Supporting Information

Phytochemical profiling and isolation of bioactive compounds from Leucosidea sericea (Rosaceae)

Tshifhiwa Ramabulana,[†] Musawenkosi Ndlovu,[‡] Rebamang A. Mosa,[‡] Molahlehi S. Sonopo,^{§,*} Mamoalosi A. Selepe^{†,*}

[†]Department of Chemistry, University of Pretoria, Lynnwood Rd, Hatfield, Pretoria 0002, South Africa
[‡]Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Lynnwood Rd, Hatfield, Pretoria 0002, South Africa
[§]Radiochemistry, South African Nuclear Energy Corporation Ltd, Pelindaba, Brits 0240, South Africa

*Corresponding authors

M.S. Sonopo E-mail address: molahlehi.sonopo@necsa.co.za, Tel: +27 12 305 5674

M.A. Selepe E-mail address: mamoalosi.selepe@up.ac.za, Tel: +27 12 420 2345

TABLE OF CONTENTS

UPLC-QTOf-MS Chromatogram	S3
Table S1: Tentatively identified compounds from negative and positive ionisation mode of <i>L. sericea</i> EtOAc extract	S4
Diagram of Isolation Procedure	S8
Structures of the compounds 1-22 isolated from <i>L. sericea</i> extract	
Analytical data of isolated compounds	S10
NMR and MS spectra of the new compound 1	S13
Figure S4. 1H NMR (400 MHz, CD ₃ OD) spectrum of compound 1	S13
Figure S5. ¹³ C NMR (125 MHz, CD ₃ OD) spectrum of compound 1	S14
Figure S6. Dept-135 NMR (125 MHz, CD ₃ OD) spectrum of compound 1	S15
Figure S7. Dept-90 NMR (125 MHz, CD3OD) spectrum of compound 1	S16
Figure S8. ¹ H- ¹ H COSY NMR spectrum of compound 1	S17
Figure S9. HSQC NMR spectrum of compound 1	S18
Figure S10. HMBC NMR spectrum of compound 1	S19
Figure S11. HMBC NMR spectrum of compound 1 (¹³ C spectral width extended to 240 ppm)	S20
Figure S12. NOESY NMR spectrum of compound 1	S21
Figure S13. HRESIMS spectrum of spectrum of compound 1	S22
REFERENCES	S23

Figure S1. UPLC-MS base peak ion (BPI) chromatogram of EtOAc extract of L. sericea

Entry				Mass Error			Chemical	
	Rt	<i>m</i> / <i>z</i> [Adduct]	Cal mass	ppm	Fragments	Name	formula	Ref
1	2.59	577.1347 [M-H] ⁻	577.1346	0.2	425.0865, 407.0816, 289.0708	B-type procyanidin ^{a,c}	C ₃₀ H ₂₆ O ₁₂	1-3
		579.1520 [M+H]+	579.1503	2.9	427.2037, 291.0865, 247.0596, 165.0531, 139.0425			
2	2.90	289.0705 [M-H] ⁻	289.0712	-2.4	245.0794, 203.0686, 151.0383, 137.0233, 125.0240	(+)-Catechin ^c	$C_{15}H_{14}O_{6}$	4,5
		291.0871 [M+H] ⁺	291.0869	0.7	247.0607, 179.0347, 139.0346, 123.0453			
3	3.02	577.1348 [M-H] ⁻	577.1346	0.3	425.0879, 289.0712, 177.0188	B-type procyanidin ^{a,c}	$C_{30}H_{26}O_{12}$	1-3
		579.1503* [M+H] ⁺	579.1503	0.0	427.1022, 341.0863, 291.0869, 179.0346, 139.0433		$C_{30}H_{26}O_{12}$	
4	3.36	577.1354 [M-H] ⁻	577.1346	1.4	425.0857, 357.1109, 289.0721	B-type procyanidin ^{a,c}	$C_{30}H_{26}O_{12}$	1-3
		570 1400 DA + U1+	570 1502	0.7	441 0847 201 0862 170 0464 120 0406			
		579.1499 [M+H]	579.1505	-0.7	441.0847, 291.0863, 179.0464, 139.0406	() _ ·		4.5
5	3.75	289.0712 [M-H] ⁻	289.0712	0.0	245.0793, 221.0788, 203.0705, 137.0227,	(–)-Epicatechin ^c	$C_{15}H_{14}O_{6}$	4,5
					125.0233, 109.0276			
		291.0868 [M+H]+	291.0869	-0.3	247.0607, 139.0401, 123.0453			
6	5.01	179.0353 [M+H] ⁺	179.0344	5.0	163.0386, 139.0386, 123.0446	5,7-Dihydroxychromone ^{a,b}	C ₉ H ₆ O ₄	2,6
		177.0186 [M-H] ⁻	177.0188	-1.1	161.0246, 137.0214, 125.0238			
7	5.90	447.0927 [M-H] ⁻	447.0927	0.0	284.0388, 255.0302, 145.0292, 133.0287	Kaempferol-3-O-glucoside ^b	$C_{21}H_{20}O_{11}$	1,7
		895.1981 [2M-H] ⁻						
		449.1100 [M+H]+	449.1084	3.6	287.0559, 153.0208, 135.0481			
8	5.99	463.0885 [M-H] ⁻	463.0877	1.7	300.0261, 271.0248, 255.0293, 243.0304	Quercetin-3-O-glucoside ^b	C ₂₁ H ₂₀ O ₁₂	8
					497 0957 FM + N-1+ 202 0500 297 0702			
					487.0857 [M + Na] ⁺ , 303.0509, 287.0602,			
		465.1043 [M+H] ⁺	465.1044	-0.2	153.0191, 137.0243			

