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ABSTRACT
Although under-five mortality (U5M) rates have declined worldwide, many countries
in sub-Saharan Africa still have much higher rates. Detection of subnational areas
with unusually higher or lower U5M rates could support targeted high impact child
health interventions. We propose a novel group outlier detection statistic for identi-
fying areas with extreme U5M rates under a multivariate survival data model. The
performance of the proposed statistic was evaluated through a simulation study. We
applied the proposed method to an analysis of child survival data in Malawi to iden-
tify sub-districts with unusually higher or lower U5M rates. The simulation study
showed that the proposed outlier statistic can detect unusual high or low mortality
groups with a high accuracy of at least 90%, for datasets with at least 50 clusters
of size 80 or more. In the application, at most 7 U5M outlier sub-districts were
identified, based on the best fitting model as measured by the Akaike information
criterion (AIC).

KEYWORDS
Clustered data; Multivariate Cox PH model; Outlier statistic; Under-five
mortality; Outlying sub-districts.

1. Introduction

The under-five mortality (U5M) rate is the probability of a child dying before the
age of five years, expressed per 1,000 live births. The rate is an important indicator
of child health and health care, well-being, and socio-economic status of a population
[11, 18, 29]. The estimates of U5M rate are critical for monitoring national and global
health strategies as well as measuring overall progress towards international goals,
such as the Sustainable Development Goals (SDGs). In particular, target 3.2.1 of
SDGs is concerned with reducing U5M to less than 25 per 1,000 live births by 2030 [20].

Despite most countries worldwide experiencing substantial reductions in U5M
rates, falling by 59 percent from 91 per 1000 live births in 1990 to 38 per 1000 in
2019, the declines have not been uniform. For example, over the same period, the
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U5M rate in sub-Saharan Africa dropped by 56 percent [9, 11, 29]. The global burden
of under-five deaths is also heavily concentrated in sub-Saharan Africa, accounting
for 2.8 million (53 percent) of the 5.2 million under-five deaths in 2019. Central
and Southern Asia accounted for 1.5 million (29 percent) of the deaths in the same
year [11, 33]. Within the sub-Saharan African region, there is considerable variation
between countries, with Nigeria, the Democratic Republic of Congo, and Ethiopia
accounting for the most burden [3, 5, 26, 33, 34].

The country-level variations in U5M rates mask within-country differences. Several
studies have found substantial within-country variations in U5M rates due to differ-
ences in socio-economic and environmental factors [8, 26, 30]. Most of these studies
have employed spatial statistical models to highlight subnational areas with similar
or dissimilar U5M rates, often ignoring possible correlations in the survival times
of the children in the same area. Instead of spatial statistical mapping models, we
appropriately account for the possible dependence between survival times of children
in the same subnational area by using multivariate Cox proportional hazards regres-
sion. A standard multivariate Cox regression analysis uses a shared frailty model,
which incorporates group (cluster)-specific random effects to account for unmea-
sured cluster characteristics that impact on the survival outcomes [1, 12, 15, 16, 22, 23].

Even though the analysis of multivariate survival data to account for dependence
between event times is implemented in most statistical computer packages, cluster
outlier statistics for the models have not been well developed. In this study, we propose
a novel method for detecting clusters with unusually larger or smaller survival times
based on a multivariate Cox regression model. This is done by extending outlier
statistics that have been developed for linear mixed-effects models. We evaluate the
performance of the derived outlier statistic through a simulation study. We illustrate
the usefulness of our proposed outlier statistic by an application to child survival
data, that were collected as part of the 2015-16 Malawi Demographic and Health
Survey (2015-2016 MDHS), to identify sub-districts with unusually higher or lower
under-five mortality rates. The identified U5M outlier sub-districts could be used by
public health policy makers to improve local evidence-informed policy in child health
interventions.

The next section presents the shared frailty model for multivariate survival data
and the proposed group outlier statistic. This is followed by a simulation study and
analysis of child survival data. The paper ends with a conclusion of findings.

