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HIGH FREQUENCY INDUCED INSTABILITY IN NYSTRÖM
METHODS FOR THE VAN DER POL EQUATION∗
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Abstract. In this paper several Nyström methods for the van der Pol equation are considered.
In an earlier study by Cai, Aoyagi, and Abe it was shown that the second order Nyström, or leapfrog,
method fails to approximate the limit cycle of the van der Pol equation, exhibiting a periodic mod-
ulation of the amplitude and sporadic high frequency noise instead. Cai et al. did a linear analysis
and concluded that the spurious behavior was due to the interaction of the main part of the solution
with a high frequency computational mode. In this paper we also apply a third and fourth order
Nyström method to the van der Pol equation. Numerical experiments show that in these cases the
high frequency mode causes blowup after some time. The onset of the instability can be delayed by
decreasing the time step. We also improve on their analysis of the second order scheme by doing a
nonlinear analysis, to wit a discrete multiple scales analysis. By this means we are able to explain
the spurious behavior of this system completely.
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1. Introduction. The van der Pol equation

(1.1)
d2x

dt 2
− ε(1 − x2)

dx

dt
+ ω2x = 0,

w ith

(1.2) 0 < ε ¿ 1,

w as fi rst form ulated b y van der Pol [12] in 19 22 in the contex t of electronic c ircuits
in vacuum tub es.

This equation is w ell k now n to have an unstab le equilib rium at the orig in of its
p hase p lane, surrounded b y a stab le lim it c y c le. It is a standard c lassroom ex erc ise
to fi nd an ap p rox im ate analy tic ex p ression for the solution of the equation, using a
m ultip le scales m ethod [3, 6], nam ely ,

(1.3) x =
2 cos(ωt + φ)

√

1 + (4/a2
0 − 1)e−εt)

+ O(ε),

w here a0 is the initial am p litude.
Thus the lim it c y c le has a p eriod w hich is very near to 2π /ω and an am p litude

w hich is very near to 2. To fi nd the lim it c y c le m ore p rec isely , the van der Pol equation
needs to b e solved num erically . V arious ap p roaches have b een used for this p urp ose.
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1148 S. W. SCHOOMBIE AND E. MARÉ

These inc lude ex trap olation-b ased m ethods w ith step size control [2], R ung e– K utta
N y ström m ethods [2], the im p lic it A dam s m ethod of order up to tw elve, and G ear’s
m ethod for stiff equations [4], am ong others.

That care m ust b e tak en w hen desig ning a hig h order fi nite diff erence m ethod for
the van der Pol equation w as show n b y C ai, A oy ag i, and A b e [1]. They considered a
second order N y ström m ethod w hich show ed a p eculiar ty p e of sp urious b ehavior. Its
solution p eriodically ap p roaches the correct lim it c y c le, b ut then m oves aw ay from it
ag ain. They essentially used a linear analy sis to ex p lain this p henom enon, ascrib ing
the sp urious b ehavior to a sp urious m ode w hich interferes w ith the num erical solution.

W e investig ated this p henom enon further b y also ap p ly ing third and fourth order
N y ström m ethods to the van der Pol equation. In these cases w e found that the
solution b ehaved reasonab ly w ell for som e tim e, after w hich there w as rap id g row th
of a hig h frequency m ode, follow ed b y b low up . B y decreasing the tim e step the onset
of this nonlinear instab ility m ay b e delay ed.

To analy ze this ty p e of instab ility , w e considered only the sim p lest case, nam ely ,
the second order N y ström , or leap frog , m ethod used b y C ai et al. [1]. W e felt that their
linear analy sis p rovides only p art of the ex p lanation, and that a nonlinear analy sis
w ould g ive a m ore com p lete p ic ture. This p ap er attem p ts to do just that. W e use
a disc rete version of the m ultip le scales technique m entioned ab ove to analy ze the
diff erence equation, and fi nally show that the full ex p lanation is to b e found in the
p hase p lane.

In section 2 w e w ill b riefl y review the diff erence schem e considered b y C ai et al. [1]
and dem onstrate the nature of its sp urious b ehavior, as w ell as show the b ehavior of
the third and fourth order N y ström schem es.

In sections 3 and 4 w e then p roceed w ith a nonlinear analy sis to ex p lain the
ob served p henom ena in the case of the second order schem e. The results of the
nonlinear analy sis is then related to som e num erical results in section 5. S ection 6
contains som e conc lusive rem ark s.

2 . Ny ström tim e discre tiz a tions. F ollow ing [1], w e rew rite (1.1) as a sy stem
of tw o fi rst order equations, nam ely ,

dx

dt
= y,(2.1)

dy

dt
= ε(1 − x2)y − ω2x.(2.2)

To discretize these equations, w e introduce the tim e step τ , the fi nite diff erence ap -
p rox im ations xn ≈ x(nτ) and yn ≈ y(nτ), and the shift op erators E and E−1, defi ned
for any sequence xn b y

(2.3) Exn = xn+1 and E−1xn = xn−1.

F inally , w e defi ne the central divided diff erence op erator

(2.4) δ = (E − E−1)/(2τ).

2 .1. Se cond orde r Ny ström discre tiz a tion (le a p frog ). F ollow ing C ai et al.
[1], w e fi rst disc retize the sy stem (2.1), (2.2) b y m eans of a second order N y ström
m ethod:

δxn = yn,(2.5)

δyn = ε(1 − (xn)2)yn − ω2xn.(2.6)
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Fig. 1. Results when running the difference system (2.5), (2.6) with ε = 0.025, ω = 1, τ = 0.2,
and x0 = 0, y0 = 0.5.

