
Dynamic Heuristic Set Selection for
Cross-Domain Selection Hyper-Heuristics

Ahmed Hassan and Nelishia Pillay[0000−0003−3902−5582]

Department of Computer Science, University of Pretoria, South Africa
ahmedhassan@aims.ac.za

nelishia.pillay@up.ac.za

Abstract. Selection hyper-heuristics have proven to be effective in solv-
ing various real-world problems. Hyper-heuristics differ from traditional
heuristic approaches in that they explore a heuristic space rather than
a solution space. These techniques select constructive or perturbative
heuristics to construct a solution or improve an existing solution respec-
tively. Previous work has shown that the set of problem-specific heuristics
made available to the hyper-heuristic for selection has an impact on the
performance of the hyper-heuristic. Hence, there have been initiatives to
determine the appropriate set of heuristics that the hyper-heuristic can
select from. However, there has not been much research done in this area.
Furthermore, previous work has focused on determining a set of heuris-
tics that is used throughout the lifespan of the hyper-heuristic with no
change to this set during the application of the hyper-heuristic. This
paper investigates dynamic heuristic set selection (DHSS) which applies
dominance to select the set of heuristics at different points during the
lifespan of a selection hyper-heuristic. The DHSS approach was evalu-
ated on the benchmark set for the CHeSC cross-domain hyper-heuristic
challenge. DHSS was found to improve the performance of the best per-
forming hyper-heuristic for this challenge.

Keywords: Dynamic heuristic set selection · Selection perturbative hyper-
Heuristics · Cross-domain hyper-heuristics

1 Introduction

Selection hyper-heuristics explore a heuristic space to choose a constructive or
perturbative heuristic at each point to create or improve a solution respectively
[14]. Previous work has shown that the performance of selection hyper-heuristics
is affected by the set of the constructive or perturbative heuristics that the hyper-
heuristic selects from [16,11,15]. Generally, the entire set of heuristics available
for the problem domain, which we refer to as the universal set, is used by the
hyper-heuristic, increasing the search space to be explored which may harm the
performance of the hyper-heuristic. We hypothesize that the set of heuristics
available to the hyper-heuristic to perform selections from, the active set, should
be different at different points in the lifespan of the hyper-heuristic. We investi-
gate this hypothesis for cross-domain selection perturbative hyper-heuristics.



2 A. Hassan et al.

Previous work in this area has shown the effectiveness of determining an ac-
tive set at the beginning of the lifespan of the hyper-heuristic, instead of the
hyper-heuristic selecting from the entire set of heuristics. In this case, the active
set is static, i.e. the same set is used throughout the lifespan of the hyper-
heuristic. In [16], fitness landscape measures are used to estimate the perfor-
mance of heuristics which are subsequently ranked using non-parametric tests.
Several active sets are generated by considering the heuristics according to their
ranks. In [6], two ranking methods are used to filter out poor and redundant
heuristics: the first method is based on the gain (heuristic performance) and
correlation, and the second method is based on the z-test. However, there does
not appear to be any research into using different active heuristic sets at different
points in the lifespan of a hyper-heuristic. We refer to this as dynamic heuristic
set selection (DHSS).

This study examines DHSS for cross-domain selection perturbative hyper-
heuristics. A dominance approach is used to select the active heuristic set at
different points in the lifespan of the hyper-heuristic. The approach is evaluated
using the CHeSC challenge benchmark set. It is implemented with the best-
performing hyper-heuristic for the challenged, namely, FS-ILS [1]. DHSS was
found to improve the cross-domain performance of FS-ILS and FS-ILS together
with DHSS outperformed state-of-the-art approaches for the challenge. Hence,
the contributions of the research presented in this study are:

1. A DHSS approach for selection hyper-heuristics.

2. An investigation of DHSS for cross-domain hyper-heuristics.

The rest of this paper is organized as follows. The following section defines
terms used in the paper in the context of the research presented. Section 3 pro-
vides an overview of cross-domain hyper-heuristics and the CHeSC challenge. In
Section 4, the approach is described in detail. Section 5 presents the experimen-
tal setup. Section 6 discusses the performance of DHSS. Section 7 concludes the
paper and presents directions for future research.