Table S1: Tentatively identified compounds from negative and positive ionisation mode of *L. sericea* EtOAc extract.

9	6.04	609.1484 [M-H] ⁻	609.1456	4.6	463.0877, 301.0248, 271.0241, 255.0307,	Quercetin-3-O-rutinoside ^c	$C_{27}H_{30}O_{16}$	2,4
					243.0299, 151.0103			
10	6.08	609.1464 [M-H] ⁻	609.1456	1.3	463.0882, 301.0267, 271.0246, 255.0278,	Quercetin-3-O-rutinoside	$C_{27}H_{30}O_{16}$	2,4
					243.0308, 151.0069	isomer ^c		
		611.1646 [M+H]+	611.1612	0.3	465.0992, 449.1035, 303.0513, 271.0617			
11	6.34	433.0782 [M-H] ⁻	433.0771	2.5	300.0286, 271.0225, 255.0294, 243.0310, 151.0128	Quercetin-O-pentoside ^{b,c}	$C_{20}H_{18}O_{11}$	4,9
		435.0939[M+H] ⁺	435.0927	2.8	303.0513, 221.0811, 177.0890			
12	6.43	433.0784[M-H] ⁻	433.0771	3.0	300.0274, 271.0225, 255.0301, 243.0297, 151.0119	Quercetin-O-pentoside ^{b,c}	$C_{20}H_{18}O_{11}$	9
		435.0935 [M+H]+	435.0927	1.8	303.0512, 221.0827, 177.0917			
13	6.50	433.0786[M-H] ⁻	433.0771	3.5	300.0273, 271.0259, 255.0316, 243.0269, 151.0141	Quercetin-O-pentoside ^{b,c}	C ₂₀ H ₁₈ O ₁₁	9
14	6.65	593.1504 [M-H] ⁻	593.1506	-0.3	447.0923, 284.0323, 255.0398	Kaempferol-3- <i>O</i> -rutinoside ^{b,c}	C ₂₇ H ₃₀ O ₁₅	2,3,10
		595.1670 [M+H] ⁺	595.1663	1.2	449.1097, 287.0560			
15	6.69	593.1494 [M-H] ⁻	593.1506	-2.0	447.0906, 284.0317, 255.0293, 227.0347	Kaempferol-3-O-rutinoside	C ₂₇ H ₃₀ O ₁₅	2,3,10
						isomer ^{b,c}		
		595.1688 [M+H] ⁺	595.1663	4.2	449.1091, 325.0031, 287.0555, 153.0184			
16	7.51	491.1203 [M+H] ⁺	491.1190	2.6	287.0555, 147.0459	Kaempferol-3-O-	C ₂₃ H ₂₂ O ₁₂	11,12
						acetylglucoside ^c		
					475.1243, 285.0406, 255.0298, 227.0337,			
		489.1033 [M-H] ⁻	489.1033	0	161.0253, 125.0245			
17	8.12	595.1437 [M+H] ⁺	595.1452	-2.5	285.0400, 255.0305, 227.0352, 145.0302	Tiliroside ^{a,b,c}	$C_{30}H_{26}O_{13}$	2,6
		593.1288 [M-H] ⁻	593.1295	-1.2	309.0989, 207.0706, 147.0454			

