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ABSTRACT: Extreme precipitation occurring on consecutive days may substantially increase the 
risk of related impacts, but changes in such events have not been studied at a global scale. Here 
we use a unique global dataset based on in situ observations and multimodel historical and future 
simulations to analyze the changes in the frequency of extreme precipitation on consecutive days 
(EPCD). We further disentangle the relative contributions of variations in precipitation intensity and 
temporal correlation of extreme precipitation to understand the processes that drive the changes 
in EPCD. Observations and climate model simulations show that the frequency of EPCD is increas-
ing in most land regions, in particular, in North America, Europe, and the Northern Hemisphere 
high latitudes. These increases are primarily a consequence of increasing precipitation intensity, 
but changes in the temporal correlation of extreme precipitation regionally amplify or reduce the 
effects of intensity changes. Changes are larger in simulations with a stronger warming signal, 
suggesting that further increases in EPCD are expected for the future under continued climate 
warming.
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P recipitation accumulates over variable durations and temporal sequences, which 
contributes to complexity when studying extremes and their related impacts. Short-
lived [e.g., hourly (Barbero et al. 2017) and daily (Westra et al. 2013)] precipitation 

extremes may cause sudden and small-scale flash flooding, whereas precipitation extremes 
over several consecutive days may lead to extensive and larger-scale flooding (Kundzewicz 
et al. 2005; Ulbrich et al. 2003). While Dwyer and O’Gorman (2017) identified a tendency 
toward slight reduction in the duration of (subdaily) extreme precipitation events, hazardous 
floods are often associated with continuous periods of persistent heavy rainfall. For example, 
consecutive multiple-day extreme precipitation events caused severe flooding in central 
Europe in August 2002 (Ulbrich et al. 2003), as well as in Asia such as China in 1998 (Zong 
and Chen 2000), Pakistan in 2010 (Webster et al. 2011), Japan in 2018 (Tsuguti et al. 2019), 
and most recently in central Europe in July 2021 (Kreienkamp et al. 2021). While changes in 
extreme precipitation accumulation over specific time windows have been extensively studied 
indicating widespread intensification (Allen and Ingram 2002; Asadieh and Krakauer 2015; 
Donat et al. 2016, 2013; Du et al. 2013; Fischer and Knutti 2015; Guerreiro et al. 2018; Pfahl 
et al. 2017), changes in the temporal distribution of precipitation are an important aspect 
affecting how much water reaches the surface in a given time period (Guilbert et al. 2015; 
Pfleiderer et al. 2019; Trenberth 2011). The same precipitation totals can result in different 
impacts on ecosystems or society depending on whether precipitation is concentrated in a 
few short periods or more equally distributed over longer periods (Zolina et al. 2013). For 
example, the presence of high-amplitude quasi-stationary atmospheric waves has been linked 
to different types of climate extremes including persistent episodes of extreme precipitation 
in the Northern Hemisphere summer (Kornhuber et al. 2019; Wolf et al. 2018).

The observed and simulated widespread intensification of precipitation extremes has 
been shown to be at first order a consequence of thermodynamic effects, i.e., the anticipated 
warming and moistening of the atmosphere (Allen and Ingram 2002), and in some regions 
in combination with lapse-rate changes (O’Gorman and Schneider 2009). However, dynami-
cal effects can regionally modify the changes in extreme precipitation caused by thermody-
namic contributions alone, amplifying or weakening the changes (Pfahl et al. 2017). Some 
studies have further suggested summer weather patterns may become more persistent in a 
warmer climate (Mann et al. 2017; Pfleiderer et al. 2019), although changes in atmospheric 
dynamics are among the less robust features of climate model simulations (Shepherd 2014). 
Such increasing occurrence of specific large-scale weather situations (e.g., quasi-stationary 
atmospheric waves) in a warmer climate (Mann et al. 2017; Pfleiderer et al. 2019) may create 
favorable conditions for persistent extremes to occur (Screen and Simmonds 2014). However, 
to date it is unknown if and how extreme precipitation on consecutive days (EPCD; defined 
here as a multiday event when daily precipitation exceeds the 99th-percentile threshold on 
at least two consecutive days) are changing.

Here, we investigate the temporal and spatial changes in EPCD frequency using a unique 
observational dataset covering most of the global land areas during 1961–2010 except large 
parts of the tropics (Fig. ES1), as well as global climate model simulations from the Coupled 
Model Intercomparison Project phase 5 (CMIP5) (Table ES1) and regional climate model simula-
tions from the Coordinated Regional Climate Downscaling Experiment (CORDEX) (Table ES2). 
Coauthors from fifteen countries have contributed with local to regional data to this novel 
observational dataset. We further disentangle the effects of precipitation intensification and 
temporal correlation of extreme precipitation events on the changes in EPCD.