2. Methods

2.1. Multivariate survival model

Suppose subjects are nested in one of the M clusters. A Cox proportional hazards
(PH) model with mixed effects [1] has the conditional hazard function at time t given
as:

λij(tij |β, bi) = λ0(t)exp(XT
ijβ + ZTi bi), (1)

for the j-th subject, (j = 1, 2, ..., ni) in cluster i, (i = 1, 2, ...,M), where tij is the
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observed event-time of a survival time variable Tij , Xij is a p × 1 covariate vector
for ij-th subject, β is a p × 1 coefficient vector, Zi is a q × 1 vector of cluster-level
covariates, and bi is a q × 1 vector of random coefficients. The parameter λ0(t) is the
baseline hazard at time t. The random effect vectors are assumed to be normally
distributed, i.e., bi ∼ MVN(0,D), with D as q × q covariance matrix. In this paper,
we assume that Zi = 1, so that bi ∼ N(0, σ2).

Estimates of the unknown parameters in the Cox model (1) are obtained by max-
imising the partial likelihood as opposed to the usual likelihood [4]. For this, we in-
troduce the notion of a risk set and exposure to experience the event. Suppose Yij(t)
is an indicator function such that Yij(t) = 1 if subject ij is under observation and at
risk to the event at time t, and 0 otherwise. Then, the contribution to the conditional
partial likelihood by cluster i is given by:

Li(β|bi, tij , Xij , Zi) =

ni∏
j=1

[
exp(XT

ijβ + bi)∑
rij(tij) Yij(tij)exp(X

T
ijβ + bi)

]δij
, (2)

where rij(tij) represents the risk set at time tij and δij is the censoring indicator for
subject ij. The full joint partial likelihood function is the product of the conditional
likelihood (2) over all clusters and the densities of cluster random effects, given by:

L(β, σ2) = Li(β|bi, tij , Xij , Zi)×
M∏
i=1

f(bi|σ2)

=

M∏
i=1

ni∏
j=1

[
exp(XT

ijβ + bi)∑
rij(tij) Yij(tij)exp(X

T
ijβ + bi)

]δij
×

M∏
i=1

[
1√

2πσ2
exp

(
− 1

2σ2

M∑
i=1

b2i

)]
.

(3)

Since the random effects are not observed directly, estimation is based either on
the marginal partial likelihood after integrating out the random effects [15], the EM
algorithm [17], or the penalized joint partial likelihood techniques [6, 23]. Alternatively,
the parameters of the conditional Cox PH model are estimated by using Bayesian
estimation procedure using Markov Chain Monte Carlo (MCMC) technique [16, 22].

2.2. Previous work on outliers in linear mixed-effects models

Identification of outliers is mostly assessed by analysing the distribution of post-
estimation statistics, such as the model’s fitted value or residual [38]. Then in the
linear mixed-effects model, y = Xβ + Zb + ε, where ε is stacked vector of residual
(error) vectors from each cluster. Under the standard normal assumption ε ∼ N(0,
σ2
ε I) and b = (b1, b2, ..., bM )T , outliers are examined by assessing the distribution of

residuals ê, given by:

ê = y−Xβ̂ − Zb̂, (4)

where β̂ and b̂ are estimators of fixed and random effects, respectively, and
ê = (ê11, ..., ê1n1

, ..., êM1, ..., êMnM
)T . It has been shown that the covariance of

residual ê in equation (4) is not equal to covariance of the error term ε, causing the
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residual (4) to have non-normal distribution [35]. The standardised form of (4) is
instead used to determine univariate outliers.

In linear mixed-effects model, identification of outlying groups could simply rely
on assessing the distribution of standardised residual gij plotted against clusters [10],
given by:

gij = êij/stdev(êij), (5)

where stdev(êij) is standard deviation of the residual, with j indexing subjects and i
clusters. Clusters with highly skewed standardised residuals (5) compared to others,
are considered outliers to the linear mixed-effects model [10].

