = [fl, fh], that will enhance the
potential fault information in a vibration signal x acquired from a unknown condition. This is performed with a preselected
scoring function Ψ(f ;x). The rotational speed of the shaft, denoted ω, is only necessary for targeted scoring functions and
therefore indicated by a dashed line.

Section 2.3, determines the passband f = [fl, fh] that maximises the cost function in Equation (8). The

optimal passband is used to find the impulse response function of the bandpass filter hf . Thereafter, the

filtered signal xf = hf ⊗ x is analysed for damage.

Only some scoring functions Ψ(f ;x) require the rotational speed ω information and therefore this is

not always necessary as highlighted by the dashed line in Figure 1. More information on the different

kinds of score functions is given in Section 2.1.

2.1. Score function

It is desired to identify a frequency band that is optimal for fault diagnosis and therefore it is important

to utilise a scoring function that quantifies the amount of fault information in a frequency band f . The

calculation procedure of blind and targeted features is different under time-varying operating conditions.

The calculation of the objective function Ψ(f ;x) associated with a blind feature is shown in Figure 2. If

Measured
vibration
signal x

Bandpass filter
hf ⊗ x

Candidate f

Calculate the
feature of xf

Calculated score
of f , i.e. Ψ(f ;x)

xf

Figure 2: The calculation of the score Ψ(f ;x) is shown for the case where the feature is blind, e.g. kurtosis [21] or spectral
negentropy [22].

a targeted objective function is used, where the cyclic orders α are targeted, then the objective function

Ψ(f ;x,ω,α) needs to be calculated as shown in Figure 3. It is important to perform order tracking to

Measured
vibration
signal x

Bandpass filter
hf ⊗ x

Candidate f

Order track
the signal

Calculate the
feature of xϕ

f

Calculated score
of f , i.e.

Ψ(f ;x,α,ω)

Estimated speed ω α

xf xϕ
f

Figure 3: The calculation of the score Ψ(f ;x,ω,α) is shown for the case where the feature (e.g. ICS2 [27]) is targeted on
the cyclic orders α. The order tracked signal is denoted by the superscript ϕ, i.e. xϕ.

ensure that the features have a consistent representation under time-varying speed conditions and therefore
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the rotational speed ω (or instantaneous phase) of the shaft is required as an input. If the rotational speed

is available, computed order tracking is performed. In computed order tracking, the signal is resampled

by using the phase information from the reference shaft. A detailed overview of computed order tracking

given in Ref. [39]. If the speed cannot be measured, it is possible to use tacholess order tracking methods

to perform this task [40, 41]. In Figure 3, order tracking is performed after the filtering process to ensure

that the angle-time cyclostationary characteristics of the impulses are retained [42]. However, performing

order tracking in each function evaluation increases the computational cost of the optimisation procedure

and therefore if the gearbox is operating under constant or quasi-stationary conditions, the order tracking

can be neglected to improve the computational time required for the function evaluations.

The focus of this paper is placed on a signal-to-noise metric that was used in Ref. [18] to estimate the

prominence of the cyclic orders α in the SES of a filtered vibration signal. This metric was slightly adapted

and used as an integral step in the IFBIαgram [29], which is a targeted frequency band identification

method. The feature

Ψprom(f ;x,α,ω) =
∑

α∈α

SESxϕ
f

(α)

noise
{

SESxϕ
f

(α)
} , (9)

aims to extract the prominence of the cyclic order components α in the signal. The Squared Envelope

Spectrum (SES) of the bandlimited signal xϕf is denoted by SESxϕ
f

(α) in Equation (9). The SES of the

signal x ∈ RNx is calculated with

SESx (α) =

∣∣∣∣∣
1

Nx

Nx−1∑

n=0

|x[n]|2 e−j2πnα/fs
∣∣∣∣∣ . (10)

The Squared Envelope Spectrum (SES) highlights the cyclostationary content in the instantaneous power

of a signal and is a very popular technique for bearing diagnostics [17, 18]. This feature calculated with

Equation (9) is maximised when the signal components associated with the targeted cyclic orders α

are very prominent (i.e. have high signal-to-noise ratios) in the SES. Hence, this feature indicates in

which frequency bands it would be easy to identify the cyclic components associated with the damaged

component-of-interest.

However, the analytical cyclic orders may differ from the actual cyclic orders of the component-of-

interest due to slip or due to the picket-fence effect and therefore applying Equation (9) directly on the

SES of the signal could lead to suboptimal results. Hence, the following feature is calculated instead

Ψprom(f ;x,α,ω) =
∑

α∈α

max
{

SESxϕ
f

(αe)
}
α·(1−ctol/2)≤αe≤α·(1+ctol/2)

median
{

SESxϕ
f

(αe)
}
α−1≤αe≤α+1

, (11)
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where max
{

SESxϕ
f

(αe)
}
α·(1−ctol/2)≤αe≤α·(1+ctol/2)

indicates that the maximum value of the SES in the

range α · (1 − ctol/2) ≤ αe ≤ α · (1 + ctol/2) is used as an estimate of the amplitude of the component-

of-interest. The cyclic order tolerance ctol is set to ctol = 0.1. The denominator of Equation (11) aims

to estimate the localised noise level of the SES and uses the median of the SES in the cyclic order band

α− 1 ≤ αe ≤ α+ 1. The median is used, because it is more robust to other signal components than the

average or the RMS for example [29].

If the rotational speed and the kinematics of the gearbox are unknown, then it is suggested that a

blind feature such as the negative entropy should be used [22].

2.2. Initialisation procedure

We need to solve the optimisation problem in Equation (7) using numerical optimisation methods.

This requires the optimisation solver to be initialised at a specific point in the design space. The objective

function is expected to contain many local maxima, since the rotating machine may have many natural

frequencies in the bandwidth of the measured signal. As a result, a random initialisation procedure could

result in the optimisation procedure to converge to a local maximum that is not close to the global best.