Materials and methods
Observational data. This study uses uniquely combined observed daily precipitation data 
from a number of different sources, including publicly available datasets [e.g., the Global 
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Historical Climatology Network-Daily (GHCND) dataset (Menne et al. 2012), the ECA&D dataset 
(Klein Tank et al. 2002), the USHCN dataset (Menne et al. 2016), and Canada (Vincent et al. 
2012)] and data contributed by coauthors from Argentina, Australia, Benin, Brazil, China, 
India, Japan, Korea, Mongolia, New Zealand, Pakistan, South Africa, Saudi Arabia, Spain, and 
Russia. Quality control (Alexander et al. 2006) and homogeneity test (Wang and Feng 2013) for 
each station are completed before further processing. Stations are excluded from the analysis 
if their data are identified as inhomogeneous. Any year with more than 10% of missing values 
is treated as a “missing year.” Missing values that occur in “dry” months without precipita-
tion extremes are excluded from counting the number of missing values for a year, because 
missing values in “dry” months do not affect the frequency of EPCD. This also benefits to 
retain more station data that meet the completeness criteria below. Therefore, we only count 
the number of missing values in “wet” months. We first calculate the 99th percentile of the 
whole available daily precipitation during the 50 years 1961–2010. A month is then defined 
as “wet” if the 99th percentile is exceeded at least once in the 50 years of data in that month. 
Next, stations with available data for at least 75% of the years during 1961–2010 are retained. 
This leaves 6,006 high-quality stations with long-term (including 5,000 stations with at least 
45 years of data) daily precipitation during 1961–2010 for this study (Fig. ES1). The authors 
contribute 34% to the observation dataset. We also check the annual percentage of stations 
with missing data (Fig. ES2). Years with missing data are more often distributed at the begin-
ning and the end of the period. Although the percentage of stations with missing data are not 
high, it might affect the observed trends in EPCD frequency. Therefore, we test the robustness 
of the results when excluding stations that have more than 3 years (or 2 years) missing data 
among the first or last 5 years of the period to reduce the missing value rate (Fig. ES2) to test 
the potential effects of these missing data on the changes in EPCD frequency (Fig. ES3). This 
provides us with two alternative, more complete, datasets, consisting of 5,269 (or 5,032) sta-
tions after excluding stations with missing data at the beginning and end of the period. The 
percentage of stations with missing data for these two alternative datasets is very low for all 
years, except for 2010, in which the percentage is ~11%. We analyze the changes in EPCD 
frequency for these different datasets and for different periods (1961–2010 and 1961–2009) 
to test the sensitivity of results to different datasets and periods. The results show that the 
changes in EPCD frequency are very similar between the three dataset versions and between 
the two periods (Fig. ES3). Therefore, this study uses the larger set of 6,006 stations to analyze 
the changes in EPCD frequency for observations. At last, grid cells with available data for at 
least 90% of the years (i.e., 45 years) are retained to calculate the local and regional changes. 
Because the observational data are missing in large parts of the tropics, this study analyses 
observed changes only in the extratropics.

Historical and future climate simulation data. This study uses data from 30 global climate 
models (GCM) which contributed to the CMIP5, including historical simulations (1961–2005) 
and future projections (2006–100). Two future representative concentration pathways (RCP8.5 
for high-emission scenario and RCP4.5 for medium-emission scenario) are used to simulate 
changes in extreme precipitation by the end of the twenty-first century (Table ES1). When 
analyzing the climate model simulations available within CMIP5, we merge the historical and 
RCP8.5 simulations to have long transient data for 1961–2100. We then analyze the CMIP5 past 
changes over exactly the same period as observations, i.e., 1961–2010. The 99th-percentile 
threshold shows a similar spatial pattern between the observations and GCM historical 
simulations, with low thresholds in Northern Hemisphere (NH) high latitudes, central Asia, 
western United States, and high values in the southeastern United States, along the west 
coast of North America and in East Asia (Figs. ES4a,b). However, the average 99th-percentile 
threshold is very low and even zero in several grid cells in dry regions (e.g., Sahara) for some 
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models (Fig. ES4b). Most GCMs have a threshold smaller than 10 mm day−1 (which is often used 
as threshold to measure “heavy precipitation days”; Zhang et al. 2011) in such dry regions  
(Fig. ES4c). These low 99th-percentile thresholds may be less relevant in terms of “extremes” 
and small absolute changes may cause large relative changes. Therefore, to test the robustness 
of our results, we supplement additional analyses by excluding grid cells with low threshold 
(i.e., the 99th-percentile threshold < 10 mm) from the regional change analysis for observa-
tions (Fig. ES5). Similarly, grid cells with at least half of all models having such low threshold 
are also excluded from the regional change analysis and models having such low threshold 
are excluded from the gridcell change analysis (Fig. ES6). The conclusions still hold when 
excluding grid cells with threshold smaller than 10 mm (see, Fig. ES5 for observations and 
Fig. ES6 for GCM simulations).