In some cases, plots of the standardised residuals (5) against clusters highly overlap
across the clusters. Then, it becomes difficult to determine outright outlier clusters to
the mixed model, which is a major setback of method (5). Outlier detection methods
that can identify unusual clusters of data are crucial in studying how behaviours of
subjects in the clusters affect the modelling. However, the method (5) uses univariate
residuals to examine group outliers in the linear mixed-effects model. By applying the
above discussed concepts from the linear mixed model, we derive, in the next section,
a statistic for assessing outlying groups of observations to the multivariate survival
model (1) and apply the method on child mortality data in Malawi.

2.3. Proposed outlier statistic for multivariate survival data

By extending the work of Therneau et al. [27] on residuals for univariate survival data,
and considering l-th subject in the risk set ril in i-th cluster, a counterpart residual to
(4) for single observations in the survival mixed model (1) is defined as [7]:

m(til) = N(til)−
∫ til

0
Yil(s)exp(X

T
il β̂ + ZTi b̂i)dΛ̂0(s), (6)

where N(til) is a counting process, indicating number of observed events experienced
over time til; Yil(t) is 0-1 process, indicating whether ij-th subject is at risk at time tij ;

and Λ̂0(s) is the cumulative baseline hazard function. The residual (6) is called martin-
gale because of its relation with a counting process. It is interpreted as the difference
over [0, t] between the observed and predicted number of events at each time point [27].

Assuming time-independent covariates in model (1), the extended residual (6) sim-
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plifies to:

m(til) = δil − Λ̂0(t)exp(XT
il β̂ + ZTi b̂i)

⇒



m(t11)
...

m(t1n1
)

m(t21)
...

m(t2n2
)

...
m(tM1)

...
m(tMnM

)



=



δ11 − Λ̂0(t)exp(XT
11β̂ + ZT1 b̂1)

...

δ1n1
− Λ̂0(t)exp(XT

1n1
β̂ + ZT1 b̂1)

δ21 − Λ̂0(t)exp(XT
21β̂ + ZT2 b̂2)

...

δ2n2
− Λ̂0(t)exp(XT

2n2
β̂ + ZT2 b̂2)

...

δM1 − Λ̂0(t)exp(XT
M1β̂ + ZTM b̂M )

...

δMnM
− Λ̂0(t)exp(XT

MnM
β̂ + ZTM b̂M )



.
(7)

Like in univariate survival model, the residual (7) is negatively-skewed, because

δil ∈ [0, 1], while Λ̂0(t)exp(XT
il β̂ + ZTi b̂i) has values in the interval [0,∞). Hence, it

can detect outlying subjects who failed too late, but not those who failed too early
[7, 27].

The standardised version of residual (7) is the deviance residual, which measures
disagreement between an element of the log-likelihood of the fitted model and the
corresponding point that would result if each observation were fitted exactly [25, 27],
and it is given by:

dil = sgn(m(til))[−2(m(til) + δillog(δil −m(til)))]
1

2

⇒



d11
...

d1n1

d21
...

d2n2

...
dM1

...
dMnM



=



sgn(m(t11))[−2(m(t11) + δ11log(δ11 −m(t11)))]1/2

...

sgn(m(t1n1
))[−2(m(t1n1

) + δ1n1
log(δ1n1

−m(t1n1
)))]1/2

sgn(m(t21))[−2(m(t21) + δ21log(δ21 −m(t21)))]1/2

...

sgn(m(t2n2
))[−2(m(t2n2

) + δ2n2
log(δ2n2

−m(t2n2
)))]1/2

...

sgn(m(tM1))[−2(m(tM1) + δM1log(δM1 −m(tM1)))]1/2

...

sgn(m(tMnM
))[−2(m(tMnM

) + δMnM
log(δMnM

−m(tMnM
)))]1/2



.