2 Terminology

This section presents some terminology that will be used in the paper. The
lifespan of a selection perturbative hyper-heuristic is a single application of the
hyper-heuristic comprised of several iterations. The universal set refers to the set
of all heuristics for a problem domain. The active set is the set of heuristics used
at a particular point in the lifespan of a hyper-heuristic. This is often a subset
of the universal set. A heuristic refers to a problem-specific heuristic that is an
element of the universal set. A phase is a part of the lifespan in which the active
set remains fixed and a phase length is the number of iterations executed during
the phase. A duration of a heuristic is the total execution time in milliseconds
used by the heuristic.



Title Suppressed Due to Excessive Length 3

3 Cross-Domain Hyper-Heuristics

Cross-domain hyper-heuristics aim at achieving a higher level of generality by
solving problems across different problem domains [14]. In this case, hyper-
heuristics aim to perform well across all the problem domains rather than pro-
ducing good results for some problems and poor results for others. The CHeSC
challenge aimed at promoting research in cross-domain hyper-heuristics [5]. The
challenge required a selection perturbative hyper-heuristic to be developed such
that it performed well in six problem domains, namely, the boolean satisfiabil-
ity problem, one-dimensional bin packing problem, personnel scheduling prob-
lem, permutation flow shop problem, traveling salesman problem, and vehicle
routing problem. The HyFlex framework [13] was developed for the challenge.
HyFlex provides an implementation of heuristics, methods for creating initial so-
lutions, and methods for calculating the objective value for each problem domain.
For each problem domain, HyFlex provides four types of heuristics. Mutational
heuristics perturb a given solution at random. Ruin and recreate heuristics de-
stroy and rebuild some parts of a given solution. Local search heuristics improve
a given solution. Crossover heuristics recombine parts from two solutions to
produce a new solution.

The selection perturbative hyper-heuristics competing in the challenge were
ranked and the ranks are added to obtain the overall score. In cases where there
is a tie, the corresponding points to the relevant positions are added together
and shared equally among all algorithms that tie. The median of the objective
value over 31 independent runs is used to rank the competing hyper-heuristics
using Formula 1 in which the top 8 methods (hyper-heuristics) receive a score
of 10, 8, 6, 5, 4, 3, 2, 1 points respectively and the rest receive no points. The
cross-domain score is calculated by adding up all problem-specific scores and the
winner is the hyper-heuristic with the highest cross-domain score. A time limit
of 600 seconds is used for each run and a benchmark program is provided to
estimate the time limit on different machines so that it matches the 600 seconds
on the standard machine used in CHeSC.

Research into producing a competitive selection perturbative hyper-heuristic
is still ongoing. We provide an overview of the six best performing hyper-
heuristics at the time of writing this paper. Fair share iterated local search
(FS-ILS) [1] is a hyper-heuristic that outperforms the winner of CHeSC. FS-ILS
uses fitness proportionate selection to select heuristics based on their ability to
generate accepted solutions and the duration taken to achieve that. FS-ILS em-
ploys a randomized local search step and a Metropolis acceptance criterion. A
restart strategy is also incorporated to re-initialize the search if it stagnates for
very long. In this paper, we show that the cross-domain performance of FS-ILS
can be improved if DHSS is used.

The winner of the CHeSC challenge was adapHH [12] which maintains a sub-
set of heuristics for each phase. adapHH selects a heuristic based on a probability
calculated by considering the best improvements and the duration of the heuris-
tic. Relay hybridization is used to identify heuristics that work well in pairs. An
adaptive threshold acceptance criterion is used to accept worsening solutions.



4 A. Hassan et al.

VNS [8] based on a variable neighborhood search working on a population
of solutions was placed second in the challenge. VNS shakes a solution, which is
chosen from the population by a tournament selection. A perturbative heuristic
is applied to the solution to achieve this. Then, a local search is applied to the
solution. A tabu list is used to keep track of worsening perturbative heuristics.
The worse solutions in the population are replaced by better solutions generated
by the local search.