18	8.25	593.1292 [M-H] ⁻	593.1295	-0.5	285.0400, 255.0298, 227.0351, 145.0281	Tiliroside isomer ^{a,b,c}	$C_{30}H_{26}O_{13}$	2,6
19	8.66	635.1372 [M-H] ⁻	635.1377	-4.6	523.1555, 285.0400, 255.0308, 227.0336, 145.0292	Kaempferol-3- <i>O</i> -[6"- <i>O</i> -acetyl- 2"- <i>O</i> - <i>p</i> -coumaroyl]-glucoside ^c	C ₃₂ H ₂₈ O ₁₄	13
					525.1923, 499.1609, 347.1131, 303.0954,			
		637.1570 [M+H] ⁺	637.1557	2.0	209.0818, 147.0479			
20	9.54	527.1907 [M+H]+	527.1937	2.5	291.1835, 271.1189, 238.1205, 211.0966, 181.0547	Pilosanol B ^c	$C_{28}H_{30}O_{10}$	14
21	9.56	527.1927 [M+H] ⁺	527.1937	-1.9	291.1835, 271.1190, 238.1203, 211.0966, 181.0537	Epipilosanol B ^c	C ₂₈ H ₃₀ O ₁₀	14
		525.1771 [M-H] ⁻	525.1761	1.9	289.0730, 223.0961, 137.0264			
22	9.75	527.1937 [M+H] ⁺	527.1937	0.0	375.1453, 303.0939, 237.1131	Pilosanol C ^c	$C_{28}H_{30}O_{10}$	14
		549.1774 [M+Na] ⁺						
23	9.77	527.1924 [M+H] ⁺	527.1937	1.3	375.1443*, 303.0940, 237.1130	Epipilosanol C ^c	$C_{28}H_{30}O_{10}$	14
		549.1727 [M+Na] ⁺						
24	10.35	259.0944 [M+Na] ⁺	259.0946	-0.4	219.1031	3-Dimethylallyl-4-	$C_{13}H_{16}O_4$	15
		237.1135[M+H] ⁺				hydroxymandelic ^c		
					191.0361, 167.0364, 137. 0244, 123.0458,			
		235.0973 [M+H] ⁻	235.0970	1.3	121.0301			
25	10.75	383.1628 [M+Na] ⁺	383.1623	1.3	361.1659, 337.1660, 237.1134, 209.0827, 203.1796	Unknown phloroglucinol	C ₂₀ H ₂₄ O ₆	
		361.1659 [M+H] ⁺				derivative ^d		
26	11.54	475.1988 [M+H] ⁺	475.1968	2.0	405.1716, 345.2040, 237.1131, 209.0824	Robustaol A ^c	C25H30O9	16
					235.0969, 223.0968, 195.0650, 193.0871,			
		473.1818 [M+H] ⁻	473.1812	1.3	177.0190,			
27	11.97	511.1989 [M+Na] ⁺	511.2003	-2.7	470.1120, 417.0820, 259.0835, 237.1043, 209.0777	isomallotolerin ^c	C ₂₆ H ₃₂ O ₉	17,18
		489.2146 [M+H] ⁺	489.2125	4.3				

28	12.66	461.2186 [M+H] ⁺	461.2175	2.4	237.1149, 209.0809	α-Kosin ^{a,c}	C ₂₅ H ₃₂ O ₈	2,19
29	13.00	475.2099 [M+H] ⁺	475.2121	-4.6	259.0933, 237.1126, 219.1017, 204.0782,	Unknown phloroglucinol	C ₂₉ H ₃₀ O ₆	
					175.0760, 161.0607, 147.0811, 105.0702	derivative ^d		
30	13.31	489.2170 [M+H]+	489.2125	4.5	470.1941, 417.2745, 259.0950, 237.1106, 209.0843	Isomallotolerin isomer ^c	C ₂₆ H ₃₂ O ₉	17,18
31	13.96	469.1852 [M+Na] ⁺	469.1838	3.0	282.2785, 237.1124, 225.1122, 223.0864, 209.0855	Unknown phloroglucinol	$C_{24}H_{30}O_8$	
		447.2016[M+H] ⁺				derivative ^d		
32	10.77	503.3367[M-H] ⁻	503.3373	-1.2	485.3195, 439.2953, 421.2897, 289.083	1-Hydroxyeuscaphic acid ^c	$C_{30}H_{48}O_6$	20
		505.3460[M+H] ⁺	505. 3446	2.8	487.3235, 423.2504, 277.1920, 237.1139			
33	10.96	501.3231[M-H] ⁻	501.3216	3.0	483.3059, 465.2980, 421.2912, 137.0359	1-hydroxy-2-oxopomolic acid ^{a,b}	C ₃₀ H ₄₆ O ₆	2,6
34	11.06	501.3230[M-H] ⁻	501.3216	2.8	483.3104, 465.2899, 421.3042,	1-hydroxy-2-oxopomolic acid ^{a,b}	C ₃₀ H ₄₆ O ₆	2,6
35	11.14	503.3342[M-H] ⁻	503.3349	-1.4	485.3271, 465.2861, 441.3400, 421.3062, 289.0834	1-Hydroxyeuscaphic acid ^c	C ₃₀ H ₄₈ O ₆	20
		505.3454[M+H] ⁺	505.3446	1.6	487.3320, 277.1982, 237.1128, 209.0826			
37	15.64	445.3685*[M+H] ⁺	445.3682	0.7	427.3587, 307.3001. 289.2890	unknown phytosterol ^d	$C_{29}H_{48}O_3$	