This disc retization is often referred to as a leap frog m ethod.
The sy stem of diff erence equations (2.5), (2.6) can easily b e seen to b e equivalent

to a sing le fourth order diff erence equation,

(E2 − 2 + E−2)xn/(4τ2)(2.7 )

− ε(1 − (xn)2)(E − E−1)xn/(2τ) + ω2xn = 0.

U sing the follow ing notation for the forw ard and b ack w ard divided diff erence op era-
tors, resp ectively ,

(2.8) ∆ = (E − 1)/τ, ∇ = (1 − E−1)/τ,

w e can rew rite (2.7 ) in the m ore conc ise form

(2.9 )

[

∆∇ +
τ2

4
∆2∇2

]

xn − ε(1 − (xn)2)δxn + ω2xn = 0.

To com p ute a num erical solution from (2.5) and (2.6), w e need to sp ec ify initial values
x0 and y0. V alues for x1 and y1 are also required, and these are calculated b y m eans
of a second order R ung e– K utta starter w ith tim e increm ent τ . F ig ure 1 show s the
result of such a com p utation w ith ε = 0.025, ω = 1, τ = 0.2, and x0 = 0, y0 = 0.5.
Initially every thing seem s to g o w ell, and the solution ap p roaches the lim it c y c le w ith
its am p litude at around 2 and rem ains w ith it for a w hile. H ow ever, after som e tim e it
leaves the lim it c y c le and eventually returns to it ag ain. W hat seem s to b e a p eriodic
am p litude m odulation is im p osed, w hich is quite sp urious.

C ai et al. [1] show ed that this sp urious b ehavior is due to the p resence of a hig h
frequency com p utational m ode. They p erform ed a linear stab ility analy sis and show ed
that the com p utational m ode starts g row ing w hen the am p litude of the num erical
solution reaches a value of ab out

√
0.8.

The onset of the g row th of the hig h frequency m ode can b e delay ed b y decreasing
the tim e step , as show n in F ig ure 2, w here the tim e step w as decreased to τ = 0.1.
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Fig. 2 . Results when running the difference system (2.5), (2.6) with ε = 0.025, ω = 1, τ = 0.1,
and x0 = 0, y0 = 0.5.

2 .2 . Th ird orde r Ny ström tim e discre tiz a tion. The order of converg ence of
the num erical m ethod can b e increased b y using a hig her order N y ström disc retization.
F or a third order schem e the disc retization of the sy stem b ecom es

δxn =
1

6
[7 yn − 2yn−1 + yn−2],(2.10)

δyn =
1

6
[7 f(xn, yn) − 2f(xn−1, yn−1) + f(xn−2, yn−2)],(2.11)

w here

(2.12) f(x, y) = ε(1 − x2)y − ω2x.

This tim e w e need to sup p ly tw o ex tra initial values, nam ely , for b oth n = 1
and n = 2. B ecause of the increased order of this m ethod w e used a fourth order
R ung e– K utta m ethod to calculate these initial values.

U sing the sam e p aram eters as in F ig ure 1, w e fi nd that the num erical solution
does not stay fi nite thoug h sp uriously m odulated as w ith the leap frog disc retization,
b ut that it suddenly b low s up . The reason for this instab ility is the sam e, how ever: a
sudden g row th of a hig h frequency m ode. The result is show n in F ig ure 3.

S ince this is a converg ent m ethod, lik e the leap frog m ethod ab ove, the onset of
the instab ility can ag ain b e delay ed b y using a sm aller tim e step . In order to reach
the lim it c y c le b efore the hig h frequency m ode g row s sig nifi cantly , w e found that a
tim e step of at m ost τ = 0.05 has to b e used.

Thus, althoug h a hig her order m ethod is used, a m uch sm aller tim e step is re-
quired in order to fi nd the lim it c y c le num erically . The hig h frequency induced (H F I)
instab ility ob served here enforces an up p er lim it to the tim e step .
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Fig. 3 . Results when running the difference system (2.10), (2.11) with ε = 0.025, ω = 1, τ = 0.2,
and x0 = 0, y0 = 0.5.

2 .3 . Fourth orde r Ny ström tim e discre tiz a tion. A p p ly ing the fourth order
N y ström disc retization to the sy stem (2.1), (2.2), w e g et

δxn =
1

6
[8yn − 5yn−1 + 4yn−2 − yn−3],(2.13)

δyn =
1

6
[8f(xn, yn) − 5f(xn−1, yn−1) + 4f(xn−2, yn−2) − f(xn−3, yn−3)](2.14)

w ith f as in (2.12).
The three ex tra initial values are ag ain com p uted w ith a fourth order R ung e–

K utta m ethod. The results are sim ilar to those of the third order m ethod, ex cep t
that the hig h frequency m ode now ap p ears m uch sooner, ag ain leading to b low up .
F ig ure 4 show s w hat hap p ens w hen τ = 0.05, and it turns out that the lim it c y c le
can b e reached fairly ac curately only for tim e step s low er than ab out τ = 0.01. Thus
the up p er b ound for the tim e step is even low er than b efore.