Several past EPCD events (e.g., Tsuguti et al. 2019; Ulbrich et al. 2003; Webster et al. 2011) 
occurred in regions of complex orography, and it is possible that orographic effects play a role 
in the occurrence of such events. Therefore, we also use 22 regional climate models (RCM) 
from CORDEX (Giorgi et al. 2009) to verify if the results are sensitive to the representation of 
the underlying topography using RCM simulations for Europe and North America (Table ES2). 
We calculate the 99th percentile of all day precipitation of the observations, the RCM simula-
tions, and the GCM simulations for Europe and North America (Figs. ES7a–f) and discuss the 
changes in the frequency for the RCM simulations (Figs. ES7g–j).

Definition of extreme precipitation on consecutive days. We identify extreme precipitation 
events when daily precipitation amounts exceed the 99th percentile of daily precipitation. 
The percentile is calculated based on all days, to avoid potential issues related to changes in 
wet-day frequency when calculating the percentile based on only wet days (Schär et al. 2016). 
We use the entire data period (1961–2010) as base period when calculating the percentile. In 
addition, to ensure robustness of our results to percentile level choice, we also tested other 
thresholds ranging from the 95th to the 99.9th percentile of all-day precipitation to identify 
daily extreme precipitation and analyze the changes in observed extreme precipitation on 
consecutive days (Fig. ES3), as the changes may be sensitive to the specific choice of threshold 
value (Pendergrass 2018). Daily extreme precipitation that exceeds the threshold for two or 
more consecutive days is defined as EPCD. Based on this definition, EPCD events can include 
both, temporally persistent events with a duration of two or more days or a temporal cluster-
ing of several individual events within a few days (e.g., Barton et al. 2016; Zscheischler et al. 
2020). Both types of events represent potential hazards and are therefore included in this 
study based on the condition that extreme precipitation occurs on several consecutive days. 
We first calculate the frequency of EPCD for all stations. Then we interpolate the annual or 
seasonal results of all stations on a regular grid of 2° × 2° horizontal resolution using a bilinear 
interpolation algorithm. Grid cells containing no station are set as Nan value. We note that 
also two (or more) extreme precipitation days separated by one nonextreme day could result 
in a hazard, and our conclusions remain valid when modifying the definition to accommodate 
also this type of event (see, Fig. ES8).

Calculation of changes in EPCD frequency. Temporal changes in the observational time series 
at individual grid cells or regional averages are calculated using the ordinary least squares 
method, and trend significance is estimated using the Mann–Kendall test (Kendall 1955). The 
regional-mean time series are first normalized by the respective means in 1961–2010 before 
estimating the linear trend. Although the regional-mean time series representing continen-
tal-scale averages or latitude bands show roughly linear changes for the observations (Fig. 
1b), we note that a linear trend is not necessarily the best fit to describe temporal changes 
in precipitation. Therefore, we also consider time-slice differences between the averages of 
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Fig. 1. Changes in the frequency of extreme precipitation on consecutive days identified from 
observations in 1961–2010. (a) Local changes (%) in mean frequency between 1961–85 and  
1986–2010. (b) Hemispheric and continental average time series in 1961–2010. The annual frequency  
is normalized by the mean in 1961–2010. Slope (% decade−1) is the linear trend by the ordinary 
least squares method. (c) Changes (%) in regional mean between both periods. The difference is 
a relative frequency change (see “Materials and methods” section). The stippling in (a) and the 
asterisks in (b) and (c) indicate a significant change (p ≤ 0.05) according to the Wilcoxon rank sum 
test in (a) and (c) and the Mann–Kendall test in (b). The colored boxes or outlines in (a) define the 
regions for calculating the regional averages as presented by lines or bars of the corresponding 
colors in (b) and (c).
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different periods for both observational and CMIP5 ensemble-mean time series. For each 
grid cell or regional averages, the differences for EPCD frequency, precipitation intensity 
(explained below), and autocorrelation (explained below) between two periods (1961–85 
and 1986–2010 for observations and historical simulations, and 1961–2010 and 2071–100 
for future projections) are defined as 