^a Previously isolated from the plant; ^bPresence of compound/isomer from extract confirmed by preparative isolation; ^cTentatively identified by

comparison with reported MS data, ^dClass of compounds tentatively assigned.

Diagram of Isolation Procedure

Figure S2. Procedure for extraction and isolation of compounds from *L. sericea*.

Structures of the compounds 1-22 isolated from L. sericea extract.

Figure S3. Structures of new triterpenoid **1** and known compounds **2-22** isolated from L. sericea extract A) acetophenone derivative, phloroglucinol derivative, and chromones. B) triterpenoids C) flavonoid and flavonoid glycosides

Analytical data of isolated compounds

Leucosidic A (1): White powder; $[\alpha]^{20}_{D}$ +16.7 (c 0.003, CH₃OH); HRESIMS m/z 501.3211 [M+H]⁺ (calcd for C₃₀H₄₅O₆, 501.3216); MS^E m/z 523.3188 [M+Na]⁺, 503.3236 [M+H]⁺, 477.2648, 461.3272, 455.3162, 437.3072, 383.2585, 315.1970; ¹H and ¹³C NMR data are provided in Table 2.

Piceol (2): White powder, HRESIMS m/z 137.0608 [M+H]⁺ (calcd for C₈H₉O₂, 137.0597); ¹H NMR(400 MHz, CDCl₃) δ 2.55 (3H, s, COC<u>H₃</u>), 5.29 (1H, brs , OH), 6.87 (2H, d, J = 8.2 Hz, Ar-H-3' and H-5'), 7.91 (2H, d, J = 8.2 Hz, Ar-H-2' and H-6').

Phlorisovalerophenone (**3**): White powder, HRESIMS m/z 211.0970 [M+H]⁺ (calcd for C₁₁H₁₅O₄, 211.0970); MS^E m/z 211.0976 [M+H]⁺, 193.0866, 175.0765; ¹H NMR (400 MHz, CDCl₃) δ 0.90 (6H, d, J = 6.6 Hz, CH(C<u>H₃)</u>₂), 1.87 (1H, sept, J = 6.6 Hz, C<u>H</u>(CH₃)₂), 2.77 (2H, d, J = 6.9 Hz, CH₂), 6.20 (1H, d, J = 2.7 Hz, Ar-H-5), 6.30 (1H, d, J = 2.7 Hz, Ar-H-3). The analytical data were data were consistent with those previously reported.²¹

Eugenin (4): White powder; HRESIMS m/z 207.0671 [M+H]⁺ (calcd for C₁₁H₁₁O₄, 207.0657). ¹H NMR data were consistent with those previously reported.²²

5,7-Dihydroxychromone (5): White powder; HRESIMS m/z m/z 179.0340 [M+H]⁺ (calcd for C₉H₇O₄, 179.0344). ¹H NMR data were consistent with those previously reported.^{6,22}

5-Hydroxychromone-7-*O***-glucoside** (6): Yellow amorphous solid; HRESIMS m/z341.0867 [M+H]⁺ (calcd for C₁₅H₁₇O₉, 341.0867). MS^E m/z 363.0686 [M+Na]⁺, 341.0867 [M+H]⁺, 179.0340; ¹H and ¹³C NMR data were consistent with those previously reported.²³