H aving ob served the havoc caused b y the hig h frequency sp urious m ode, the nex t
thing to b e attem p ted is an analy sis of this p henom enon. This is done in the nex t
section for the leap frog case.

3 . A discre te m ultip le sca le s a na ly sis. S ince the b ehavior of the leap frog
tim e disc retization is the m ost com p licated (the others sim p ly b low up ), and since
this is also the sim p lest diff erence schem e, w e shall attem p t an analy sis of this case
only .

S ince the sp urious b ehavior of (2.9 ) consists of an am p litude m odulation, a m ul-
tip le scales analy sis w ould seem to b e an ap p rop riate tool to investig ate it.

To p erform a m ultip le scales analy sis of (2.9 ) w e shall w ork in direct analog y w ith
the w ell-k now n continuous m ultip le scales analy sis p erform ed for the van der Pol
equation, e.g ., [6]. W e shall use tw o disc rete tim e scales, nam ely ,

(3.1) Tp = εpnτ, p = 0, 1,
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Fig. 4 . Results when running the difference system (2.13), (2.14) with ε = 0.025, ω = 1,
τ = 0.05, and x0 = 0, y0 = 0.5.

and consider the ex p ansion [9 ]

(3.2) xn = x0(T0, T1) + εx1(T0, T1) + O(ε2).

W e shall also use p artial shift op erators ETp w hich w e defi ne as

(3.3) ETpf(. . . , Tp, . . .) := f(. . . , Tp + εpτ, . . .)

in analog y w ith the tem p oral shift op erator in (2.3). U sing the p artial shift op erator
(3.3) ab ove w e also defi ne p artial divided diff erence op erators for Tp, nam ely ,

(3.4) ∆Tp := (ETp − 1)/(εpτ), ∇Tp := (1 − E−1
Tp

)/(εpτ).

The analog ue of the central diff erence op erator δ, defi ned in (2.4), follow s sim ilarly :

(3.5) δTp ≡ (∆Tp + ∇Tp)/2.

F ollow ing S choom b ie [9 , 10] w e note the follow ing disc rete m ultip le scales ex p an-
sion of the diff erential ap p rox im ations ∆ and ∇ g iven in (2.8), nam ely ,

(3.6) ∆ = ∆T0
+ ε∆T1

ET0
, ∇ = ∇T0

+ ε∇T1
E−1

T0
.

B y m ak ing use of the defi nition of δ in (2.4) and sub stitution of (3.6) therein, w e also
ob tain that

(3.7 ) δ = δT0
+ ε/2(∆T1

ET0
+ ∇T1

E−1
T0

).

The equations ab ove are essentially the disc rete analog ues of the chain rule for diff er-
entiation as used in a norm al continuous m ultip le scales analy sis.
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W e now p roceed w ith our disc rete m ultip le scales analy sis. W e sub stitute (3.6)
into (2.9 ). N ote the ex p ansion of the fi rst op erator in (2.9 ):

(3.8)

∆∇ + (τ2/4)∆2∇2

= ∆T0
∇T0

+ (τ2/4)∆2
T0
∇2

T0

+ ε(∆T0
∆T1

+ ∇T0
∇T1

+ (τ2/2)∆2
T0
∇T0

∆T1
+ (τ2/2)∇2

T0
∆T0

∇T1
).

W e p roceed b y collecting term s w ith equal p ow ers of ε. In this w ay w e g enerate a set
of equations g iven b y

(3.9 ) Lx0 = 0,

relevant to O(1), and for O(ε),

Lx1(T0, T1) = R(T0, T1),(3.10)

w here the diff erence op erator L is defi ned b y

Lu(T0, T1) = (∆T0
∇T0

+ (τ2/4)∆2
T0
∇2

T0
)u(T0, T1) + ω2u(T0, T1)(3.11)

for any disc rete variab le u(T0, T1), and w here

R(T0, T1) = −(∆T0
∆T1

+ ∇T0
∇T1

+ (τ2/2)∆2
T0
∇T0

∆T1
+ (τ2/2)∇2

T0
∆T0

∇T1
)x0

+β(1 − x2
0)δT0

x0.(3.12)

It is easy to see that any real-valued solution of (3.9 ) m ust b e of the form

(3.13) x0(T0, T1) = a(T1)e
iΩnτ / 2 + (−1)nb(T1)e

iΩnτ / 2 + c.c .,

w here c .c . denotes the com p lex conjug ate, and w here

(3.14) cos(Ωτ) = 1 − 2ω2τ2.

The second term in (3.13) rep resents the com p utational w ave considered b y C ai et al.
[1], the p resence of w hich causes sp urious b ehavior.

If w e sub stitute this ex p ression for x0 into the rig ht-hand side of (3.10), w e even-
tually fi nd that (neg lecting O(ε2) term s)

τ

i
R(T0, T1) = { − sin(Ωτ)δT1

a + sin(Ωτ/2)(a− a|a|2 + 3b2ā− 2a|b|2)}eiΩnτ / 2

+ { − sin(Ωτ)δT1
b + sin(Ωτ/2)(−b + b|b|2 − 3a2b̄ + 2b|a|2)}(−1)neiΩnτ / 2

+ sin(Ωτ/2)(−a3 + ab2)e3iΩnτ / 2

+ sin(Ωτ/2)(b3 − a2b)(−1)ne3iΩnτ / 2 + c.c .,(3.15)

w here the b ar indicates the com p lex conjug ate.
To ensure a b ounded solution for x1, w e need to rem ove secular term s, w hich is

done b y requiring that the coeffi c ients of b oth eiΩnτ / 2 and (−1)neiΩnτ / 2 b e equated
to zero. This leads to the tw o ordinary diff erential equations

a′ = r(a− a|a|2 + 3b2ā− 2a|b|2),(3.16)

b′ = −r(b− b|b|2 + 3a2b̄− 2b|a|2),(3.17 )
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w here

(3.18) r =
1

2 cos(Ωτ/2)
,

and w e have noted from the defi nition of δT1
that w e can w rite

(3.19 ) δT1
= (ET1

− E−1
T1

)/(2ετ) = ∂T1
+ O(ε2).