(8)
The logarithm term in (8) inflates values of martingale residual (7) that are close
to 1, while the square root contracts large negative values of (7), causing the
deviance residual (8) to be symmetric about zero in each cluster [27]. The pattern
of values of the deviance residual (8) in each cluster will give a descriptive overview
about clusters that require further investigation. That is, clusters with skewed
distribution of residual (8), compared to others, will be candidates for outlier in-
vestigations, as the standardised residual (5) for linear mixed-effects model is used [10].
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In examining outlying cluster of observations, the extended deviance residual (8) and
its covariance become useful quantities. We, therefore, propose a statistic computed
from the ratio of within-cluster variance of the deviance residual (8) to between-cluster
variance, to study outlying clusters to the model (1). If observations in the model (1)
were independent, the total variation of deviance residual, dil in equation (8) would
have been the sum of within-cluster variation and between-cluster variation, given by:

∑M
i=1

∑ni

j=1 (dij − ¯̄d)2

n− 1
=

∑M
i=1

∑ni

j=1 (dij − d̄i)2

n−M
+

∑M
i=1 ni(d̄i −

¯̄d)2

M − 1
, (9)

where ¯̄d =
∑M

i=1

∑ni
j=1 dij
n is the grand mean of the deviance residual dij ; d̄i =

∑ni
j=1 dij
ni

is
the mean of dij for any fixed i; n = n1 + n2 + ...+ nM is number of subjects in entire
dataset.

However, the within-cluster correlations of observations in model (1) will influence
a biased estimate of overall variance of dij in equation (9) for the entire dataset. Since
the clusters are independent, and assuming conditional independence of observations
in a cluster due to a shared random effect, the separate within-cluster variance of
dij will be conditionally unbiased estimate of variance for the concerned i-th cluster.
These cluster variabilities of dij will consequently measure how distant the survival
times of subjects in each cluster are from the fitted survival curve. Therefore, the
proposed group outlier statistic for model (1) is a M × 1 vector, denoted by k, which
is the ratio of within-cluster to between-cluster variances of dil, given by:

k =
1

L
(k1, ..., kM )T

=
1

L

(∑n1

j=1 (d1j − d̄1)2

n1 − 1
, ...,

∑nM

j=1 (dMj − d̄M )2

nM − 1

)T
,

(10)

where L =
∑M

i=1 ni(d̄i− ¯̄d)2

M−1 is the between-cluster variance of deviance residual dij .

Since model (1) is expected to fit observations in all available clusters, the proposed
outlier statistic (10) will separate homogeneous clusters that span the survival curve
from outlying clusters whose observations are not necessarily close to the survival
curve [24]. The small values of the statistic k will correspond to well-fitted clusters
of observations, that is, those units that closely span the fitted survival curve.
While large values of (10) will correspond to clusters whose observations have been
poorly-fitted by the model (1), and hence outliers.

We explored properties of ki = f(Ki, L) = Ki/L, where Ki is the within-cluster
variance component of the proposed statistic (10). Clearly, ki ∈ [0,∞) and it is a
non-linear function, since Ki and L, being variances, have support [0,∞). A common
method to estimate the expected value of a ratio estimator is through second order
Taylor series expansion about µ = (µki , µl) [28]. Thus, the expected value of ki, denoted
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by E(ki), is given by:

E(ki) = E(Ki/L)

≈ f(µ) +
1

2

[
f

′′

kiki
(µ)V ar(Ki) + 2f

′′

lki
(µ)Cov(L,Ki) + f

′′

ll (µ)V ar(L)
]

=
µki

µl
− 1

µ2
l

Cov(Ki, L) +
µki

µ3
l

V ar(L),

(11)

where f(µ) = µki/µl, f
′′

kiki
(µ) = 0, f

′′

lki
(µ) = −1/(µl)

2, and f
′′

ll (µ) = 2µki/(µl)
3, since

f(Ki, L) = Ki/L and E(Ki/L) = E(f(Ki, L)). Also, E(ki − µki) = E(l − µl) = 0;
V ar(Ki) = E(ki − µki)2, and Cov(Ki, L) = E[(ki − µki)(l − µl)]. For variance of ki,
denoted by V ar(ki), it follows from equation (11) of the mean and from first order
Taylor series expansion of f(Ki, L) around µ = (µKi

, µl) that:

V ar(ki) = V ar(Ki/L)

≈ f
′2
ki

(µ)V ar(Ki) + 2f
′

ki
(µ)f

′

l (µ)Cov(Ki, L) + f
′2
l (µ)V ar(L)

=
1

µ2
l

V ar(Ki)− 2
µki

µ3
l

Cov(Ki, L) +
µ2
ki

µ4
l

V ar(L).