1-Hydroxy-2-oxopomolic acid (7): White powder; HRESIMS m/z 503.3378 [M+H]⁺ (calcd for C₃₀H₄₇O₆, 503.3373); MS^E m/z 1027.6497 [2M+Na]⁺, 525.3188 [M+Na]⁺, 503.3378 [M+H]⁺, 485.3264, 439.3204; ¹H and ¹³C NMR data were consistent with those previously reported.^{6,24}

2-Oxopomolic acid (8) and 2α -hydroxy-3-oxopomolic acid (9): White powder;

HRESIMS m/z 487.3412 [M+H]⁺ (calcd for C₃₀H₄₇O₅, 487.3423); MS^E m/z 995.6696 [2M+Na]⁺; 504.3688 [M+NH₄]⁺, 487.3412 [M+H]⁺, 469.3305, and 423.3277; ¹H and ¹³C NMR data were consistent with those previously reported.²⁵⁻²⁷

Ursolic acid (10): White powder; HRESIMS m/z 457.3632 [M+H]⁺ (calcd for C₃₀H₄₉O₃, 457.3682). MS^E m/z 479.3503 [M+Na]⁺, 457.3632 [M+H]⁺, 443.3805, 439.3578, 425.3736, 411.3653; ¹H NMR data were consistent with those previously reported.^{25,28}

Corosolic acid (11): White powder; HRASAPMS m/z 471.3444 [M-H]⁻ (calcd for C₃₀H₄₇O₄, 471.3474); ¹H and ¹³C NMR data were consistent with those previously reported.^{25,28}

Tormentic acid (12): White powder; White powder; HRASAPMS m/z 487.3337 [M-H]⁻ (calcd for C₃₀H₄₇O₅, 487.3429); ¹H and ¹³C NMR data were consistent with those previously reported.²⁵

Pomolic acid (13): White powder; HRAPIMS m/z 473.3624 [M+H]⁺ (calcd for C₃₀H₄₉O₄, 473.3631); MSAPI m/z 495.3383 [M+Na]⁺, 473.3624 [M+H]⁺, 455.3554, 427.3590, 339.2442, and 301.1389. ¹H and ¹³C NMR data were consistent with those previously reported.²⁵

β-sitosterol glucoside (14): White powder; ESIMS m/z 577.4516 [M+H]⁺ (calcd for C₃₅H₆₁O₆, 577.4468). ¹H and ¹³C NMR data were consistent with those previously reported.^{28,29}

Apigenin (15): Yellow amorphous solid; HRESIMS m/z 293.0424 [M+Na]⁺ (calcd for C₁₅H₁₀O₅Na 293.0426); MS^E m/z 293.0424 [M+Na]⁺, 271.0515 [M+H]⁺, 153.0184, and 119.0426. ¹H and ¹³C NMR data were consistent with those previously reported.^{30,31}

Kaempferol-3-*O***-α-arabinopyranoside** (16): Light-yellow gum; HRESIMS (m/z 417.0816 [M-H]⁻ (calcd for C₂₀H₁₇O₁₀, 417.0822); MS^E m/z 417.0816 [M-H]⁻, 284.0335, 255.0316, 227.0344, and 183.0481; ¹H and ¹³C NMR data were consistent with those previously reported.^{31,32}

Quercetin-3-*O*- α -arabinopyranoside (17): Yellow gum; HRESIMS *m/z* 433.0777 [M-H]⁻ (calcd for C₂₀H₁₇O₁₁, 433.0771); MS^E *m/z* 433.0777 [M-H]⁻, 300.0271, 271.0233, 243.0233, and 215.0360; ¹H and ¹³C NMR data were consistent with those previously reported.^{9,33}

Astragalin (18): Yellow gum; HRESIMS m/z 447.0927 [M-H]⁻ (calcd for C₂₁H₁₉O_{11, 447.0927}); MS^E m/z 447.0927 [M-H]⁻, 284.0324, 255.0290, 277.0353, and 183.0494; ¹H and ¹³C NMR data were consistent with those previously reported.³⁰

Quercetin-3-*O***-glucoside (19):** Yellow gum; HRESIMS m/z 463.0876 [M-H]⁻ (calcd for C₂₁H₁₉O₁₂, 463.0877); MS^E m/z 463.0876 [M-H]⁻, 300.0275, 271.0219, 255.0290, and 243.0283; ¹H and ¹³C NMR data were consistent with those previously reported.⁹