N ex t w e p ut

(3.20) a =
1

2
α(T1)e

iθ (T1), b =
1

2
β(T1)e

iφ (T1),

w here α and β are real and nonneg ative, and θ and φ are real. This enab les us to
w rite x0 in the real form

(3.21) x0(T0, T1) = α cos(Ωnτ/2 + θ) + (−1)nβ cos(Ωnτ/2 + φ).

W hen w e p ut (3.20) into (3.16) and (3.17 ), and sep arate real and im ag inary p arts, w e
fi nally ob tain the follow ing coup led sy stem of nonlinear ordinary diff erential equations:

α′ = rα(1 − α2/4 − β2/2) +
3

4
rαβ2 cos(2φ− 2θ),(3.22)

β′ = −rβ(1 − β2/4 − α2/2) − 3

4
rβα2 cos(2φ− 2θ),(3.23)

θ′ =
3

4
rβ2 sin(2φ− 2θ),(3.24)

φ′ =
3

4
rα2 sin(2φ− 2θ).(3.25)

4 . Am p litude dy na m ics. The sy stem (3.22) throug h (3.25) can b e reduced to
three equations b y introduc ing the variab le γ = cos(2φ− 2θ):

α′ = rα(1 − α2/4 − β2/2) +
3

4
rαβ2γ,(4.1)

β′ = −rβ(1 − β2/4 − α2/2) − 3

4
rβα2γ,(4.2)

γ′ =
3

2
r(β2 − α2)(1 − γ2).(4.3)

A s far as the orb its of this sy stem are concerned, w e w ill b e interested only in the
orb its w ithin the reg ion α ≥ 0, β ≥ 0, −1 ≤ γ ≤ 1.

F irst consider the orb its for w hich the p rojections on the αβ-p lane are along the
α-ax is (i.e., β = 0). F or these the sy stem (4.1)– (4.3) reduces to the tw o equations

α′ = rα(1 − α2/4),(4.4)

γ′ = −(3/2)rα2(1 − γ2).(4.5)

E quation (4.4) has the solution

(4.6) α =
2

√

1 + (4/α2
0 − 1)e−2 r T1

=
2

√

1 + (4/α2
0 − 1)e−2 r εnτ

,
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w here

(4.7 ) α(0) = α0,

w hich is very c lose to the am p litude in (1.3), since 2r = 1 + O(τ2) from (3.18).
E quation (4.5) show s that if |γ(0)| < 1, γ w ill decrease m onotonically and eventu-

ally ap p roach the lim iting value of γ = −1. This orb it therefore ends at the unstab le
equilib rium p oint (2, 0,−1).

F or the rest of the orb its in the quarter c y linder, it is convenient to transform to
c y lindrical coordinates, i.e., the coordinates (R,Θ, γ), w here

α = R cos Θ,(4.8)

β = R sin Θ.(4.9 )

In term s of these coordinates, the sy stem (4.1)– (4.3) then b ecom es

R′ = rR(1 −R2/4) cos(2Θ),(4.10)

Θ′ = −r

[

1 − 3

8
R2(1 − γ)

]

sin(2Θ),(4.11)

γ′ = −3

2
rR2(1 − γ2) cos(2Θ).(4.12)

This sy stem can b e solved analy tically . F irst w e elim inate Θ b y dividing (4.12) b y
(4.10) to g et the diff erential equation

(4.13)
dγ

dR
= −3

2

R(1 − γ2)

1 −R2/4
.

This can easily b e solved b y sep aration of variab les to g ive the follow ing relationship
b etw een γ and R:

(4.14) γ =
C(1 −R2/4)6 − 1

C(1 −R2/4)6 + 1
,

w here C is a constant defi ned b y

(4.15) C =
(1 + γ0)

(1 − γ0)(1 −R2
0/4)6

,

w hich is p ositive since −1 < γ0 = γ(0) < 1. W e note that in the lim it if R → 2, then
γ → −1.

N ote that (4.14) defi nes a fam ily of nonintersecting surfaces, w hich are all tang ent
to the curve

R = 2, γ = −1, 0 ≤ Θ ≤ π /2.

F ig ure 5 show s som e of these surfaces.
If w e now sub stitute the relationship (4.14) into (4.10) and (4.11), w e g et the

sy stem

R′ = rR(1 −R2/4) cos(2Θ),(4.16)

Θ′ = −r

[

1 − 3R2

4[C(1 −R2/4)6 + 1]

]

sin(2Θ).(4.17 )
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Fig. 5 . T wo o f the surfaces defi ned by (4.14), namely, fo r C = 5 and fo r C = 70.