D V V VV V ,( )D V( )D V V V( )V VD V =D VD V  D V( )  ( )D V( )D V  D V( )D V( )− ( )  × 100( )2 1( )V V( )V V
2 1

V V( )V V( )  ( )2 1( )  ( )( )− ( )2 1( )− ( ) 1   (1)   

where  D  is the relative difference between both periods;  V  1  and  V  2  are the mean EPCD 
frequency/precipitation intensity during the earlier and later periods, respectively. The 
signifi cance of local- and regional-mean changes between two periods is estimated by the 
Wilcoxon rank sum test. For historical and future simulations, we also consider the agreement 
of changes across models, i.e., the gridcell-level and regional changes are considered as 
“robust change” when more than 50% of the models show signifi cant ( p  ≤ 0.05) change and 
at least 80% of models agree on the sign of change ( Tebaldi et al. 2011 ).    

 Potential driving factors of the changes in EPCD frequency.     Changes in EPCD frequency can 
be driven by multiple factors. On the one hand, they may be a consequence simply of changes 
in precipitation intensity, e.g., if precipitation intensifi es there will be more days exceeding 
the threshold, and this increased number of daily extremes also increases the probability that 
the threshold is exceeded on consecutive days. On the other hand, also changes in the tem-
poral correlation of daily extreme precipitation may result in daily extremes occurring more 
or less frequently on consecutive days, which would aff ect the frequency of EPCD. Therefore, 
we analyze whether the changes in EPCD frequency are related to changes in precipitation 
intensity and/or the temporal correlation of daily extreme precipitation time series. 

 We use the 99th percentile (P99) to represent precipitation intensity relevant to the analysis 
of EPCD frequency. To disentangle the effect of P99 changes on the changes in EPCD fre-
quency, we use an adjusted threshold (i.e., the 99th-percentile threshold specifically for the 
first and second periods) to calculate the EPCD frequency, to ensure daily extremes exceeding 
the threshold occur on exactly 1% of the days in both periods (1961–85 and 1986–2010 for 
observations and historical simulations, and 1961–2010 and 2071–2100 for the future projec-
tions). We analyze the EPCD frequency changes 1) using a fixed threshold during 1961–2010 
for both periods for observations (and 1961–2100 accordingly for the future projections) and 
2) using the adjusted thresholds specific for the 1961–85 and 1986–2010 periods for obser-
vations (and 1961–2010 and 2071–2100 accordingly for the future projections) so that there 
are exactly 1% daily exceedances in each period. Approach 2 removes effects from possible 
intensity changes, and the remaining EPCD frequency changes in approach 2 (mean frequency 
in 1986–2010 minus frequency in 1961–85) are therefore attributable to other factors such 
as temporal correlation ( F  ac ) of daily extreme precipitation. The EPCD frequency changes be-
tween both periods in approach 1 are due to potential changes in both intensity and temporal 
correlation. The difference between these two approaches (the remaining change between 
both periods in approach 1 minus that in approach 2) is considered as the effect related to 
intensity changes ( F  P99 ). 

 We use the first-order autocorrelation (AC) of the occurrence daily extreme precipitation 
to characterize changes in the temporal correlation of extreme precipitation (exceeding P99), 
rather than the AC of daily extreme precipitation amount, which avoids the effects of precipita-
tion intensity on the autocorrelation. This requires transferring the daily precipitation series 
to binary data (0–1 data, where “0” represents nonextreme day and “1” days with extreme 
precipitation). We then use the Matthews correlation coefficient, which was originally devel-
oped by  Matthews (1975)  and reproposed by  Baldi et al. (2000) , to calculate the AC based on 
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all 0–1 data (where extremes are identified against the adjusted percentile threshold for the 
two periods, to avoid effects from changing frequency of extremes and indeed quantify the 
temporal sequencing). The Matthews correlation coefficient is suited to binary data, and can 
effectively overcome the class imbalance issue (i.e., the number of samples in one class (e.g., 
“0”) is much larger than the number of samples in another class (e.g., “1”) for 0–1 binary data 
( Chicco and Jurman 2020 ;  Chicco et al. 2021 ). The change of AC between two periods is the 
difference of the AC during the later period minus the AC during the earlier period. An increase 
in AC indicates that extreme precipitation events tend to occur more often on consecutive 
days and a decrease that they occur more often as part of temporally separated single-day 
events. Similar to the calculation of EPCD frequency, intensity and temporal correlation of 
daily precipitation events are first calculated for each station before being interpolated onto 
a 2° × 2° grid. 