Quercetin-3-*O***-** β **-galactopyranoside (20):** Yellow gum; HRESIMS data showed (*m*/*z* 463.0876 [M-H]⁻ (calcd for C₂₁H₁₉O₁₂, 463.0877); ¹H and ¹³C NMR data were consistent with those previously reported.^{9,31}

Tiliroside (21): Yellow gum; HRESIMS m/z 593.1298 [M-H]⁻ (calcd for C₃₀H₂₅O_{13, 593.1295}). MS^E m/z 593.1299 [M-H]⁻, 285.0371, 255.0256, 227.0317, and 145.0288; ¹H and ¹³C NMR data were consistent with those previously reported.⁶

Kaempferol-3-*O***-rutinoside (22):** Yellow gum; HRESIMS m/z 593.1510 [M-H]⁻ (calcd for C₂₇H₂₉O₁₅, 593.1506). The MS^E m/z 593.1510 [M-H]^{-,} 285.0392, 255.0284, 227.0343, and 183.0323; ¹H NMR data were consistent with those previously reported.^{30,34}

NMR and MS spectra of the new compound 1

Figure S7. Dept-90 NMR (125 MHz, CD3OD) spect	trum of compound	l 1.			
$\sim \circ \circ$					
$\dashv \omega $	0	n	00	4	~
· · · · ·	(V)	N	0		0
0 0 1	•	•	•	•	•
0 M M	ى ك	N	9		00
	00	00	<u>ل</u> ا	- Ю	4
N/ /					

Figure S8. ¹H-¹H COSY NMR spectrum of compound 1.

Figure S10. HMBC NMR spectrum of compound 1.

Figure S11. HMBC NMR spectrum of compound 1 (¹³C spectral width extended to 240 ppm)

Figure S13. HRESIMS spectrum of spectrum of compound 1.

REFERENCES

(1) Fromm, M.; Loos, H. M.; Bayha, S.; Carle, R.; Kammerer, D. R. Recovery and Characterisation of Coloured Phenolic Preparations from Apple Seeds. *Food Chem.* **2013**, *136*, 1277-1287.

(2) Sehlakgwe, P. F.; Lall, N.; Prinsloo, G. ¹H-NMR Metabolomics and LC-MS Analysis to Determine Seasonal Variation in a Cosmeceutical Plant *Leucosidea sericea*. *Front. Pharmacol.* **2020**, *11*, 219.

Badeggi, U. M.; Ismail, E.; Adeloye, A. O.; Botha, S.; Badmus, J. A.; Marnewick, J. L.; Cupido, C. N.; Hussein, A. A. Green Synthesis of Gold Nanoparticles Capped with Procyanidins from *Leucosidea sericea* as Potential Antidiabetic and Antioxidant agents. *Biomolecules* 2020, *10*, 452.

Masike, K.; de Villiers, A.; Hoffman, E. W.; Brand, D. J.; Causon, T.; Stander, M. A. Detailed Phenolic Characterization of Protea Pure and Hybrid Cultivars by Liquid Chromatography-Ion Mobility-High Resolution Mass Spectrometry (LC-IM-HR-MS). *J. Agric. Food Chem.* 2020, 68, 485-502.

(5) Qi, D.; Li, J.; Qiao, X.; Lu, M.; Chen, W.; Miao, A.; Guo, W.; Ma, C. Non-targeted Metabolomic Analysis Based on Ultra-High-Performance Liquid Chromatography Quadrupole Time-of-Flight Tandem Mass Spectrometry Reveals the Effects of Grafting on Non-volatile Metabolites in Fresh Tea Leaves (*Camellia sinensis* L.). *J. Agric. Food Chem.* **2019**, *67*, 6672-6682.

(6) Pendota, S. C.; Aremu, A. O.; Slavetinska, L. P.; Rarova, L.; Gruz, J.; Dolezal, K.; Van Staden, J. Identification and Characterization of Potential Bioactive Compounds from the Leaves of *Leucosidea sericea*. *J. Ethnopharmacol.* **2018**, *220*, 169-176.

(7) Zhang, J.; Yu, Q.; Cheng, H.; Ge, Y.; Liu, H.; Ye, X.; Chen, Y. Metabolomic Approach for the Authentication of Berry Fruit Juice by Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry Coupled to Chemometrics. *J. Agric. Food Chem.* **2018**, *66*, 8199-8208.