We therefore propose using a grid-based initialisation procedure to scan the entire frequency range

for informative frequency bands. This grid is illustrated in Figure 4. This means that there are several

f
0 fs/2

a b c d

e f g

Figure 4: The initialisation procedure is illustrated using seven points evenly spaced between the 0 Hz and Nyquist frequency
fs/2 Hz on the spectral frequency axis f . There are seven candidate bandpass filters, denoted a, b, . . . , g located between the
0 Hz and fs/2 Hz. If ∆f = (fs/2)/8, then the spacing between the centres of the bandpass filters is ∆f and the bandwidth
of the filters is 2 · ∆f .

candidate bandpass filters on the grid, with the scoring function (e.g. see Figure 3) being calculated for

each candidate bandpass filter. Thereafter, the centre frequency of the bandpass filter with the best score

is used to initialise the optimisation algorithm. This initialisation procedure ensures that the region of

the optimal informative frequency bands are identified and this ensures the success of the subsequent

optimisation procedure. The methods proposed in Ref. [23, 25] use a similar procedure to find the

informative frequency bands in the signal, however, this was developed for kurtosis-based indices and the

subsequent optimisation step, discussed in Section 2.3, is not performed.

This grid-based initialisation procedure is feasible as the design space is two-dimensional (i.e. f ∈ R2)

and the lower and upper bounds are well-defined (e.g. 0 Hz and fs/2 respectively, where fs is the sampling

frequency). We chose the bandwidth of the filter ∆f = 100 Hz and the overlap between two consecutive
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grid points equal to 50 Hz in the initialisation process. It is suggested in Ref. [23, 25] that the passband

should contain at least three harmonics of the fault component.

2.3. Optimisation procedure

Many optimisation methods utilise gradient information to find a local minimum of the cost function

[36]. This requires the calculation of the gradient of the derivative of the score function with respect to

the design variables, which is not always possible nor feasible [43, 44]. This makes derivative-free search

methods such (e.g. Nelder-Mead algorithm [43], the modified cookoo search algorithm [44], the particle

swarm optimisation algorithm [45], the ant colony algorithm [46]) attractive.

Global search methods such as the particle swarm optimisation and the genetic algorithms are generally

very computationally expensive and may not convergence to the global minimum [36, 43]. The Nelder-

Mead algorithm is a simple local search method that generally performs well in low-dimensional problems

[43, 47]. Since it is assumed that a good initial position is obtained in the previous step and the fact that

the optimisation problem is two-dimensional, the Nelder-Mead algorithm is well-suited for this search

task.

The Nelder-Mead algorithm is performed by sequentially constructing a sequence of simplexes to

improve the cost function under consideration [47]. Four possible operations can be performed on the

simplex during the optimisation procedure, namely, reflection, expansion, contraction and shrink. The

implementation that is available in the Scientific Python (SciPy) library [38] was used in this work with the

standard optimisation parameters being used [47]. The tolerance of the absolute error between iterations

was set to 10−9. Thorough discussions on the algorithm can be found in Refs. [47], with a short overview

given in Appendix A of the different operations that can be performed.

2.4. Bandpass filtering and signal analysis

The optimal frequency band f determined in the previous step is used to design a bandpass filter

hf , whereafter the signal under consideration is filtered with Equation (2) to obtain a vibration signal

xf with the fault information enhanced. Subsequently, this filtered signal needs to be further processed

to infer the condition of the gearbox. The SES is frequently combined with informative frequency band

identification methods (e.g. [23, 27, 29]) for fault detection. The SES of the order tracked filtered signal

[17]

SESxf
(α) = Fϕ→α

{
|xϕf |2

}
, (12)
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makes it possible to detect periodicities associated with the signal-of-interest in the enhanced vibration

signal. The Synchronous Average of the Squared Envelope (SASE) [18]

SASE(ϕ; Φ) =
1

NΦ

NΦ−1∑

k=0

|xϕ(ϕ+ k · Φ)|2, (13)

makes it possible to visualise the modulation that is caused by the damaged component-of-interest with a

cyclic period of Φ. The cyclic period Φ is the reciprocal of the cyclic order of the component-of-interest.

The SASE of the angular domain signal x(ϕ) is defined over the domain ϕ ∈ [0,Φ) and is estimated

over NΦ rotations of the component-of-interest. The SES can be used to identify the cyclic orders of the

cyclostationary components, while the SASE can be used to distinguish between localised and distributed

gear damage modes.

In the last step of the condition monitoring process, the processed vibration signal is usually converted

into a condition indicator, a scalar metric that can be used to detect changes in the condition of the

machine. There are many condition indicators available that can be used for gearbox condition monitoring,

such as the root-mean-square, kurtosis, indicators-of-cyclostationarity, and methods based on statistical

tests [13, 48]. In this work, we use the score function of the filtered signal

CI(α) =
∑

α∈α

max
{

SESxϕ
f

(αe)
}
α·(1−ctol/2)≤αe≤α·(1+ctol/2)

median
{

SESxϕ
f

(αe)
}
α−1≤αe≤α+1

, (14)

as a Condition Indicator (CI). This allows us to monitor how the prominence of the component-of-interest

changes over time. The optimisation of the condition indicator is outside the scope of this work.

2.5. Novelty detection

Historical condition monitoring data of a machine operating in a healthy condition is easily acquired

when condition monitoring is performed continuously on a machine. This historical data from a healthy

machine can therefore be used for automatic fault detection in the form of novelty detection.

We desire to determine a threshold τ that would allow us to determine whether a processed filtered

signal P{xf} is healthy (i.e., P{xf} ≤ τ) or not (i.e., P{xf} > τ), where P{·} denotes a general

processing operator (e.g. calculating the SES with Equation (12), the SASE with Equation (13), or the

CI in Equation (14)).

In this work, the threshold of the SASE is a scalar variable, i.e. τSASE ∈ R, while the threshold of the

SES is a function of the cyclic order, i.e. τSES(α) ∈ R. The SASE is compared against a scalar, as the

healthy SASE of the narrowband signal is expected to be relatively flat and aligning the phase between

the measurements could be difficult without a keyphasor on the shaft-of-interest. However, irrespective
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of whether the threshold is a scalar or vector, it is expected to be dependent on the frequency band

determined in the previous step, i.e. τ(f). Hence, the procedure shown in Figure 5 is used to determine

Unknown
vibration
signal x

hf ⊗ x P(xf )
Compare
P(xf ) to τ

Healthy
vibration

signal x(1)
hf ⊗ x(1) P

(
x
(1)
f

)

...