 We calculate the relative contribution of changes in precipitation intensity and temporal 
correlation on EPCD frequency changes by separating the effects of both factors on the changes 
in EPCD frequency shown as  F  ac  and  F  P99  above. The relative contribution of precipitation 
intensity ( CP99 ) is calculated as 

C FC F ,P PP PP PC FP PC FC FP PC F
99P P99P PC FP PC F
99

C FP PC F
99 ( )( )( )( )( )F F( )F FF F( )F FF F( )F FP a( )P aP a( )P aP a( )P aF FP aF F( )F FP aF FF FP aF F( )F FP aF FF FP aF F( )F FP aF F c( )c99( )99P a99P a( )P a99P aF FP aF F

99
F FP aF F( )F FP aF F

99
F FP aF FC F= C FC FP PC F= C FP PC F F F( )F F +F F( )F FP a( )P a +P a( )P aF FP aF F( )F FP aF F +F FP aF F( )F FP aF F 100×   (2)   

where |*| represents the absolute value of “*.” The absolute values of  FP99  and  Fac  are used 
to avoid a contribution larger than 100% in the case of  F  P99  or  F  ac  being negative numbers. 
Similarly, the relative contribution of changes in the temporal correlation of extreme precipi-
tation ( C  ac ) is calculated as 

C FC Fac ac ( )( )( )( )( )F F( )F FF F( )F FF F( )F FP a( )P aP a( )P aP a( )P aP a( )P aF FP aF F( )F FP aF FF FP aF F( )F FP aF F c( )c99( )99P a99P a( )P a99P a= += += += +C F= +C FC F= +C F ( )= +( )( )= +( )F F( )F F= +F F( )F FF F( )F F= +F F( )F FP a( )P a= +P a( )P aP a( )P a= +P a( )P aP a( )P a= +P a( )P aF FP aF F( )F FP aF F= +F FP aF F( )F FP aF FF FP aF F( )F FP aF F= +F FP aF F( )F FP aF FP a99P a( )P a99P a= +P a99P a( )P a99P aF FP aF F
99

F FP aF F( )F FP aF F
99

F FP aF F= +F FP aF F
99

F FP aF F( )F FP aF F
99

F FP aF F ×100.   (3)       

 Results  
Changes in the frequency of extreme precipitation on consecutive days.     The observed 
EPCD events have become more frequent for large regions of the global extratropics, espe-
cially in Europe ( Fig. 1a ). Despite some spatial heterogeneity in the change patterns, there 
are larger areas showing increases than showing decreases. At continental scales, Europe 
has the largest upward trend in the frequency of EPCD by 8.05% decade −1  ( p  ≤ 0.05,  Fig. 1b ), 
or increases by 23.1% between the averages of the two periods 1961–85 and 1986–2010 
( Fig. 1c ). Besides Europe, the NH midlatitudes in general exhibit a strong increase in 
area-averaged EPCD frequency, which may be dominated by the large increase in Europe 
( Fig. 1a ). Other regions also show significant ( p  ≤ 0.05) upward trends in EPCD frequency, 
except Southern Hemisphere (SH) midlatitudes, which are characterized by the notable 
decreases in South Africa, southern Australia, and New Zealand. This is consistent with the 
decreasing trend in precipitation event duration and the significant decreases in the frequency 
of precipitation events with durations of more than two days in southern Australia ( Dey et al. 
2020 ). We also note that there is a strong peak in mid-1970s in the regional frequency time 
series of SH midlatitudes ( Fig. 1b ). These strong anomalies occur mainly in eastern Australia 
(Fig. ES9), coinciding with the strong 1973/74 La Niña event, which has been associated with 
widespread and severe flooding in eastern Australia ( National Climate Centre 2011 ). 

 Complementing the observational results with analyses of climate model simulations, 
providing complete spatial coverage, we find that EPCD frequency derived from the CMIP5 
ensemble during the observational periods (1961–85 and 1986–2010) shows predominantly 
EPCD increases (although generally not significant at gridcell level) in large parts of global land 
areas ( Fig. 2a ). These simulated (ensemble-mean) increases are more homogeneous compared 
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to the observed changes, where some regions like northern Siberia exhibit robust decreases 
in observations, by contrast to the model simulations. For the different regional averages, the 
EPCD frequency changes are significant (p ≤ 0.05) for NH mid- and high-latitude regions (Fig. 
2b). Similar to the observational results, the simulated increase in EPCD frequency between 
both periods is large in Europe. Also, a relatively weak and nonsignificant (p > 0.05) change 
in EPCD frequency over the past 50 years is found in the SH midlatitudes. The results of the 
regional changes in EPCD frequency for the historical simulations also still hold when using 
the spatial coverage mask of the observations (Fig. ES10).