(8) Monzón Daza, G.; Meneses Macías, C.; Forero, A. M.; Rodríguez, J.; Aragón, M.; Jiménez, C.; Ramos, F. A.; Castellanos, L. Identification of α-Amylase and α-Glucosidase Inhibitors and Ligularoside A, a New Triterpenoid Saponin from *Passiflora ligularis* Juss (Sweet Granadilla) Leaves, by a Nuclear Magnetic Resonance-Based Metabolomic Study. *J. Agric. Food Chem.* **2021**, *69*, 2919-2931.

(9) Vvedenskaya, I. O.; Rosen, R. T.; Guido, J. E.; Russell, D. J.; Mills, K. A.; Vorsa, N. Characterization of Flavonols in Cranberry (*Vaccinium macrocarpon*) Powder. *J. Agric. Food Chem.* **2004**, *52*, 188-195.

(10) Morcol, T. B.; Matthews, P. D.; Kennelly, E. J. Differences in Leaf Chemistry and Glandular Trichome Density between Wild Southwestern American Hop (*Humulus neomexicanus*) and Commercial Hop Cultivars. *J. Agric. Food Chem.* 2021, *69*, 7798-7814.

(11) Kajdzanoska, M.; Gjamovski, V.; Stefova, M. HPLC-DAD-ESI-MSⁿ Identification of Phenolic Compounds in Cultivated Strawberries from Macedonia. *Maced. J. Chem. Chem. Eng.* **2010**, *29*, 181-194.

(12) Garzón, G. A.; Manns, D. C.; Riedl, K.; Schwartz, S. J.; Padilla-Zakour, O. Identification of Phenolic Compounds in Petals of Nasturtium Flowers (*Tropaeolum majus*) by High-Performance Liquid Chromatography Coupled to Mass Spectrometry and Determination of Oxygen Radical Absorbance Capacity (ORAC). *J. Agric. Food Chem.* **2015**, *63*, 1803-1811.

(13) Ouyang, H.; Li, T.; He, M.; Li, Z.; Tan, T.; Zhang, W.; Li, Y.; Feng, Y.; Yang, S. Identification and Quantification Analysis on the Chemical Constituents from Traditional Mongolian Medicine Flos Scabiosae using UHPLC-DAD-Q-TOF-MS Combined with UHPLC-QqQ-MS. *J. Chromatogr. Sci.* **2016**, *54*, 1028-1036.

(14) Kim, H. W.; Choi, S. Y.; Jang, H. S.; Ryu, B.; Sung, S. H.; Yang, H. Exploring Novel Secondary Metabolites from Natural Products using
Pre-processed Mass Spectral Data. *Sci. Rep.* 2019, *9*, 1-11.

(15) Pojer, F.; Kahlich, R.; Kammerer, B.; Li, S.-M.; Heide, L. CloR, a Bifunctional Non-heme Iron Oxygenase Involved in Clorobiocin Biosynthesis*. *J. Biol. Chem.* **2003**, *278*, 30661-30668.

(16) Qin, G.-W.; Chen, Z.-X.; Wang, H.-C.; Qian, M.-K. Structure and Synthesis of Robustaol A. Acta Chimica Sinica 1981, 39, 83-89.

(17) Arisawa, M.; Fujita, A.; Hayashi, T.; Morita, N.; Kikuchi, T.; Tezuka, Y. Studies on Cytotoxic Constituents in Pericarps of *Mallotus japonicus*. IV. *Chem. Pharm. Bull.* **1990**, *38*, 698-700.

(18) Saito, Y.; Iga, S.; Nakashima, K.; Okamoto, Y.; Gong, X.; Kuroda, C.; Tori, M. Terpenoids from *Ligularia virgaurea* Collected in China: the First Example of Two Bakkane Derivatives with an Anhydride-type Ring C and Nineteen New Chemical Constituents. *Tetrahedron* **2015**, *71*, 8428-8435.

(19) Sharma, R.; Kishore, N.; Hussein, A.; Lall, N. The Potential of *Leucosidea sericea* against *Propionibacterium acnes*. *Phytochem. Lett.* **2014**, 7, 124-129.

(20) Wu, C.; Cui, B.; Dong, H.; Ren, Y.; Yang, C.; Yao, M.; Li, W.; Gan, C. Simultaneous Determination and Pharmacokinetics Study of Six Triterpenes in Rat Plasma by UHPLC-MS/MS after Oral Administration of *Sanguisorba officinalis* L. Extract. *Molecules* **2018**, *23*.

(21) Zhou, W.; Zhuang, Y.; Bai, Y.; Bi, H.; Liu, T.; Ma, Y. Biosynthesis of Phlorisovalerophenone and 4-Hydroxy-6-isobutyl-2-pyrone in *Escherichia coli* from Glucose. *Microbial Cell Factories* **2016**, *15*, 149.