Healthy
vibration

signal x(Nh)
hf ⊗ x(Nh) P

(
x
(Nh)
f

)

...
... Threshold

calculation

Healthy or
a novelty

xf

x
(1)
f

x
(Nh)
f

τ

Figure 5: The novelty detection part of the proposed method is presented for a vibration signal x, acquired from a rotating
machine in an unknown condition. The impulse response function of the filter hf is determined with the vibration signal x
with the procedure shown in Figure 1. The number of healthy measurements is denoted Nh.

a threshold for automatic fault detection and summarised here:

1. For a vibration signal in an unknown condition x, identify a frequency band f that maximises a

metric (e.g. Equation (11)) and use this band to design the bandpass filter hf with the procedure

shown in Figure 1.

2. Use the impulse response function hf , determined in the previous step, with Equation (2) to filter

the vibration signal under consideration and obtain the filtered signal xf .

3. For the Nh signals in the healthy historical dataset, use hf determined in the first step, to obtain a

filtered healthy signals, with the ith filtered healthy signal denoted by x
(i)
f . Therefore, each healthy

signal in the historical dataset will be filtered with the same filter as the signal x.

4. Process the filtered signal xf and each of the filtered healthy signals x
(i)
f with the same operator

P (·), where P (·) denotes the calculation of the SASE, SES or a CI.

5. Use the processed healthy filtered signals to calculate a threshold and compare this threshold to the

signal under consideration to perform automatic fault detection.

It is assumed that the healthy machine operated under approximately the same time-varying operating

conditions states as the machine under consideration, e.g. that the healthy operating conditions were not

all taken during an idling state and the testing signal is from a full load state.

The threshold for the SASE is calculated by firstly calculating the 99th percentile of the SASE of

each filtered healthy signal. Thereafter, the maximum value of the 99th percentile of the healthy signals

is calculated and used as a threshold. The 99th percentile at each cyclic order value in the SES of the

filtered healthy signal is used to set a cyclic order dependent threshold for the SES. It is suggested that a

large number of representative healthy measurements Nh are used when calculating the threshold. This

will ensure that a representative threshold is used for the novelty detection.
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In the next section, the proposed method is investigated on experimental data acquired under time-

varying operating conditions.

3. Experimental investigation

The gearbox test-rig in Figure 6 is located in the Centre for Asset Integrity Management (C-AIM)

laboratory of the University of Pretoria and was used to generate the vibration data considered in this

work. The test-rig consists of three helical gearboxes, with the centre gearbox (i.e. Gearbox 2 in Figure

Figure 6: The experimental test-rig that was used to generate the data is presented in (a), with the shafts annotated by S1,
S2, S3 and S4. The tri-axial accelerometer and the optical probe, which are located on the back of the gearbox, are shown
in (b).

6(a)) being monitored for damage. The gearbox is instrumented with a 100 mV/g tri-axial accelerometer,

shown in Figure 6(b), with the axial component of the tri-axial accelerometer being used throughout this

paper. A closer view of the tri-axial accelerometer is presented in Figure 7.

The vibration signal is sampled at 25.6 kHz and the instantaneous angular speed of the gearbox is

estimated with the tachometer signal obtained from the zebra tape shaft encoder and the optical probe

highlighted in Figure 6(b). The tachometer signal is sampled at 51.2 kHz. The important frequency bands

were not known a priori and therefore the sampling frequency of the vibration signal was selected to the

highest feasible value to ensure that damage, which could potentially manifest in high frequencies, can be

detected. The informative frequency bands, which depends on the dynamic properties of the system, were

Figure 7: A zoomed view of the tri-axial accelerometer is shown on the back of the gearbox. (a) The input shaft, denoted S2
in Figure 6 of the monitored gearbox; (b) The bearing housing of the monitored gearbox; (c) The top-view of the tri-axial
accelerometer.
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for example located in a 7 kHz, 13.5 kHz and 23 kHz frequency bands for the different signals considered

in Ref. [21]; and the informative frequency band was centred at 11 kHz in Ref. [19]. To ensure that the

zero-crossing point of the zebra tape shaft encoder is accurately detected, the highest possible sampling

frequencies for the tachometer was selected. The vibration data and tachometer measurements were

acquired with an OROS OR 35 data acquisition system. Since the gear is connected to the shaft with the

optical probe, it rotates at 1.0 shaft orders. The modulation from the damaged gear is therefore expected

to have a cyclic order of 1.0 shaft orders and therefore the targeted cyclic orders are α = [1.0, 2.0, 3.0].

The Weg 5,5 kW three-phase four-pole squirrel cage electrical motor drives the system and the 5.5

kVA Mecc Alte SpA three-phase alternator dissipates the rotational energy, with both being separately

controlled with a personal computer. The operating conditions were controlled using predefined functions,

with operating conditions that are investigated in this work are shown in Figure 8. Since the maximum
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Figure 8: The operating conditions that were estimated at the input shaft of the monitored gearbox. The input shaft of the
monitored gearbox is numbered as S2 in Figure 6.

cyclic frequency of the damaged components would be 3 Hz for the experimental dataset, a minimum

bandwidth of ∆flh = 20 Hz in Equation (8) would be sufficient.

In this work, the monitored helical gearbox (i.e. gearbox 2 in Figure 6(a)) was damaged with localised

and distributed gear damage. Thirty measurements from a healthy gearbox (i.e. with both the pinion

and the gear of the monitored gearbox healthy) are used to calculate the thresholds discussed in Section

2.5 and subsequently used for novelty detection.

In the next section, the proposed method is investigated on data that were acquired from the monitored

gearbox where the gearbox had localised gear damage.

3.1. Localised Gear Damage (LGD) investigation

Localised Gear Damage (LGD) was induced in the gear of the monitored gearbox by seeding a slot

in its root, with the seeded slot shown in Figure 9(a). The gearbox was operated for approximately 20

days, with the damaged tooth failing in the final stages of the experiment. In Figure 9(b), the gear is

shown after the experiment was completed, with the missing tooth clearly seen. The gearbox was operated
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Figure 9: The gear used in the Localised Gear Damage (LGD) investigation is presented. (a) The gear before the experiment
started; (b) The gear after the experiment was completed.
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Figure 10: The score function Ψ(f), calculated for the frequency band f = [fl, fh], is presented over the centre frequency
fc = (fh + fl)/2 for four measurements of the localised gear damage experiment dataset. The centre frequency that
corresponds to the maximum value of each measurement is used to initialise the optimisation algorithm for that measurement.
(a) The score function is presented; (b) The actual score function presented in (a) is given an offset to make the results
easier to visualise.

under the first operating condition profile in Figure 8 (i.e. OC: 1) during all tests, with 200 measurements

acquired between the initial condition (i.e. Figure 9(a)) and the final condition (i.e. Figure 9(b)).