The (ML) approach developed by Mathieu Larose [13,4] was placed third in
the challenge. ML is an iterated local search hyper-heuristics that employ rein-
forcement learning to select heuristics. The method consists of a diversification
step performed by perturbative heuristics, an intensification step performed by
local search heuristics, and an acceptance criterion that accepts worsening moves
only if the incumbent solution has not improved for several iterations.

Pearl Hunter (PHunter) [3], placed fourth in the challenge, is an iterated
local search that mimics pearl hunters. The search involves two steps: diversi-
fication (surface moves) and intensification (dive). PHunter can try more than
one diversification move if the search is trapped in a “buoy”. PHunter performs
two types of local searches: “snorkeling”, i.e. short sequences of local search and
“scuba dive”, i.e. intensive local search.

Evolutionary programming hyper-heuristic (EPH) [10], placed fifth in the
challenge, co-evolves two populations: a population of sequences of heuristics
that are applied to the solutions in the other population. Each sequence consists
of one or two perturbative heuristics (mutational and ruin-recreate heuristics)
followed by all local search heuristics.

4 Dynamic Heuristic Set Selection (DHSS) Approach

This section describes the DHSS approach. DHSS uses dominance [2] to deter-
mine the active set at each point in the lifespan of the hyper-heuristic. The DHSS
is described in Algorithm 1.

Algorithm 1 requires the universal set and search-status information from
the hyper-heuristic which includes information such as the current iteration, the
elapsed time, and the current solution value. The algorithm starts by initializing
the active set to include all heuristics as in line 1. In line 2, the set of permanently
excluded heuristics is initialized as an empty set. In line 3, the performance
history is initialized for all heuristics. The history keeps track of information
about each heuristic such as the percentage improvement, the percentage non-
improvement, and duration.

The update condition (in line 4 of Algorithm 1) is checked at the start of
every iteration of the hyper-heuristic and the active set is updated if it fails
to improve the best solution for Nfail iterations where Nfail is determined as
pf × waitmax where waitmax is the maximum number of iterations that have
elapsed between two consecutive updates of the best solution and pf is a patience
factor which controls how fast/slow the updates occur. Further, we observed in
some instances, waitmax can grow very large if the search stagnates for a long



Title Suppressed Due to Excessive Length 5

Algorithm 1 DHSS.

Require: universal set U , search-status information I from the hyper-heuristic
1: S ← U // Initialize the active set S
2: S′ ← ∅ // Initialize the set of permanently removed heuristics
3: Initialize performance history P for all heuristics
4: if canUpdate(I) then
5: if canRemove(I) then
6: S′ ← remove(S, S′, P, I)
7: end if
8: S ← update(S, S′, P)
9: return S

10: else
11: return S
12: end if

period before the best solution is updated. For this reason, we set a maximum
phase length (phasemax) to ensure that the active set is still updated even if
waitmax grows very large.

The removal condition (line 5 of Algorithm 1) is Telp/Tmax > Rexcl where
Telp is the time elapsed since the start of the hyper-heuristic, Tmax is the total
computational time, and Rexcl is a parameter that controls how soon the per-
manent heuristic removal is performed. The heuristic removal is executed once
during the search at the first update that happens after Telp/Tmax exceeds Rexcl.

The removal criterion (line 6 of Algorithm 1) excludes a heuristic permanently
only if it has poor individual performance and poor group performance. The
individual performance of a heuristic is measured from its own history such as
the ratio between the number of improvements made by the heuristic and the
total number of times the heuristic is used. The group performance considers
the performance of a heuristic relative to all heuristics such as the ratio between
the percentage improvement made by the heuristic and the total percentage
improvement made by all heuristics. The individual performance of a heuristic
hi is defined as follows:

f indi = α1
n+i

n+i + n−i
− α2

n−i
n+i + n−i︸ ︷︷ ︸

frequency

+α3
∆+

i

∆+
i +∆−

i

− α4
∆−

i

∆+
i +∆−

i︸ ︷︷ ︸
amount

(1)

where n+i and n−i denote the number of improvements and non-improvements
respectively made by heuristic i; ∆+

i and ∆−
i denote the amount of percentage

improvement and percentage non-improvement respectively made by heuristic i;
and 0 ≤ αi ≤ 1, i = 1, 2, 3, 4 are weights which are used to give some terms more