This sy stem describ es the p rojection on the αβ-p lane of all orb its intersecting the
c irc le arc

(4.18) R = R0, 0 ≤ Θ ≤ π /2, γ = γ0,

defi ning C in (4.15).
S ince w e are p rim arily interested in the interaction of α and β (and therefore that

of R and Θ), this dy nam ical sy stem is of p articular interest to us, and it is w orthw hile
to ex am ine its dy nam ic s in som e detail.

In the quadrant 0 ≤ Θ ≤ π /2 the sy stem has the equilib rium p oints

(R,Θ) = (0, 0), (2, 0), (2, π /2),

as w ell as the p oint w here Θ = π /4 and

(4.19 ) 3R2 = 4[C(1 −R2/4)6 + 1].

If w e p ut u = 1 −R2/4, w here u ≤ 1, (4.19 ) can b e w ritten in the sim p ler form

(4.20) Cu6 = 2 − 3u.

A s can b e seen c learly from F ig ure 6, the curve rep resenting the left-hand side
of (4.20) and the line rep resenting the rig ht-hand side have tw o real intersections for
each value of C, nam ely , u1 > 0 and u2 < 0. This corresp onds to tw o equilib rium
p oints (R1, π /4) and (R2, π /4), such that R1 < 2 and R2 > 2. C learly , if C → 0, then
u1 → 2/3 and R1 → 2/

√
3, w hile u2 → −∞ and R2 → ∞. A lso, if C → ∞, then

b oth u1, u2 → 0 and R1, R2 → 2. Thus

(4.21) 2/
√

3 ≤ R1 ≤ 2, 2 ≤ R2 < ∞,

w ith the equalities achieved w hen γ0 = −1 (so that C = 0) and γ0 = 1 (so that
C = ∞), resp ectively .
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Fig. 6 . T he two real so lutio ns u2 < 0 and u1 > 0 o f (4.20), shown here fo r C = 2.

The p oints (R,Θ) = (0, 0), (2, 0), and (2, π /2) are easily seen to b e saddle p oints.
W e shall show that the rem aining tw o equilib rium p oints of the p rojected sy stem are
b oth surrounded b y c losed orb its, and are therefore centers.

It is also easy to see that the lines Θ = 0 and Θ = π /2 are orb its, directed
aw ay from and tow ards the orig in, resp ectively , as w ell as the c irc le seg m ent R = 2,
0 ≤ Θ ≤ π /2, in a counterc lock w ise direction.

The rest of the orb its can b e found from the diff erential equation

(4.22)
du

dΘ
=

2u(1 − u)(Cu6 + 1) cot(2Θ)

Cu6 + 1 − 3(1 − u)
,

ob tained b y dividing (4.16) b y (4.17 ) and p utting

u = 1 −R2/4.

Integ rating this b y sep aration of variab les y ields the orb it equation

(4.23) ln(sin 2Θ) = ln
u

1 − u
− 1

2
ln

(

Cu6

1 + Cu6

)

+ constant,

or

(4.24) L
√

1 + Cu6 = u2(1 − u) sin(2Θ),

w here L is a constant w hich is nonneg ative for orb its in the reg ion under consideration.
(N ote that (4.24) is also true for C = 0, i.e., γ = −1. A c cording to (4.12) these are
p lanar orb its.)

To investig ate the nature of these orb its, w e fi rst note that (4.22) show s that for
u < 1 and C > 0,

(4.25)
du

dΘ
= 0 w hen Θ = π /4.
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The ex trem es of u are therefore on the line Θ = π /4 and are defi ned b y

(4.26) u2(1 − u) = L
√

1 + Cu6

or, equivalently , are g iven b y those zeros of the p oly nom ial

(4.27 ) f(u) = (L2C − 1)u6 + 2u5 − u4 + L2

w hich are less than one. N ow since

(4.28) f ′(u) = 2u3[3(L2C − 1)u2 + 5u− 2],

the critical p oints of f are at u = 0 and u = u±, w here

(4.29 ) u± =
−5 ±

√
1 + 24L2C

6(L2C − 1)
.

F or all L ≥ 0, u+ is alw ay s a local m inim um , w ith

(4.30) 0 ≤ u+ =
4

(5 +
√

1 + 24L2C)
≤ 2/3 < 1.

O n the other hand, w hen L2C > 1, u− is a local m inim um w ith

(4.31) u− =
5 +

√
1 + 24L2C

6(1 − L2C)
< 0,

w hile if L2C < 1, u− is a local m ax im um and u− > 1.
Thus the nature of f , and therefore of its zeros, dep ends very m uch on w hether

L2C > 1 or L2C < 1. If L2C < 1, i.e., for 0 < L < 1/
√
C, the g rap h of f is as in

F ig ure 7 .
There is then alw ay s one and only one neg ative zero, sig nify ing a sing le ex trem e

value for u and hence an op en orb it in the reg ion R > 2. There are no p ositive zeros at
all, unless L ≤ L1, w here L1 is that value of L for w hich f is tang ent to the horizontal
ax is at u+ (see F ig ure 7 (b )). F or L < L1 there are tw o p ositive zeros of f less than
one (F ig ure 7 (a)), sig nify ing tw o ex trem es in u in the reg ion R < 2, and thus a c losed
orb it. W hen L > L1, the function f is p ositive for all p ositive u (F ig ure 7 (c)), and
hence for all R < 2. S ince this also im p lies that sin(2Θ) > 1, there are no orb its in
this reg ion for these values of L. H ence all orb its inside the quarter c irc le R < 2,
0 < Θ < π /2 are c losed. H ow ever, there are op en orb its in the reg ion R > 2 for the
entire rang e of values of L b etw een 0 and 1/

√
C.