Four condition indicators are shown for the 200 raw signals in Appendix B and illustrates that the

degradation of the gear is not easily seen. In addition to this, one of the last signals in the dataset set

is decomposed in terms of the damaged component and the impulsive components in the same appendix.

The results indicate that even though the gear is severely damaged in the considered measurement, it is

very difficult to detect the damage due to the dominant impulsive components.

In the first step of the proposed method, the optimisation algorithm needs to be initialised. This is

performed by dividing the spectral frequency axis into a grid of points, whereafter the cost function is

evaluated at each point on the grid as shown in Figure 4. The result that was obtained from the grid

estimation approach is presented in Figure 10 for different measurements in the localised gear damage

dataset. The fc that maximises the score is used to centre the initial bandpass filter and the bandwidth

was selected to be equal to the bandwidth that was used in the grid-initialisation procedure.

The parameters determined from the initialisation procedure are used to initialise the Nelder-Mead

optimisation algorithm for each signal in the dataset, whereafter the Nelder-Mead optimisation algorithm
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iterated until the change in the design variable f was smaller than the tolerance of 10−9. The initial value

of the frequency band and the final value after completing the optimisation procedure are superimposed on

the objective function in Figure 11 for two measurements in the dataset. Even though the initialisation

(a) (b)

Figure 11: The objective function is shown for two measurements in the localised gear damage experiment, with the initial
value and the final value of the optimisation algorithm superimposed on the plot. The initial value is obtained with the
initialisation procedure discussed in Section 2.2. In Figures 11(a) and 11(b), the result for the 50th and 75th measurement
are respectively shown. The infeasible region was given a value of 0.0 in these plots to make the results easier to visualise.
This is possible since the scoring function used in this work is strictly positive.

procedure is capable of finding a very good solution, it is not the optimal solution. The optimisation

algorithm is capable of finding the optimal frequency band to enhance the signal components associated

with the component-of-interest. Since the damage was more developed in Figure 11(b) compared to

Figure 11(a), there is a larger region in the design space with fault information (i.e. a larger red region).

Additionally, the results in Figures 10 and 11(b) indicate that there can be many local maxima in the

design space and therefore it is critical to perform a thorough initialisation process if a local search or

optimisation algorithm is utilised.

The SASE and the SES of the raw and filtered signals are compared in Figure 12 for the measurement

considered in Figure 11(a). It is not possible to observe the damaged components in the processed

raw signals in Figures 12(a) and 12(c). This is attributed to the signal containing dominant impulsive

components that are not linked to the condition of the gear, but rather attributed to a floating bearing.

The helical gears have larger contact ratios than spur gears, which means that changes in the condition

of a single tooth would be more difficult to detect. This makes it difficult to detect the damage in the

raw signals.

In contrast, the results in Figures 12(b) and 12(d) indicate that the proposed method is capable of

identifying an informative frequency band, which results in the fault information to be enhanced in the

vibration signal. The SASE in Figure 12(b) indicates that there is gear damage in the region of 135

degrees, while the SES indicates that the instantaneous power has a strong periodic component with a
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Figure 12: The SASE and SES of the raw and the filtered signals are compared for the 50th measurement of the Localised
Gear Damage (LGD) experiment. The threshold was obtained with the procedure discussed in Section 2.5. The objective
function of this signal is shown in Figure 11(a).

fundamental order of 1.0 shaft order.

The thresholds, calculated with the procedure discussed in Section 2.5 and shown in Figure 5, are

superimposed on the SASE and the SES in Figures 12(b) and 12(d) respectively. This makes it possible

to automatically determine which signal components are novel and which components are healthy. In

Figure 12(b), the SASE exceeds the threshold in the region of 135 degrees, while the cyclic components

associated with the gear components (i.e. 1.0 shaft orders and its harmonics) exceeding the threshold in

Figure 12(d).

The results of the second measurement considered in Figure 11(b), where the damaged was more

developed, is presented in Figure 13. The damage is much more prominent in Figure 13(a) when compared

to the previous signal in Figure 12(a). However, the SASE remains adversely affected by the impulsive

noise components. In contrast, the SASE of the filtered signal in Figure 13(b) performs much better,

with the damaged component very clearly seen in the region of 135 degrees. The thresholds, shown in

Figures 13(b) and 13(d), makes it possible to automatically identify that this component is damaged and

makes it easy to visualise that only a localised portion of the gear is damaged. The SES of the raw signal

in Figure 13(a) does not contain any evidence that the gear is damaged and is dominated by the strong

impulsive component at 5.7 shaft orders. The SES of the filtered signal in Figure 13(d) is very rich with

fault information, with the 1.0 shaft order component and its harmonics clearly exceeding the threshold.

The thresholds in Figure 13(b) and 13(d) are calculated with the procedure outlined in Figure 5.
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Figure 13: The SES and the SASE are presented for the raw and the filtered signals of the 175th measurement of the
Localised Gear Damage (LGD) experiment. The threshold was obtained with the procedure in Section 2.5. The objective
function of this signal is shown in Figure 11(b).

The results of ten measurements, evenly spaced over the testing period, are shown in Figures 14. The

y-axis, which indicates the measurement number that corresponds to each considered signal, helps to

illustrate how the damage develops. The SASE and the SES of the raw signals are presented in Figure

14(a) and 14(c). The SES does not contain any indication that the gear is damaged, with only the

impulsive noise component at 5.7 shaft orders clearly seen. The SASE in Figure 14(a) is dominated by

the noise components, which makes it difficult to detect the gear damage. The SASE and the SES of the

filtered signal, shown respectively in Figures 14(b) and 14(d), contain much fault information. The gear

damage is clearly seen in the SASE of the filtered signal and it is possible to see changes in the magnitude

of the damaged component as the gear degrades. The 1.0 shaft order component and its harmonics are

also very prominent in the SES shown in Figure 14(d), with the change in the condition of the gear also

clearly seen.

Hence, the filtering process can enhance the damage information and this makes it possible to detect the

damaged gear components. In the next section, the performance of the proposed method is investigated

on data that were acquired from a gearbox with damage on the surface of the gear.