6 A. Hassan et al.

importance. The group performance of a heuristic hi is defined as follows:

fgpi = β1
n+i

H∑
k=1

n+k

− β2
n−i

H∑
k=1

n−k︸ ︷︷ ︸
frequency

+β3
∆+

i
H∑

k=1

∆+
k

− β4
∆−

i
H∑

k=1

∆−
k︸ ︷︷ ︸

amount

(2)

where all symbols are as defined in Eq.(1), H is the total number of heuristics,
and 0 ≤ βi ≤ 1, i = 1, 2, 3, 4 are weights.

We calculate the averages f̄ind and f̄gp for all values of f indi and fgpi respec-
tively. A heuristic hi is removed permanently only if f indi < f̄ind and fgpi < f̄gp.
This criterion removes only the worst-performing heuristics that worsen the cur-
rent solution, do this often, and fail to compensate for this degenerating behavior
by producing significant improvements.

The update criterion (line 8 of Algorithm 1) decides which heuristics should
be included in the active set. The update criterion utilizes a measure, which
evaluates the heuristic performance, to determine suitable heuristics for the next
phase. In this study, we measure the heuristic performance by the frequency of
improvements which favors heuristics that generates more improving moves. The
active set is updated such that it includes all dominant heuristics and excludes
all dominated heuristics. A heuristic hi dominates a heuristic hk if vi > vk and
ti < tk where vj is the value of heuristic j as determined by the measure and
tj is the duration of heuristic hj in milliseconds. This criterion does not exclude
a worse heuristic unless it has a longer duration than a better heuristic. The
reason for considering the duration is that very slow heuristics are not desirable
in general.

5 Experimental Setup

This section describes the experimental setup in terms of parameter tuning and
technical specifications.

5.1 Parameter Settings

The parameters involved in DHSS are summarized in Table 1. Manual tuning
via trial and error is used to determine the best values of these parameters. For
each parameter, several values are tried and the best value is chosen as reported
in Table 2. For the αi and βi (i = 1, 2, 3, 4) in Eq.(1) and Eq.(2), we tried 3
different configurations:

1. Assign more importance to improvements than non-improvements. In this
case, we have α1 = α3 = β1 = β3 = 1.0 and α2 = α4 = β2 = β4 = 0.5. This
configuration achieves the best results.

2. Assign more importance to non-improvements than improvements. In this
case, we have α1 = α3 = β1 = β3 = 0.5 and α2 = α4 = β2 = β4 = 1.0.



Title Suppressed Due to Excessive Length 7

Table 1: Summary of the parameters of DHSS.
Parameter Brief Description

phasemax Phase length.

pf Patience factor which controls how fast the updates occur.

Rexcl Controls when to start removing some heuristics permanently.

α1, β1 Weight of frequency of improvement in Eq.(1) and Eq.(2) respectively.

α2, β2 Weight of frequency of non-improvement in Eq.(1) and Eq.(2) respectively

α3, β3 Weight of percentage improvement in Eq.(1) and Eq.(2) respectively.

α4, β4 Weight of percentage non-improvement in Eq.(1) and Eq.(2) respectively.

Table 2: Parameters values
Parameter Tried Values Best Value

phasemax 1, 100, 1000 100

pf 0.2, 0.5, 1.0 0.5

Rexcl 0.2, 0.5, 1.5 0.2

3. No distinction. In this case, we have αi = βi = 1.0 for i = 1, 2, 3, 4.

We observed that no parameter setting leads to best performance in all prob-
lem domains. The best values reported in Table 2 generate the best overall cross-
domain performance. The most influential parameters are phasemax and Rexcl.
A drop in the performance by about 40% is observed between the best and worst
value for phasemax. The worst value of Rexcl deteriorates the performance by
about 24%.

As part of the parameter tuning, we also tried resetting the active set to
include all heuristics that are not permanently removed when the search stag-
nates for a number of iterations exceeding waitmax. However, this did not lead
to improvement; hence it is not included in Algorithm 1.