W hen L2C > 1, i.e., L > 1/
√
C, the g rap h of f is as in F ig ure 8.

There are no p ositive zeros of f less than one at all, and neg ative zeros only if
L < L2, w here L2 is that value of L for w hich f is tang ent to the horizontal ax is at
u− (F ig ure 8(b )). If 1/

√
C < L < L2, there are tw o neg ative zeros, sig nify ing c losed

orb its in the reg ion R > 2 (F ig ure 8(a)). F or L > L2, the function f is p ositive for
all u (F ig ure 8(c)), w hich m eans that there are no orb its at all for these values of L.

To fi nd L1 and L2, w e return to (4.26). The function f w ill b e tang ent to the
horizontal ax is w hen the functions f1 = u2(1 − u) and f2 = L

√
1 + Cu6 are tang ent

to each other. If w e sup p ose that the tang ent p oint is at u = ν, corresp onding to
L = L∗, then ν and L∗ m ay b e found b y solving the tw o equations

ν2(1 − ν) = L∗
√

1 + Cν6,(4.32)

2ν − 3ν2 =
3CL∗ν5

√
1 + Cν6

,(4.33)
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Fig. 7 . T he functio n f as defi ned in (4.27) fo r C = 16 and fo r (a) L = 0.07 < L1, (b) L =
0.1135 = L1, and (c) L = 0.15 > L1. In all three cases L2C < 1.
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Fig. 8 . T he functio n f as defi ned in (4.27) fo r C = 16 and fo r (a) L = 0.4 < L2, (b) L =
0.5055 = L2, and (c) L = 0.55 > L2. In all three cases L2C > 1.

from w hich w e fi nd, b y elim inating L∗, that ν satisfi es

(4.34) 2 − 3ν = Cν6,

w hich is just (4.20). Thus ν = u1, u2 and L∗ = L1, L2, resp ectively , and the tang ent
p oints are the centers (R,Θ) = (Ri, π /4), i = 1, 2, of the p rojected sy stem . A lso

(4.35) Li =
(ui)

2
√

1 − ui√
3

.
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Fig. 9 . T hree-dimensio nal p hase diagram (a) as well as its p ro jectio n (b) o n the αβ-p lane fo r

C = 10.

Thus the orb its m ay b e c lassifi ed as follow s:
• L = 0: The saddle p oints (R,Θ) = (0, 0), (2, 0), (2, π /2), and the orb it R = 2,

0 < Θ < π /2. (N ote that from (4.15), w henever R = 2, γ = −1, so that these
saddle p oints w ill corresp ond to the unstab le equilib rium p oints (α, β, γ) =
(0, 0, (C − 1)/(C + 1)), (0, 2,−1), (2, 0,−1) of the three-dim ensional sy stem
(4.1)– (4.3).)

• 0 < L < L1: C losed orb its for R < 2, op en orb its for R > 2.
• L = L1: C enter at R = R1,Θ = π /4 and an op en orb it in the reg ion R > 2.
• L1 < L ≤ 1/

√
C: O nly op en orb its in the reg ion R > 2.

• 1/
√
C < L < L2: O nly c losed orb its in the reg ion R > 2.

• L = L2: C enter at R = R2, Θ = π /4.
• L > L2: N o orb its.

F rom (4.22) w e can also see that dΘ
du w ill b e zero if Cu6 +3u−2 = 0 or u = u1, u2.

Then the ex trem e values of Θ on the orb it are g iven b y

(4.36) sin 2Θe = L/Li, i = 1, 2,

i.e.,

Θm a x = π /2 − 1

2
arc sin(L/Li),(4.37 )

Θm in =
1

2
arc sin(L/Li).(4.38)

A ty p ical p hase diag ram , b oth in three-dim ensional p hase sp ace and as p rojected
on the αβ-p lane, is show n in F ig ure 9 for C = 10.

5 . Ap p lica tion to th e le a p frog m e th od. H aving studied the dy nam ic s of the
am p litudes of the tw o interacting w aves in g eneral, w e can now relate it to the actual
num erical results ob tained w hen solving (2.5) and (2.6). It should b e rem em b ered
that the values of y1 and x1 m ust b e found b y using som e one-step m ethod lik e the
E uler m ethod or one of the R ung e– K utta m ethods b efore the leap frog m ethod can
start. B ecause of this, the com p utational w ave is p resent from the outset, as w e w ill
dem onstrate b elow .
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Fig. 10 . O rb it in three dimensio ns, and p ro jected o n the αβ-p lane, fo r an E uler starter and

τ = 0.2, ε = 0.025, ω = 1, x0 = 0, y0 = 0.5.

To fi nd the initial am p litudes α(0) = α0 and β(0) = β0, as w ell as the initial
p hase ang les θ0 and φ0 (and hence also γ0), w e p ut

(5.1) xn = α0 cos

(

Ωnτ

2
+ θ0

)

+ (−1)nβ0 cos

(

Ωnτ

2
+ φ0

)

for n = 0, 1, 2, and 3. (H ere w e assum e that ε is sm all enoug h so that the functions
dep ending on T1, i.e., α, β, θ, and φ, do not chang e sig nifi cantly over three tim e step s.)
N ote that x0 and y0 are the g iven initial conditions, and x1, x2, and x3 dep end on the
actual starter schem e used. B y solving for α0 cos θ0, α0 sin θ0, β0 cos φ0, and β0 sinφ0

fi rst, w e need only solve a linear alg eb raic sy stem . E ventually w e can then fi nd R0,
Θ0, and γ0, and hence the orb it p aram eters C and L.