3.2. Distributed Gear Damage (DGD) investigation

The gear considered in this section is presented in Figure 15. Only half of the gear teeth (i.e. 180

degrees) were damaged, with the damaged region highlighted in Figure 15(a). This makes it possible to

determine whether the damaged region can be detected when using a synchronous representation (e.g.
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Figure 14: The SASE and the SES are presented over measurement number for the raw and the filtered signals. Since the
filtered signals may be associated with different frequency bands and may therefore have different properties (e.g. energy),
the SASE and the SES of the filtered signals were normalised with the mean value of the threshold. Each processed SASE
and SES were given an offset that is equal to its measurement number; this makes it possible to visualise the changes in the
SASE and the SES over measurement number.

SASE). The surface of each gear tooth was damaged with a rotary tool, with the damaged gear teeth

shown in Figure 15(b). The gear did not deteriorate during the experiments and therefore the condition

of the gear remained the same for the 80 measurements considered in this section. The gears operated

periodically under the four operating conditions in Figure 8, i.e. the operating condition sequence was:

OC: 1, OC: 2, OC: 3, OC: 4, OC: 1, OC: 2, etc.

The initialisation procedure was implemented on the dataset to find a good initial position, whereafter

the Nelder-Mead algorithm was applied to find the maximum value. The initial value and the final

solution, obtained with the optimisation procedure, are superimposed on the objective function in Figure

16 for two measurements in the dataset. Since the damage is relatively small and helical gears are used,

the damage components are not very prominent in the signal. This results in a very localised region to

contain fault information in the design space shown in Figure 16.

The SASE and the SES results are presented in Figure 17 for one of the measurements of the distributed

gear damage experiment. The SASE and the SES of the raw signals do not show convincing evidence
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Figure 15: The gear that was tested in the Distributed Gear Damage (DGD) experiment. (a) The portion of the gear that
is damaged is highlighted; (b) A zoomed view of the damaged gear teeth is presented.

(a) (b)

Figure 16: The objective function is shown for two measurements in the distributed gear damage experiment, with the initial
value and the final value of the optimisation algorithm superimposed on the plot. In Figures 11(a) and 11(b), the result for
the 20th and 30th measurement are respectively shown. The infeasible region was given a value of 0.0 in these plots to make
the results easier to visualise. This is possible since the scoring function considered in this work is strictly positive.

that the gear is damaged; the SASE contains much noise over the circumference of the gear in Figure

17(a) and the SES only contains a feint component at 1.0 shaft order in Figure 17(c). In contrast, the

SASE and the SES of the filtered signal display much evidence that the gear is damaged. In Figure 17(b),

the SASE exceeds the threshold between 135 and 315 degrees, while the SES in Figure 17(d) shows very

dominant components at 1.0 shaft orders and its harmonics. The threshold facilitates damage detection,

as it is easier to identify the damaged components when comparing the data to the threshold.

The processed results of ten measurements of the first distributed gear damage experiment are pre-

sented in Figure 18 over measurement number. The SASE of the raw vibration signal does not show much

evidence that a portion of the gear is damaged. While the SES of the raw signal has a 1.0 shaft order

component for some measurements, it does not clearly indicate that it is damaged.

The SASE and the SES of the filtered signal in Figures 18(b) and 18(d) contain much evidence that

the gear is damaged; the damaged portion of the gear is observed between 135 and 315 degrees in Figure

18(b) and the 1.0 shaft order component and its harmonics are very prominent in the SES shown in Figure

18(b).
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Figure 17: The SES and the SASE are presented for the raw and the filtered signals of the 20th measurement of the
Distributed Gear Damage (DGD) experiment. The threshold was obtained with the procedure in Section 2.5. The objective
function of this signal is shown in Figure 16(a).

Hence, it is possible to enhance the damaged components in the signal and it is possible to identify the

damaged region of the gear. In the next section, the condition indicator is calculated for the two datasets.

3.3. Condition Indicator (CI)

Ultimately, a CI of the processed signal can be used to monitor the condition of the different com-

ponents of the rotating machine. We calculated the CI in Equation (14) for each measurement in the

damaged datasets as well as each measurement in the healthy dataset, with the results presented in Fig-

ure 19. At each measurement, the healthy data are filtered with the same filter as the corresponding

damaged measurement as shown in Figure 5. This makes the 99th percentile threshold shown in Figure

19 a function of measurement number.

The localised gear damage results in Figure 19(a) indicate that initially the healthy and the damaged

condition indicators overlapped. This is attributed to the fact that helical gears were used with a relatively

small slot in the teeth. As the gear degrades, the distance between the CI of the damaged measurements

and the corresponding CI of the healthy measurements increases, with the damaged measurements ex-

ceeding the threshold.

Since the condition of the gearbox remained the same over measurement number for the distributed

gear damage case, it would not be possible to see a degrading gear in Figure 19(b). However, the damaged

and healthy CI are separated, with the damaged CI exceeding the threshold. Since the bandwidth of the

bandpass filter is a function of measurement number (e.g. see Figure 20), the behaviour of the healthy
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Figure 18: The SASE and the SES are presented over measurement number for the raw and the filtered signals of the
distributed gear damage dataset. Since the filtered signals may be associated with different frequency bands and may
therefore have different properties (e.g. energy), the SASE and the SES of the filtered signals were normalised with the
mean value of the threshold of the signal. Each processed SASE and SES were given an offset that is equal to its measurement
number; this makes it possible to visualise the changes in the SASE and the SES over measurement number.

signals and the associated thresholds changes with measurement number.

In the next section, the identified frequency bands, the percentage improvement that is obtained with

the optimisation procedure and the computational time are summarised.

3.4. Summary of results

The identified frequency bands is shown in Figure 20 as a function of measurement number for the two

datasets. Initially, the localised gear damaged dataset was dominated by a frequency band approximately

centred at 3.2 kHz, whereafter the frequency bands centred approximately at 500 Hz was identified as

the damage progressed. In Figure 20(b), approximately the same frequency band in the region of 500 Hz

was identified for each measurement in the dataset. It is evident from the results in Figure 20 that the

informative frequency band can change over time. Since the properties of the signals (e.g. energy) and

its condition indicators could be dependent on the frequency band f , it makes sense to calculate a new

threshold for each signal under consideration with the procedure discussed in Section 2.5.
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Figure 19: The Condition Indicator (CI), calculated with the filtered vibration signal, is presented for the two damaged
gearbox datasets over measurement number. The corresponding CI of the healthy measurements, with its 99th percentile
used as the threshold, is presented as well. (a) Localised gear damage experiment; (b) Distributed gear damage experiment.
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Figure 20: The final frequency band f = [fl, fh] that was obtained after applying the optimisation algorithm is presented
in (a) for the localised gear damage experiment and in (b) for the distributed gear damage experiment.