5.2 Technical Specification

The experiments are executed in Java 8 on the Lengau Cluster of the Center
for High-Performance Computing, South Africa. The cluster’s operating system
is CentOS 7.0. We used two compute nodes to perform 31 independent runs in
parallel. Each node has 24 Intel Xeon CPUs (2.6 GHz) and is connected with
FDR 56 GHz InfiniBand. The total RAM used is 2GB.

6 Results and Discussion

This section presents and discusses the results of DHSS across the six domains
of HyFlex used in the CHeSC Challenge.



8 A. Hassan et al.

Table 3: FS-ILS compared to the top five hyper-heuristics from the CHeSC
Challenge.

Method FS-ILS [1] adapHH [12] VNS [8] ML [13] PHunter [3] EPH [10]

Overall score 178.10 161.68 117.18 111.0 81.60 73.60

Table 4: The cross-domain performance of DHSS compared to the top five meth-
ods of CHeSC and FS-ILS.
Method DHSS FS-ILS [1] adapHH [12] VNS [8] ML [13] PHunter [3] EPH [10]

Overall score 178.75 148.85 142.10 98.10 94.75 71.60 59.10

6.1 Performance Verification

In this section, we verify that FS-ILS is the state-of-the-art hyper-heuristic. We
respect all CHeSC competition conditions. The results are presented in Table
3. The cross-domain scores are calculated by adding up all individual scores
for each problem domain as described in Section 3. Higher scores correspond
to better performance. For brevity, the table shows the top five methods. The
cross-domain score of FS-ILS confirms that it is indeed the best hyper-heuristic.

6.2 DHSS and CHeSC Contestants

We evaluate the performance of DHSS with respect to the contestants of CHeSC
and FS-ILS across the six domains of HyFlex. We respected all the CHeSC rules.
The methods are scored using the CHeSC scoring system described in Section 3
where higher scores indicate better performance. Although we compare DHSS to
all contestants of CHeSC, for brevity, Table 4 presents the cross-domain scores for
the top five methods, and the best hyper-heuristic for CHeSC (FS-ILS). DHSS
improves the cross-domain performance of FS-ILS and achieves the highest cross-
domain score. This demonstrates the effectiveness of utilizing DHSS to manage
the heuristic set for hyper-heuristics.

The per-domain results are presented in Fig. 1 which shows that DHSS
achieves the best performance in 3 domains (SAT, PFS, TSP) and the second-
best performance in VRP. No hyper-heuristic dominates all other hyper-heuristics
in all domains. For each hyper-heuristic, there is at least one domain that poses
a challenge to it. For example, DHSS performs poorly in BP, adapHH performs
poorly in PS, and EPH is unable to score any points in SAT; hence, its column
is not shown in the figure. In all domains, DHSS performs consistently better
than FS-ILS except for BP.

6.3 Analysis of DHSS

In the previous section, we empirically demonstrated the effectiveness of DHSS
in improving the cross-domain performance of the best hyper-heuristic for the



Title Suppressed Due to Excessive Length 9

Fig. 1: The performance of DHSS compared to the top five methods of CHeSC
and FS-ILS.

CHeSC cross-domain challenge. In this section, we investigate the reasons behind
the performance gain. We hypothesize that when DHSS is used, good heuristics
will have a larger share of the total computational time, hence utilized more; and
poor heuristics will have a smaller share of the total computational time, hence
utilized less. To this end, we calculated how much percentage improvement each
heuristic contributed to the total percentage improvement. This is measured
by the ratio between the percentage improvement made by the heuristic and
the total percentage improvement made by all heuristics. We also calculate the
share of each heuristic in the total computational time which is measured by the
ratio between the total computational time used by the heuristic and the total
computational time allocated to the hyper-heuristic.

We present the results for two representative domains (SAT and PFS) due
to space limitations. From each domain, one instance is chosen arbitrarily. We
measured the shares of each heuristic in the total percentage improvement and
computational time, as explained above, using 10 runs with different seeds.