Future projections from the CMIP5 multimodel ensemble also show significant increases 
(p ≤ 0.05) in EPCD frequency between 1961–2010 and 2071–2100 in most global land areas 
(except the Mediterranean region, northern Latin America, and large parts of the SH midlati-
tudes) for the RCP8.5 scenario (Fig. 2c). Europe, NH high latitudes, Asia, and North America 
show the strongest increases, whereas the SH midlatitudes average shows a nonsignificant 
(p > 0.05) change (Fig. 2d). The projected EPCD frequency changes are similar in sign to  
(although stronger than) changes found in the observations (Fig. 1c) and historical simula-
tions (Fig. 2b), and changes are larger under stronger radiative forcing (cf. RCP8.5, Fig. 2d, and 
RCP4.5, Fig. ES11). These similarities suggest that observed changes in EPCD frequency are 
consistent with a warming climate and therefore expected to continue with further warming.

The observed changes in the seasonal frequency of EPCD are mostly similar to the annual 
changes (Fig. ES12 versus Fig. 1). In particular the EPCD increases in Europe and the NH high 
latitudes are strongest during boreal spring (March–May) and summer (June–August). Also 
the SH midlatitudes show significant increases during austral spring (September–November), 
while the other seasons show decreases or no changes. Also, the projected future changes in 

Fig. 2. Changes in the frequency of extreme precipitation on consecutive days for historical and future simulations.  
(a),(c) Local changes (%) (left) between 1961–85 and 1986–2010 for historical simulations and (right) between 1961–2010 and  
2071–2100 for RCP8.5 scenario identified from the ensemble mean of the CMIP5 simulations. We merge the historical  
(1961–2005) and RCP8.5 (2006–10) simulations to have the CMIP5 past data over exactly the same period as observations, i.e., 
data for 1961–2010 (see “Materials and methods” section). (b),(d) The corresponding regional average changes (%) in (a) and (c).  
The difference is a relative frequency change between both periods (see “Materials and methods” section). Stippling in  
(a) and (c) and asterisks in (b) and (d) indicate “robust change” across all models (see “Materials and methods” section).  
Error bars in (b) and (d) represents plus and minue one ensemble standard deviation. Colored regions (except tropics) are as in  
Fig. 1. Note that the y-axis scale is different between observations, historical simulations, and future projections.
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seasonal EPCD frequency are mostly similar to the annual changes for the RCP8.5 scenario 
(Fig. ES13 versus Figs. 2c,d). Significant EPCD increases are projected for most NH midlatitude 
and high-latitude regions in all seasons, and the magnitude of projected increases is largest in 
boreal spring, autumn (September–November), and winter (December–February) (Fig. ES13).

The CMIP5 GCM simulations may have a poor representation of the underlying topography 
and related effects due to their relatively coarse horizontal resolution. Therefore, we also use 
RCMs with higher horizontal resolution to verify if the results are sensitive to the representation 
of the underlying topography for Europe and North America. Although the spatial gradients 
of threshold are weaker in the RCMs compared to observations, results show a similar spatial 
pattern between the observations and RCM simulations (e.g., highest 99th-percentile values 
in the southeastern United States, along the west coast of North America and in the Alps) 
(Figs. ES7a–f). In particular the RCM-based spatial patterns are more similar to observations 
than the GCM-based patterns, which largely miss the observed gradients. The RCM-simulated 
changes confirm the widespread EPCD increases over large areas of North America and  
Europe, similar to the GCM results and observations (Figs. ES7g–j).