The percentage improvement

PI = (κ(ff )− κ(f i))/κ(f i), (15)

in the objective function when performing the additional optimisation step is presented in Figure 21 for

the two datasets. In Equation (15), the unconstrained objective function, defined in Equation (8), is

denoted by κ, the frequency band obtained by the initialisation scheme is denoted by f i and the final

frequency band, obtained after the optimisation procedure was completed, is denoted by ff . The results

in Figure 21 indicates that even though the initialisation scheme can find a good frequency band, the

additional optimisation step improved the objective function up to 50%.

The median time of the different steps of the calculation are presented in Table 1. The signal needs

to be order tracked in each function evaluation, which makes the function evaluations more expensive to

calculate. The initialisation procedure searches the whole frequency range for informative frequency bands,

which ensures that a good starting position is used in the optimisation algorithm. The computational
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Figure 21: The percentage improvement in the cost function after applying the optimisation algorithm is presented in (a) for
the localised gear damage experiment and in (b) for the distributed gear damage experiment. The percentage improvement
is calculated with Equation (15).

Table 1: The average time needed to perform the initialisation and optimisation procedures is presented for each measurement
in the Localised Gear Damage (LGD) and Distributed Gear Damage (DGD) experiments. The total time is defined as the
average duration of both the initialisation and the optimisation parts. The results were calculated in Python 3.7.3 with
SciPy 1.3.0 on a personal computer with 32 Gb of RAM and an AMD Ryzen 7 2700x eight-core processor.

Initialisation [s] Optimisation [s] Total [s]
LGD 45.4809 23.8309 69.3118
DGD 62.0048 27.7201 89.7249

time shown in Figure 1 is acceptable for condition monitoring applications.

In the next section, the proposed method is compared against some of the existing frequency band

identification methods.

4. Comparison with existing FBI methods

There are many frequency band identification methods available that are suited for vibration signals,

e.g. Refs. [21, 22, 26, 27]. The kurtogram is a very popular blind frequency band identification method

for bearing and gear fault diagnosis [19–21] and is therefore considered in this work. The kurtogram

is constructed by calculating the kurtosis of different bandlimited signals, with the bandlimited signals

usually obtained from the short-time Fourier transform [20] or the wavelet packet transform [21]. The

kurtosis is a measure of impulsiveness and can therefore be used to identify frequency bands with much

impulsive content. Hence, the frequency band with the most impulsive information would maximise the

kurtogram.

The kurtogram, calculated using the short-time Fourier transform-based estimator, is used to identify

the frequency band with the most impulsive information for each signal considered in this work. The results

of the kurtogram are presented in Figure 22 for the localised and distributed gear damage datasets. Since

the vibration signals contain much impulsive information not related to the condition of the gears, the

kurtogram is maximised by the wrong frequency band. The resulting bandlimited signals do not contain

any fault information signals and therefore the damage cannot be detected using the SASE and the SES
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in Figure 22. The kurtogram is rather maximised by the impulsive noise component with a cyclic order
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Figure 22: The Synchronous Average of the Squared Envelope (SASE) and the Squared Envelope Spectrum (SES), obtained
by using the kurtogram to design a bandpass filter, are presented for the Localised Gear Damage (LGD) and Distributed
Gear Damage (DGD) investigations. Each SASE and SES were given an offset that is equal to its measurement number;
this makes it possible to visualise the changes in the SASE and the SES over measurement number.

of 5.7, which is very prominent in the SES in Figures 22(b) and 22(d). Since this impulsive component is

non-synchronous with the rotation of the gear, it is randomly scattered over the circumference of the gear

in Figures 22(a) and 22(c). The improved kurtogram, which uses a wavelet packet decomposition instead

of the short-time Fourier transform, was also applied on these signals, but similar results were obtained

as the standard kurtogram and therefore excluded for the sake of brevity.

However, the kurtogram cannot distinguish between periodic impulses and random impulses and there-

fore the ICS2gram is investigated. The ICS2gram is a targeted frequency band identification method that

uses an indicator-of-cyclostationarity to identify which frequency bands contain cyclostationary informa-

tion due to damaged machine components [27]. The indicator-of-cyclostationary is calculated for the gear

component, i.e. α = [1.0, 2.0, 3.0], in the different frequency bands of the vibration signal and is max-

imised to find the optimal frequency band for fault diagnosis. Each bandlimited signal is order tracked to

reduce the smearing of the cyclic components due to changes in the speed of the machine. The SASE and

the SES are presented in Figure 23 for the bandlimited signals obtained by the ICS2gram. The results

in Figures 23(a) and 23(b) indicate that it is possible to detect the gear damage for only one of the ten

measurements, while the distributed gear damage cannot be detected in Figures 23(c) and 23(d).

The condition indicators obtained with the proposed method, the kurtogram and the ICS2gram are
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Figure 23: The Synchronous Average of the Squared Envelope (SASE) and the Squared Envelope Spectrum (SES), obtained
by using the ICS2gram to design a bandpass filter, are presented for the Localised Gear Damage (LGD) and Distributed
Gear Damage (DGD) investigations. Each SASE and SES were given an offset that is equal to its measurement number;
this makes it possible to visualise the changes in the SASE and the SES over measurement number.

compared in Figure 24(a) for the localised gear damage experiment. The deterioration of the gear is

not identified for the kurtogram in Figure 24(a). This is attributed to the kurtogram not selecting the

appropriate frequency bands for fault diagnosis. Even though the results in Figure 23 indicate that the

ICS2gram performed poorly to extract the fault information in the signal, two events are seen for its

corresponding condition indicator in Figure 24(a). The initial deterioration of the gear tooth is seen in

the region of the 25th measurement and the imminent failure of the gear tooth is seen in the region of

the 160th measurement of the ICS2gram. Even though these two events are clearly seen, the condition

indicator fluctuates significantly at these events (i.e. it is not very robust) and the deterioration of the

gear tooth is not seen. Hence, the proposed method performs much better.

The SES of the bandlimited signals are presented for three measurements of the methods considered

in Figures 24(b) - 24(d). The damaged components are clearly seen for the proposed method, while in

contrast, no damage is seen in the ICS2gram and the kurtogram.