F or τ = 0.2, ε = 0.025, ω = 1, x0 = 0, y0 = 0.5, and an E uler starter, the initial
am p litudes and p hases w ere

α0 = 0.5089 ,(5.2)

β0 = 0.0040,(5.3)

θ0 = −1.57 18 radians,(5.4)

φ0 = −1.4428 radians.(5.5)

Thus the com p utational w ave has a sm all b ut sig nifi cant am p litude β0 initially . The
initial orb it p olar coordinates are then

R0 = 0.5089 ,(5.6)

Θ0 = 0.007 9 radians,(5.7 )

γ0 = 0.9 669 ,(5.8)

from w hich the orb ital p aram eters of this num erical solution can b e calculated as
C = 88.8002 and L = 0.00011453. The resulting orb it and its p rojection in the
αβ-p lane are show n in F ig ure 10.

W e also used b oth a second order and a fourth order R ung e– K utta starter. The
initial p hases and am p litudes for these are g iven in Tab le 1.

The corresp onding orb its are show n in F ig ures 11 and 12.
W hen com p aring F ig ures 10, 11, and 12, w e note that the p rojection of the

orb it on the αβ-p lane look s virtually the sam e in all three cases, b ut that the full
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T a b l e 1

O rb ital parameters fo r different starter schemes.

Starter α0 β0 θ0 φ0 R0 Θ0 γ0 C L

2nd order RK 0.5038 0.00117 −1.5715 1.2499 0.5038 0.0023 0.8019 13.4768 0.000083
4th order RK 0.5038 0.00132 −1.5722 1.0015 0.5038 0.0026 0.4215 3.6407 0.000160
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Fig. 11. O rb it in three dimensio ns, and p ro jected o n the αβ-p lane, fo r a seco nd o rder Runge–

K utta starter and τ = 0.2, ε = 0.025, ω = 1, x0 = 0, y0 = 0.5.
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Fig. 12 . O rb it in three dimensio ns, and p ro jected o n the αβ-p lane, fo r a fo urth o rder Runge–

K utta starter and τ = 0.2, ε = 0.025, ω = 1, x0 = 0, y0 = 0.5.

three-dim ensional orb it varies sig nifi cantly . The m ore inac curate the starter schem e
is, the m ore variation there seem s to b e in γ, and hence in the p hase ang les θ and φ.

F rom the actual orb its it is easy to fi nd the p oint w here the com p utational w ave
starts to g row . C ai et al. [1] calculated that this hap p ens w hen α =

√
0.8 = 0.89 44.

O ur nonlinear analy sis allow s us to b e m ore p rec ise b y fi nding the low est p oint of a
p articular orb it. In fact, w e can already see that the com p utational w ave is initially
dam p ed, until the dam p ing eventually b ecom es an am p lifi cation. In Tab le 2 w e list,
for each of the three starter schem es and the p aram eter values and initial conditions
as b efore, the p oint α = α∗

1, w here the am p litude β of the com p utational w ave reaches
a m inim um value of β∗. A t this p oint the com p utational w ave starts g row ing , alb eit
very slow ly at fi rst. W e also list the p oint α = α∗

2 w here the am p litude β fi rst ex ceeds
the value of 0.01.
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T a b l e 2

T he po int α = α∗
1 o n the o rbit where β reaches its minimum β∗, together with the value α∗

2 o f

α, where β fi rst exceeds 0.01 fo r the three different starter schemes, and τ = 0.2, ε = 0.025, ω = 1,
x0 = 0, y0 = 0.5.

Starter α∗
1 α∗

2 β∗

Euler 1.4450 1.8866 0.000996
2nd order RK 1.2507 1.9043 0.000465
4th order RK 1.1065 1.8655 0.000713

W e see that α∗
1 is sensitive for the p articular starter schem e used, w hereas α∗

2

does not vary very m uch. F rom Tab le 1 w e see that C decreases w ith the accurac y of
the initial values x1 and y1. It is w orthw hile to note at this p oint that if C = 0 (and
therefore γ = −1 throug hout), then if w e consider an orb it c lose to β = 0, b y p utting
β = ε ¿ 1, then (4.2) b ecom es

(5.9 ) ε′ = rε(5α2/4 − 1),

show ing that α∗
1 w ould tak e on the value of

√
0.8 p redicted b y C ai et al. Their value

is therefore a lim iting value. In p ractice, g row th of the com p utational w ave starts a
b it later. In p ractical term s, for the ty p e of ac curac y ex p ected from a second order
m ethod and a tim e step of 0.2, the com p utational w ave w ill start to cause troub le
only w hen its am p litude b ecom es larg er than ab out 0.01, i.e., ab out 0.5% of the lim it
c irc le am p litude. This does not hap p en b efore the solution g ets very c lose to the
lim it c y c le, i.e., at ab out α = 1.9 . U p to then the eff ect of β in (3.22) and (3.24) is
neg lig ib le, so that the p hase ang le θ is virtually constant, and the am p litude of the
solution is g iven b y (4.6), w hich is as near to the analy tic solution as can b e ex p ected
from a second order m ethod. In other w ords, the num erical solution is quite sound
and useful until it very nearly reaches the lim it c y c le.