Effects of rainfall intensification and temporal autocorrelation changes on the changes 
in EPCD frequency. To better understand the contributions from the different drivers of the 
changes in EPCD frequency, we isolate the effects of intensity changes on EPCD frequency, by 
using an adjusted 99th-percentile threshold specific for each period, to ensure the threshold 
exceedance probability is equal in both periods (see “Materials and methods” section). This 
analysis shows considerably weaker (and fewer) regional increases of EPCD frequency in both 
observations (Figs. 3a,b) and model simulations (Figs. 4a,b). This indicates that most of these 
regional EPCD frequency changes are primarily a consequence of changes in precipitation 
intensity, especially for NH high latitudes, North America, and Asia. However, a larger area 
in central Europe and NH midlatitudes remains where observed EPCD frequency increases 
(locally not significant, but spatially aggregated over Europe and the NH midlatitudes a 
significant EPCD increase remains) after removing the effects of intensity changes (Fig. 3a). 
These areas correspond to regions of increased autocorrelation of daily extremes (AC) (Fig. 
3c), suggesting that changes in the temporal correlation (see “Materials and methods” sec-
tion) of extreme precipitation also play a role here. Seasonal analysis also shows a significant 
increase (p ≤ 0.05) of the EPCD frequency in particular in spring in the NH mid- and high 
latitudes, Asia, and North America (Fig. ES14a) after removing the effects of intensity changes. 
This is consistent with the significantly (p ≤0.05) increased AC of daily extreme precipita-
tion in particular in NH high and midlatitudes and North America (Fig. ES14e). Moreover, 
AC also significantly increases in Europe in summer (Fig. ES14f), which contributes to the 
observed significant increase (p ≤ 0.05) in EPCD frequency (Fig. ES14b). For SH midlatitudes, 
the adjusted summer (DJF) EPCD frequency decreases (−14.1%) after removing the effects of 
intensity changes (Fig. ES14d), which is consistent with the significant (p ≤ 0.05) decrease in 
AC (Fig. ES14h). This indicates that the observed lack of increase in the EPCD frequency in 
SH midlatitudes (Fig. 1) is mainly attributed to the change in austral summer, and that the 
decreasing AC dominates the decrease in frequency. These results suggest that changes in 
temporal correlation of daily extreme precipitation play an important role in decreasing EPCD 
frequency in the SH midlatitudes and amplifying it in Europe, for example.

Future climate projections confirm that changes in precipitation AC locally counteract or 
amplify the EPCD increases expected from rainfall intensification. The spatial distribution 
of the sign of changes in EPCD frequency after removing the effects of intensity changes 
is in general very similar to that of the change signs in AC (Figs. 4a,c). In most of the NH 
high latitudes, northern North America, parts of central Asia and Africa, decreasing AC is 
projected (Fig. 4c), where the adjusted EPCD frequency is projected to decrease (Fig. 4a)  
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(and significantly decrease in regional average for the NH high latitudes and North America, 
Fig. 4b) while the EPCD frequency is projected to significantly increase (Fig. 2c), consis-
tent with the increasing intensity of extreme precipitation (P99, Figs. 4e,f). This indicates 
the changes in EPCD frequency are affected by changes in the temporal correlation of 
extreme precipitation reducing the effects of intensity changes in these regions for the 
RCP8.5 scenario.

Fig. 3. Local and regional changes in adjusted frequency of extreme precipitation on consecutive days, autocorrelation, 
and precipitation intensity between 1961–85 and 1986–2010 for observations. (a),(b) EPCD frequency changes (%) after 
removing the effects of possible intensity changes (see “Materials and methods” section). (c),(d) Changes in autocorrela-
tion in the daily extreme precipitation time series. (e),(f) Changes (%) daily intensity of precipitation for the 99th percentile 
of all-day precipitation. Asterisks in (b), (d), and (f) indicate a significant change estimated by the Wilcoxon rank sum test. 
Colored regions are as in Fig. 1.
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For larger regional averages, although changes in the temporal correlation of extreme pre-
cipitation play a role in driving the changes in EPCD frequency in some regions, increased 
precipitation intensity (Fig. 4f) causes more EPCD frequency increases (Fig. 2d) compared to the 
effects of the changes in temporal correlation (Fig. 4b). Therefore, the increasing EPCD frequency 
in future climate projections (Figs. 2c,d) is primarily a consequence of increased precipitation 
intensity for most regions. Similar results are found for the RCP4.5 scenario (Fig. ES15).

Fig. 4. Changes in adjusted frequency of extreme precipitation on consecutive days, autocorrelation, and precipitation 
intensity between 1961–2010 and 2071–2100 for historical + RCP8.5 scenario simulations. (a),(b) EPCD frequency changes 
(%) after removing the effects of possible intensity changes. (c),(d) Changes in autocorrelation in the daily extreme pre-
cipitation time series. (e),(f) Changes (%) in daily intensity of precipitation for the 99th percentile of all-day precipitation. 
Stippling in (a) and asterisks in (b), (d), and (f) indicate “robust change” across all models (see “Materials and methods” 
section). Stippling in (c) and (e) represents that at least 80% of models agree on the change sign. Error bars in (b), (d), and 
(f) represent plus and minus one ensemble standard deviation.