The results for SAT are presented in Figures 2 and 3 for the perturbative
and local search heuristics respectively. In these figures and all following figures,
we use the HyFlex convention in identifying each heuristic by a unique number.
These heuristics are described in [9] and [17] for SAT and PFS respectively. The
most effective perturbative heuristics for SAT are h2, h3, and h5 which receive
collectively an increase of 11% in computational time in DHSS compared to
FS-ILS. Furthermore, the local search heuristic h8 is much less effective than
h7 since it leads to a marginal improvement. However, in FS-ILS, h8 has an
unnecessarily large share of 41% of the total computational time whereas, DHSS
restricts the computational time of h8 to 11% of the total computational time.

The results of the analysis for PFS are presented in Figures 4 and 5 for per-
turbative and local search heuristics respectively. The most effective perturbative
heuristics are h0, h1, h5, and h6. The heuristic h0 is responsible for more than
50% of the total improvement. The computational time of h0 is 11% larger in



10 A. Hassan et al.

(a) DHSS: Improv. (b) FS-ILS: Improv. (c) DHSS: Duration. (d) FS-ILS: Durat.

Fig. 2: SAT: Perturbative heuristics.

(a) DHSS: Improv. (b) FS-ILS: Improv. (c) DHSS: Duration. (d) FS-ILS: Duration

Fig. 3: SAT: Local search heuristics.

DHSS compared to FS-ILS. Similarly, h1 has an increase of 5% in computational
time in DHSS compared to FS-ILS. On the other hand, h5 and h6 have slightly
more computational time in FS-ILS compared to DHSS. In general, good heuris-
tics receive collectively an increase in the computational time of 13% in DHSS
compared to FS-ILS. Moreover, poor heuristics (h2, h3, and h4) collectively use
14% of the total computational time in FS-ILS despite collectively contributing
by 2% to the total percentage improvement. In DHSS, the collective computa-
tional time of h2, h3, and h4 is restricted to only 3% of the total computational
time. For local search heuristics, both DHSS and FS-ILS perform well.

7 Conclusion and Future Work

In this paper, we solved the problem of determining an adequate heuristic set
for selection hyper-heuristics dynamically such that the heuristic set changes
at different points during the lifespan of the hyper-heuristic. We integrated the
proposed approach (DHSS) into the state-of-the-art hyper-heuristic (FS-ILS)
and evaluated it across six problem domains. The results indicated that the
performance of FS-ILS was improved when the DHSS was used. We carried
out an analysis to discover the reasons behind the performance gain. It was
found that when the DHSS was used, good heuristics had a larger share of the
total computational time, hence utilized more; and poor heuristics had a smaller
share of the total computational time, hence utilized less. DHSS can be used



Title Suppressed Due to Excessive Length 11

(a) DHSS: Improv. (b) FS-ILS: Improv. (c) DHSS: Duration. (d) FS-ILS: Duration

Fig. 4: PFS: Perturbative heuristics.

(a) DHSS: Improv. (b) FS-ILS: Improv. (c) DHSS: Duration. (d) FS-ILS: Duration

Fig. 5: PFS: Local search heuristics.

with any hyper-heuristics since it does not rely on any specific feature of FS-
ILS. We developed an open-source Java library to enable fast development and
prototyping of DHSS [7].

In the future, we will consider automating the design of dynamic heuristic set
selection approaches. It is also interesting to consider DHSS as a design decision
in a wider-scope approach that aims at automating the design of multiple aspects
of the hyper-heuristics simultaneously.

Acknowledgment

This work is funded as part of the Multichoice Research Chair in Machine Learn-
ing at the University of Pretoria, South Africa. This work is based on the re-
search supported wholly/in part by the National Research Foundation of South
Africa (Grant Numbers 46712). Opinions expressed and conclusions arrived at,
are those of the author and are not necessarily to be attributed to the NRF.
This work is run on the Lengau Cluster of the Center for High Performance
Computing, South Africa.