W e m ay also note from the p hase diag ram in F ig ure 9 that w hen w e start w ith
initial conditions w hich leads to an initial am p litude larg er than that of the lim it
c y c le, the op en orb its in the reg ion R > 2 im p ly eventual b low up . To test this, w e
used the p aram eter values w e used b efore, b ut chang ed the initial values to x0 = 5,
y0 = 0. W ith a second order R ung e– K utta starter, the num erical results are show n
in F ig ure 13.

The com p utational w ave is c learly seen to b ecom e sig nifi cantly larg e quite early ,
causing a b low up of the solution at ab out 50 tim e units. The orb it p aram eters for
these p aram eter values and initial conditions turn out to b e C = 3.107 0 × 10−6 and
L = 5.2642. F or this low value of C, c losed orb its in the reg ion R > 2 start only
at ab out L = 567 , so that this orb it is defi nitely op en. F ig ure 14 show s this orb it,
b oth in three dim ensions and p rojected on the αβ-p lane. The p oint on this orb it
w here β is a m inim um is at α = α∗

1 = 6.82. S ince the initial p oint on this orb it
is further along , the com p utational w ave is am p lifi ed from the very start, w here it
already has an am p litude of 0.08. Thus, for these p articular initial conditions, the
num erical solution is useless.

F inally (4.12) im p lies that there is another set of p lanar orb its b esides γ = −1,
nam ely , those on the p lane γ = 1 (C = ∞). Then, ac cording to (4.11), Θ′ < 0 on
(0, π /2), and hence β, m onotonically decreases for all orb its on this p lane. Thus the
com p utational w ave w ill cause no p rob lem s as long as γ = 1 (i.e., θ = φ). U nfortu-
nately these orb its are structurally unstab le. The sm allest deviation from γ = 1 w ill
m ove the solution to one of the other C-surfaces, and hence lead to g row th of β.
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Fig. 13 . Results when running the difference system (2.5), (2.6) with ε = 0.025, τ = 0.2, and

x0 = 5, y0 = 0.

0 1 2 3
2

4

6

8

10

12

14

16

18

20

22

α

β

0

1

2

3

0

10

20

30

− 1

− 0.5

0

0.5

1

αβ

γ

Fig. 14 . O rb it in three dimensio ns, and p ro jected o n the αβ-p lane, fo r a seco nd o rder Runge–

K utta starter and τ = 0.2, ε = 0.025, ω = 1, x0 = 5, y0 = 0.

6 . Discussion. In this p ap er w e dem onstrated that attem p ts to calculate the so-
lution of the van der Pol equation b y m eans of several N y ström m ethods of diff erent
orders lead to nonlinear instab ilities caused b y sudden g row th of a hig h frequency
m ode. This hig h frequency induced (H F I) instab ility can b e delay ed sim p ly b y de-
creasing the tim e step . Thus it is alw ay s p ossib le to calculate the lim it c y c le ac curately ,
p rovided a sm all enoug h tim e step is used. Tim e step restric tions g et m ore severe as
the order of the m ethod is increased.

A s far as the analy sis is concerned, w e fi rst im p roved up on the w ork done b y C ai
et al. [1], in the sense that b y doing a full nonlinear analy sis of the am p litude dy nam ic s
of the second order N y ström diff erence schem e (2.5), w e w ere ab le to fully ex p lain the
ob served sp urious am p litude m odulation im p osed b y it, and also to assess the ex tent
to w hich this schem e could still b e useful as a second order num erical m ethod.
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W e also dem onstrated the use of a disc rete m ultip le scales technique com b ined
w ith a p hase p lane analy sis to analy ze such a nonlinear diff erence schem e. These tech-
niques w ill certainly also b e ap p licab le to other num erical m ethods for the van der Pol
and other nonlinear diff erential equations, and indeed to nonlinear m odels w hich are
disc rete to start w ith.

The fact that leap frog tim e disc retizations could cause sp urious b ehavior has b een
k now n for som e tim e [7 , 8, 11], and S anz-S erna [7 ] and S anz-S erna and V adillo [8]
did a p hase p lane analy sis in som e sim p ler cases. O f course, in the case of (2.5) the
p rob lem is m uch m ore com p licated, since it is not the b ehavior of the solution itself
w hich needs to b e analy zed (as in the cases studied b y S anz-S erna and his cow ork ers),
b ut rather that of its am p litude, w hich m ak es it necessary to use a disc rete m ultip le
scales m ethod fi rst.

In a case such as D uffi ng ’s equation, w hich m odels osc illations b ut does not have
a lim it c y c le, w e found that the H F I instab ilities w ere less severe, in the sense that it
seem s to b e totally ab sent in the case of the second order N y ström schem e, althoug h
still p resent in the case of the hig her order m ethods.

W e also ob served H F I instab ility w here N y ström m ethods w ere ap p lied to other
cases w here lim it c y c les oc curred in the dy nam ic s of the solutions. O ne such case w as
a p redator-p rey sy stem describ ed in [5, C hap ter 3, section 3.3]. A n analy sis of these
and other cases is currently under w ay and w ill b e discussed in forthcom ing p ap ers.
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