Unauthenticated | Downloaded 07/13/22 07:13 AM UTC



A M E R I C A N  M E T E O R O L O G I C A L  S O C I E T Y A P R I L  2 0 2 2 E1142

Relative contribution of P99 and AC changes on the changes in EPCD frequency. The ob-
served and simulated EPCD frequency changes are a consequence of the combined effects of 
changing temporal correlation of extreme precipitation and intensity. The changes in temporal 
correlation of extreme precipitation can reduce or amplify the increases in EPCD frequency 
expected from precipitation intensification alone. Overall, precipitation intensity increases for 
large areas of the globe and contributes on average 80%–90% to EPCD frequency increases 
in most regions (Fig. 5a). Both positive and negative contributions of temporal correlation 
changes account for on average 10%–20% (Fig. 5b) of the EPCD frequency changes. However, 
the relative contribution of future precipitation intensification will become stronger and the 
contribution of future temporal correlation changes relatively weaker with increased global 
warming, compared with the historical simulation. For example, the relative contribution of 
the precipitation intensification increases from ~80% for historical simulation to ~95% for 
the future RCP8.5 scenario projections in Europe.

Summary
This study shows that in most regions of the NH extratropics, and especially in Europe, EPCD 
events have been significantly increasing in frequency during the last half century, using a 
unique quasi-global collection of daily in situ data from 6,006 stations. The EPCD frequency 
is projected to further increase for most regional means (except SH midlatitudes) in the 
model simulations under increasing radiative forcing, in agreement with previous finding of 
consistently intensifying trends for precipitation extremes at a global-average scale (Kao and 
Ganguly 2011) and increases in clustering in the occurrence of precipitation extremes (Tuel 

Fig. 5. Contribution of regional changes in the temporal correlation of extreme precipitation and 
precipitation intensity on regional changes to the frequency of extreme precipitation on consecu-
tive days. (a) Precipitation intensity–related contribution for observations (the first bar in each 
region class), historical simulations (the second bar), and future projections (RCP4.5 and RCP8.5 in 
the third and fourth bar, respectively). (b) Temporal correlation of extreme precipitation related 
contribution. Error bars represent plus and minus one ensemble standard deviation. Definition of 
the contribution is shown in the “Materials and methods” section. The contribution is calculated 
only when the change in regional-mean frequency is significant (p ≤ 0.05); otherwise, the contri-
bution values are set to zero.
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and Martius 2021). Increases in both temporal autocorrelation of extreme precipitation and 
intensity have positive contributions to EPCD frequency increases, e.g., in the NH midlatitudes 
and Europe. In fact, Europe has been affected by several precipitation events that persisted 
over several days in recent decades and led to severe flooding (Kundzewicz et al. 2005; Ulbrich 
et al. 2003). However, the differences in the magnitude and signs of both variables result 
in regionally different EPCD frequency changes. Decreases in future extreme precipitation 
temporal autocorrelation projected in NH high latitudes, central Asia, Southeast Asia, and 
central Africa counteract the effects from intensification of the hydrologic cycle (DeAngelis 
et al. 2015; Giorgi et al. 2011; Wu et al. 2013) and thereby explain the regionally smaller 
increases in EPCD frequency with warming than expected from intensification alone. For 
other regions, however, increased temporal correlation of extreme precipitation may enhance 
the intensity-related increased EPCD frequency. In particular in the NH midlatitudes, North 
America, and Europe the observed increasing autocorrelation of daily extreme precipitation 
in boreal spring and summer appears consistent with previous studies indicating a tendency 
toward more persistent atmospheric circulation patterns (Mann et al. 2017). Especially, the 
significantly increased average AC in Europe in summer may be related to the previously 
reported more stationary circulation in summer affecting Europe (Kornhuber et al. 2017; 
Wolf et al. 2018) and thus contributes to the observed significant increase (p ≤ 0.05) in EPCD 
frequency. Also, the dry subtropics all generally show robust increases in AC. That may be 
related to a relative narrowing of the wet season or to changes in atmospheric stability that 
make extreme precipitation less likely on average, so that extremes will tend to follow each 
other when the right conditions are met (Pfahl et al. 2017). Although the changes in temporal 
correlation play an important role affecting the EPCD in some regions (e.g., the contribution 
of temporal correlation to the observed increasing EPCD frequency even reaches at 50% in 
Europe), precipitation intensity increases dominate the EPCD frequency increases in most 
regions in particular for the future RCP8.5 scenario projections. Moreover, the contribution 
of precipitation intensification to the increase in EPCD frequency is projected to increase with 
future climate warming. While flooding is affected by a number of factors, and a link between 
changes in extreme precipitation intensity and flooding is not clearly observed (Sharma et al. 
2018), extreme precipitation occurring on consecutive days affects e.g., soil preconditioning 
and thereby is likely an important factor in increasing flood risk (Wasko and Nathan 2019). 
Therefore, our results also indicate that more attention should be paid to Europe, United 
States, East Asia, and NH midlatitudes, where the interaction of changing temporal correlation 
of extreme precipitation and increasing intensity indicate largest increases in extreme pre-
cipitation events on consecutive days, potentially increasing the risk of severe river flooding.
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