References

1. Adriaensen, S., Brys, T., Nowé, A.: Fair-share ils: a simple state-of-the-art iter-
ated local search hyperheuristic. In: Proceedings of the 2014 annual conference on
genetic and evolutionary computation. pp. 1303–1310 (2014)



12 A. Hassan et al.

2. Alvarez-Benitez, J.E., Everson, R.M., Fieldsend, J.E.: A mopso algorithm based
exclusively on pareto dominance concepts. In: International conference on evolu-
tionary multi-criterion optimization. pp. 459–473. Springer (2005)

3. Chan, C.Y., Xue, F., Ip, W., Cheung, C.F.: A hyper-heuristic inspired by pearl
hunting. In: International Conference on Learning and Intelligent Optimization.
pp. 349–353. Springer (2012)

4. Drake, J.H., Kheiri, A., Özcan, E., Burke, E.K.: Recent advances in selection hyper-
heuristics. European Journal of Operational Research 285(2), 405–428 (2020)

5. E, B., M, G., M, H., G, K., B, M., G, O., A, P., S, P.: The cross-domain heuristic
search challenge–an international research competition. In: International Confer-
ence on Learning and Intelligent Optimization. pp. 631–634. Springer (2011)

6. Gutierrez-Rodŕıguez, A.E., Ortiz-Bayliss, J.C., Rosales-Pérez, A., Amaya-
Contreras, I.M., Conant-Pablos, S.E., Terashima-Maŕın, H., Coello, C.A.C.: Apply-
ing automatic heuristic-filtering to improve hyper-heuristic performance. In: 2017
IEEE Congress on Evolutionary Computation (CEC). pp. 2638–2644. IEEE (2017)

7. Hassan, A., Pillay, N.: Java library for dynamic heuristic set selection (September
2021), https://github.com/Al-Madina/Dynamic-Heuristic-Sets

8. Hsiao, P.C., Chiang, T.C., Fu, L.C.: A vns-based hyper-heuristic with adaptive
computational budget of local search. In: 2012 IEEE congress on evolutionary
computation. pp. 1–8. IEEE (2012)

9. Hyde, M., Ochoa, G., Vázquez-Rodŕıguez, J.A., Curtois, T.: A hyflex module for
the max-sat problem. University of Nottingham, Tech. Rep pp. 3–6 (2011)

10. Meignan, D.: An evolutionary programming hyper-heuristic with co-evolution for
chesc11. In: The 53rd Annual Conference of the UK Operational Research Society
(OR53). vol. 3 (2011)

11. Mısır, M., Verbeeck, K., De Causmaecker, P., Berghe, G.V.: The effect of the set
of low-level heuristics on the performance of selection hyper-heuristics. In: Interna-
tional Conference on Parallel Problem Solving from Nature. pp. 408–417. Springer
(2012)

12. Mısır, M., Verbeeck, K., De Causmaecker, P., Berghe, G.V.: An intelligent hyper-
heuristic framework for chesc 2011. In: International Conference on Learning and
Intelligent Optimization. pp. 461–466. Springer (2012)

13. Ochoa, G., Hyde, M., Curtois, T., Vazquez-Rodriguez, J.A., Walker, J., Gendreau,
M., Kendall, G., McCollum, B., Parkes, A.J., Petrovic, S., et al.: Hyflex: A bench-
mark framework for cross-domain heuristic search. In: European Conference on
Evolutionary Computation in Combinatorial Optimization. pp. 136–147. Springer
(2012)

14. Pillay, N., Qu, R.: Hyper-Heuristics: Theory and Applications. Natural Computing
Series, Springer International Publishing (2018)

15. Pillay, N.: A review of hyper-heuristics for educational timetabling. Annals of Op-
erations Research 239(1), 3–38 (2016)

16. Soria-Alcaraz, J.A., Ochoa, G., Sotelo-Figeroa, M.A., Burke, E.K.: A methodol-
ogy for determining an effective subset of heuristics in selection hyper-heuristics.
European Journal of Operational Research 260(3), 972–983 (2017)

17. Vázquez-Rodrıguez, J.A., Ochoa, G., Curtois, T., Hyde, M.: A hyflex module for
the permutation flow shop problem. School of Computer Science, University of
Nottingham, Tech. Rep (2009)

https://github.com/Al-Madina/Dynamic-Heuristic-Sets

	Dynamic Heuristic Set Selection for Cross-Domain Selection Hyper-Heuristics