Hence, the conventional methods fail to detect the gear damage investigated in this work. This is

attributed to the dominant impulsive components in the signal and to the use if helical gears, which have

larger contact ratios than spur gears, that mask the damaged components.

The computational time of the two methods is summarised in Table 2. Even though the proposed

method is on average between five and seven times slower than the conventional methods considered in
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Figure 24: The Condition Indicators (CI), calculated with the bandlimited signals obtained with the Proposed method, the
Kurtogram and the ICS2gram, are presented for the Localised Gear Damage (LGD) dataset in Figure 24(a). The SES of
measurements 49, 124, and 199 are compared in Figures 24(b) - 24(d) respectively. The same legend is used for all plots.

Table 2: The average time needed to perform find the frequency band with the kurtogram and the ICS2gram for each
measurement in the Localised Gear Damage (LGD) and Distributed Gear Damage (DGD) experiments. The results were
calculated in Python 3.7.3 with SciPy 1.3.0 on a personal computer with 32 Gb of RAM and an AMD Ryzen 7 2700x
eight-core processor.

Kurtogram ICS2gram
LGD 12.036 [s] 12.871 [s]
DGD 11.974 [s] 13.470 [s]

this section, it performs much better on the signals considered.

5. Conclusions

The proposed method aims to solve two problems in rotating machine vibration-based condition mon-

itoring; finding optimal frequency bands under time-varying operating conditions and combining this

information with healthy historical data for automatic fault detection. The proposed method was applied

to two datasets where it was shown that

• it is possible to enhance the weak fault information in the vibration signals under time-varying

operating conditions;

• it is possible to utilise the historical data for determining a threshold;

• the threshold, which is dependent on the identified informative frequency band, can be used for

automatic fault detection under time-varying operating conditions;
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• the cyclic orders of the novel components can be determined with the SES. The SASE makes it

possible to determine which portion of the gear is damaged.

Furthermore, the comparison with existing methods highlights the potential of the proposed method under

time-varying operating conditions.

Future investigations will include a comparison between different score functions, a comparison of

evolutionary algorithms and gradient-based methods for finding the optimal frequency band within the

framework of the proposed method, and a comparison of different condition indicators for fault trending

also need to be investigated. It is also lastly recommended that the suitability of using acoustic measure-

ments instead of vibration measurements should be investigated. This is because the literature review

indicated that acoustic emission signals could indicate earlier signs of damage.
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Appendix A. Overview of the Nelder-Mead algorithm

The Nelder-Mead algorithm is a gradient-free minimisation algorithm. The purpose of the frequency

band identification problem is to find the frequency band f ∈ R2 that maximises the unconstrained cost

function given by Equation (8) and denoted κ(f). This unconstrained maximisation problem can be

written as an unconstrained minimisation problem

min
f

q(f), (A.1)

by setting q(f) = −κ(f). The Nelder-Mead algorithm consists of reflection, expansion, outer contraction,

inner contraction and shrink steps [47]. The different operations are shown in Figure A.25 for a simplex

with three vertices f1, f2, f3 and explained hereafter.

For this two-dimensional optimisation problem, the simplex has three vertices f1, f2, and f3, that

are always sorted such that [47]

q(f1) ≤ q(f2) ≤ q(f3), (A.2)

with the centroid of the two best vertices calculated with

f̄ =
1

2
· (f1 + f2) . (A.3)
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(a) (b)

(d) (e) (f)

(c)

Figure A.25: The different operations of the Nelder-Mead algorithm are illustrated for a simplex in a two-dimensional space.
The mth vertex of the original simplex is denoted fm(i) and the mth vertex of the updated simplex is denoted fm(u). The
size of the markers indicates the relative size of the cost function values, i.e. a larger marker is at a worse location compared
to a small marker. The vertices are ordered according to Equation (A.2). (a) Initial simplex with centroid f̄ ; (b) Reflection
point; (c) Expansion point; (d) Outside contraction; (e) Inner contraction; (f) The simplex after a shrink operation. The
values of the axes are not sensible for the frequency band identification problem, but used for demonstration purposes.

The centroid is superimposed on the simplex in Figure A.25, by assuming the vertex f3 has the largest

function value. In the next step, a reflection point is calculated which is collinear with the vertex f3 and

the centroid f̄ [47]:

fr = f̄ + βa ·
(
f̄ − f3

)
, (A.4)

with the scalar βa ∈ R+ governing the size of the reflection step. This procedure is shown in Figure

A.25(b) by using the centroid from Figure A.25(a) and βa = 1.0. The reflection point replaces the worst

vertex f3 if q(f1) ≤ q(fr) < q(f2). Otherwise, the following operations are performed depending on the

function values [47]:

• If q(fr) < q(f1), then an expansion operation needs to be performed, with the expansion point

calculated with

fe = f̄ + βb ·
(
fr − f̄

)
, (A.5)

where βb ∈ R+ is a coefficient that governs the magnitude of the expansion step. This expansion

point is shown in Figure A.25(c) for βb = 2.0. If q(fe) < q(fr) then the worst vertex f3 is replaced

with the expansion point, otherwise the worst vertex is replaced with the reflection point fr to

obtain a new simplex [47].
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• If q(f2) ≤ q(fr) < q(f3), an outer contraction point needs to be calculated with [47]

fo = f̄ + βc ·
(
fr − f̄

)
, (A.6)

where βc ∈ R+. This operation is shown in Figure A.25(d) for βc = 0.5. If the outer contraction

point is better than the reflection point, then it replaces the worst vertex, i.e. q(f3), to form a new

simplex. Otherwise, a shrink operation needs to be performed as described below.

• If q(fr) ≥ q(f3), an inside contraction point needs to be calculated with [47]

f i = f̄ − βc ·
(
fr − f̄

)
, (A.7)

which is shown in Figure A.25(e). If the inner contraction point is better than the worst vertex,

then it replaces the worst vertex, i.e. q(f3); otherwise a shrink operation needs to be performed as

outlined below.

• If a shrink step is necessary according to the outer contraction or inner contraction steps, then the

following steps need to be followed [47]:

f2 = f1 − βd · (f2 − f1) (A.8)

f3 = f1 − βd · (f3 − f1) , (A.9)

where βd ∈ R+. This operation is shown in Figure A.25(f) with βd = 0.5.