(22) Pendse, R.; Rao, A. V. R.; Venkataraman, K. 5,7-Dihydroxychromone from *Arachis hypogoea* Shells. *Phytochemistry* 1973, *12*, 2033-2034.

(23) Simon, A.; Chulia, A. J.; Kaouadji, M.; Delage, C. Quercetin 3-[triacetylarabinosyl($1\rightarrow 6$)galactoside] and Chromones from *Calluna vulgaris*. *Phytochemistry* **1994**, *36*, 1043-1045.

(24) Kashiwada, Y.; Wang, H.-K.; Nagao, T.; Kitanaka, S.; Yasuda, I.; Fujioka, T.; Yamagishi, T.; Cosentino, L. M.; Kozuka, M.; Okabe, H.; Ikeshiro, Y.; Hu, C.-Q.; Yeh, E.; Lee, K.-H. Anti-AIDS Agents. 30. Anti-HIV Activity of Oleanolic Acid, Pomolic Acid, and Structurally Related Triterpenoids. *J. Nat. Prod.* **1998**, *61*, 1090-1095.

(25) Liu, W.-j.; Hou, X.-q.; Chen, H.; Liang, J.-y.; Sun, J.-b. Chemical constituents from *Agrimonia pilosa* Ledeb. and their Chemotaxonomic Significance. *Nat. Prod. Res.* **2016**, *30*, 2495-2499.

(26) Xu, H.-X.; Zeng, F.-Q.; Wan, M.; Sim, K.-Y. Anti-HIV Triterpene Acids from *Geum japonicum*. J. Nat. Prod. 1996, 59, 643-645.

(27) Jia, Z.-J.; Liu, X.-Q.; Liu, Z.-M. Triterpenoids from Sanguisorba alpina. Phytochemistry 1992, 32, 155-159.

(28) Sun, S.; Huang, S.; Shi, Y.; Shao, Y.; Qiu, J.; Sedjoah, R.-C. A.-A.; Yan, Z.; Ding, L.; Zou, D.; Xin, Z. Extraction, Isolation, Characterization and Antimicrobial Activities of Non-extractable Polyphenols from Pomegranate Peel. *Food Chem.* **2021**, *351*, 129232.

(29) Faizi, S.; Ali, M.; Saleem, R.; Irfanullah; Bibi, S. Complete ¹H and ¹³C NMR Assignments of Stigma-5-en-3-*O*-β-glucoside and its Acetyl Derivative. *Magn Reson Chem.* 2001, *39*, 399-405.

(30) Markham, K. R.; Ternai, B.; Stanley, R.; Geiger, H.; Mabry, T. J. Carbon-13 NMR Studies of Flavonoids. III. Naturally Occurring Flavonoid Glycosides and their Acylated Derivatives. *Tetrahedron* **1978**, *34*, 1389-1397.

(31) Loizzo, M. R.; Said, A.; Tundis, R.; Rashed, K.; Statti, G. A.; Hufner, A.; Menichini, F. Inhibition of Angiotensin Converting Enzyme (ACE) by Flavonoids Isolated from *Ailanthus excelsa* (Roxb) (Simaroubaceae). *Phytotherapy research : PTR* **2007**, *21*, 32-36.

(32) De Cássia Lemos Lima, R.; T. Kongstad, K.; Kato, L.; José das Silva, M.; Franzyk, H.; Staerk, D. High-Resolution PTP1B Inhibition Profiling Combined with HPLC-HRMS-SPE-NMR for Identification of PTP1B Inhibitors from *Miconia albicans*. *Molecules* **2018**, *23*, 1755.

(33) Wubshet, S. G.; Moresco, H. H.; Tahtah, Y.; Brighente, I. M. C.; Staerk, D. High-resolution Bioactivity Profiling Combined with HPLC-HRMS-SPE-NMR: α-Glucosidase Inhibitors and Acetylated Ellagic Acid Rhamnosides from *Myrcia palustris* DC. (Myrtaceae). *Phytochemistry* 2015, *116*, 246-252.

(34) Hou, W.-C.; Lin, R.-D.; Lee, T.-H.; Huang, Y.-H.; Hsu, F.-L.; Lee, M.-H. The Phenolic Constituents and Free Radical Scavenging Activities of *Gynura formosana* Kiamnra. J. Sci. Food Agric. 2005, 85, 615-621.