This process is then repeated until convergence is reached. A more detailed overview of the algorithm and

its implementation are given in Refs. [47] and [38] respectively. The following coefficients are suggested

and used in the algorithm: βa = 1.0, βb = 2.0, βc = 0.5, βd = 0.5 [47] and the simplex is initialised within

the default procedure in Ref. [38].

Appendix B. Raw results

Different statistics of the experimental signals of the localised gear damage experiment are presented

in Figure B.26. Only the kurtosis and the L2/L1-norm contain an indication at the 150th measurement

that the gear is deteriorating. Hence, it is difficult to use the statistics of the raw signals for damage

detection.

The 190th measurement (out of 200) of the localised gear damage dataset is analysed in more detail to

highlight the damaged gear components and dominant impulsive components unrelated to the condition
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Figure B.26: The Root-Mean-Square (RMS), the Kurtosis, the ratio of the L2 and L1 norms, denoted L2/L1, and the
amplitude of the gear mesh component in the spectrum are presented for the localised gear damage experiment. The length
of the vibration signal is denoted N .

of the gears. The raw vibration signal denoted by x[n]; the vibration signal filtered around an impulsive

frequency band without information related to the damage gear denoted by x[n, fl,1, fh,1]; and lastly, the

vibration signal filtered around the band with the damaged gear information denoted by x[n, fl,2, fh,2]

are presented in Figure B.27 with different statistics of the signals shown in Table B.4.
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Figure B.27: The raw vibration signal x[n], the signal filtered around an impulsive band x[n, fl,1, fh,1], and the signal filtered
around the band with fault information x[n, fl,2, fh,2] are superimposed on the same plot and presented in separate plots
as well. Please take note of the different y-axis scaling. B.27(a) is used to show the relative scaling of the different signals.

The results indicate that the time domain signal is dominated by impulsive components unrelated to

the damaged gear component. The damaged gear component x[n, fl,2, fh,2] is much less impulsive than

the impulsive signal component x[n, fl,2, fh,2] and it only contributes to 0.8494% of the energy of the
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Table B.3: More information pertaining to the different signals shown in Figure B.27

Signal fl,i fh,i Notes
x[n] - - Raw signal

x[n, fl,1, fh,1] 7.0 kHz 9.0 kHz Non-gear related impulsive component.
x[n, fl,2, fh,2] 450 Hz 500 Hz Damaged gear component.

vibration signal. This low energy level is attributed to the fact that the damage manifest in a narrow

frequency band and the helical gears attenuate the damaged gear components. Ultimately, the weak

damage information and the impulsive signal components impede fault detection.

The SES shown in Figure B.4 highlights the low energy level of the damaged gear signal x[n, fl,2, fh,2]

and the dominance of the impulsive component x[n, fl,1, fh,1]. Since the gear is located on the reference

shaft, it has a periodicity of 1.0 shaft order. The impulsive noise components have a periodicity of 5.72

shaft orders, which are clearly seen in the SES of the raw signal and the SES of the impulsive signal

x[n, fl,1, fh,1]. The amplitude of the damaged component in the SES is at least 50 times smaller than the

Table B.4: The statistics are presented for one of the measurements of the gearbox with localised gear damage. The excess
kurtosis is 0.0 for Gaussian signals. The % Energy is calculated as follows: Esignal/Eraw · 100, where Esignal is the energy
of the signal under consideration and Eraw is the energy of the raw signal x[n].

Statistic x[n] x[n, fl,1, fh,1] x[n, fl,2, fh,2]
Excess kurtosis 5.8555 10.5561 1.2589

RMS 0.6277 0.3083 0.0578
% Energy 100.0% 24.1192% 0.8494%

amplitude of the impulsive component.
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Figure B.28: The SES of the raw vibration signal x[n], the SES of the signal filtered around an impulsive band x[n, fl,1, fh,1],
and the SES of the signal filtered around the band with fault information x[n, fl,2, fh,2] are superimposed on the same plot
and presented in separate plots as well. Please take note of the different y-axis scaling.
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Figure C.29: The maximum value of the score function Ψ(f) obtained with the initialisation procedure is shown for different
bandwidths ∆f and measurement numbers. The gear was missing a tooth in the measurements between 191 and 200.

Appendix C. Sensitivity analysis

The initialisation procedure discussed in Section 2.2 requires the selection of the bandwidth of the

filters, which is denoted in this section as ∆f . The sensitivity of the outcome of the initialisation process

and subsequent optimisation process to the initial bandwidth ∆f are investigated in this section. In

the initialisation process, the centre frequency of the filter fc is determined by maximising the objective

function. If none of the constraints is violated the objective function is equal to the score function Ψ(f)

and therefore the maximisation of the objective function is equivalent to the maximisation of the score

function in the feasible region.

In Figure C.29, the maximum score function Ψ(f) obtained with the initialisation process is presented

for different measurements and different bandwidths ∆f . The bandwidth of 100 Hz, which was used for

all investigations, is superimposed on the figures as well. It is clear from the results that generally the

score function Ψ(f) is dependent on the bandwidth as well as the measurement under consideration. The

bandwidth of 100 Hz performs generally well for the considered cases.

Ultimately, it is important to determine how the bandwidth used in the initialisation procedure in-

fluences the results obtained after the optimisation process. Therefore, the outcome of the proposed

procedure (i.e. the initialisation procedure and optimisation procedure) was investigated for different

initial bandwidths for each measurement in the dataset. The final score of the different measurements are

presented in Figure C.30. Figure C.30(a), illustrates the variation between the different window lengths

and C.30(b) shows the best results that were obtained. As the damage becomes more severe (e.g. mea-

surement 190 onwards), then the different bandwidths perform very similarly as shown in Figure C.30(a).
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Figure C.30: The final score function, obtained after the optimisation process, is presented as a function of measurement
number for different window lengths. C.30(a) shows all the considered cases and C.30(b) shows the best performing cases.

If the bandwidth is too large (e.g. larger than 200 Hz) or too small (e.g. smaller than 20 Hz), then the

performance of the method is adversely affected. A large bandwidth results in the signal-to-noise ratio of

the component-of-interest to decrease, which could make it difficult to detect and is detrimental to the

performance of the method. A bandwidth that is too small could result in the exclusion of the important

fault information, which would also impede detection.

We would, therefore, propose from this that a bandwidth that includes at least three to five harmonics

should be used.
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