(12)

These properties and others such as estimates of third and fourth moments of the
statistic k can help in characterising the distribution of k, which can in turn provide a
basis for formal tests about cluster outliers to model (1). Nonetheless, graphical meth-
ods also provide reliable alternative to formal tests of model residuals [32]. Hence,
we engaged graphical assessments to analyse outlying clusters to model (1). In prac-
tice, relative comparisons of values of a group outlier statistic are enough to examine
outlying groups to the mixed model [37].

3. Simulation study

An extensive simulation study was carried out to evaluate performance of the proposed
outlier statistic (10). We generated survival times tij from T ∼ Exponential(1) using
cumulative hazard inversion method [2] and the shared frailty model:

λij(t|β, bi) = λ0(t)exp(β1Xij1 + β2Xij2 + bi), (13)

where λ0(t) = 0.1; Xij1 ∼ Bernoulli(0.7) and β1 = 0.5, while Xij2 ∼ N(0, 1) and β2 =
1. The random effects bi were generated from N(0, 0.42). The inversion method derives
tij of T from Λ−1

ij (−log(S(tij))), where S(tij) ∼ Uniform(0, 1) is the survival function

at time tij and hence, making Λij(t) = −log(Uniform(0, 1)) ∼ Exponential(1).
The censoring variable was generated from Bernoulli(0.4). The R package simsurv

[2, 19] was used to set up and draw the data. Samples of size 10, 20, and 50 clusters
each were generated. The cluster sizes were 10, 80 and 500, which enabled us to assess
effect of sample size on performance of the proposed statistic (10). We additionally
simulated data using unbalanced cluster sizes from Poisson(200). We perturbed model
parameters in the first two clusters of each simulated data to make them outliers.
For each perturbation set, the simulations were replicated 100 and 1000 times in or-
der to observe the effect of simulation size on the performance of the statistic (10) [31].

The perturbations in the first two clusters were set at: b1, b2 ∼
{N(10, 2.52), N(15, 5.52)}, β1 = {1.8, 2.7} and β2 = {2.0, 2.5}. A cluster can
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also have unusual observations due to an interplay between fixed and random
effects in the model [36]. We thus performed joint perturbations as follows:
β1 = {1.8, 2.7} jointly with β2 = {2.0, 2.5} and then jointly β1 = {1.8, 2.7},
β2 = {2.0, 2.5} and b1, b2 ∼ {N(10, 2.52), N(15, 5.52)}. The performance of
the proposed outlier statistic was assessed using the percentage of the out-
lier clusters that were correctly identified as outliers. This is essentially the
number of times for which k1,2 > mean [maximum(ki : i = 3, 4, ...,M)] or
k1,2 < mean [minimum(ki : i = 3, 4, ...,M)] out of 100 or 1000 simulations [7, 31].
The model (13) was fitted to each of the samples, and the statistic (10) was computed.

3.1. Simulation results

The plots in Figure 1, for two cases of simulations that involved fixed effects and with
100 replications, indicate that the proposed statistic had detected clusters 1 and 2 as
outliers to the fitted model. It is shown in both Figure 1(a) and 1(b) that the values
of the proposed outlier statistic for clusters 1 and 2, where the data-generating model
was perturbed, deviated markedly from those of clusters 3 to 10. The rest of the results
on the success rates of the proposed statistic (10) are presented in Tables 1, 2 and 3.

(a) Plots of standardised outlier residual for a case

of data with perturbed β1 = 2.7 in first 2 of 10
clusters sample, each with 500 subjects.

(b) Plots of standardised outlier residual for a case

of data with perturbed β2 = 2.5 in first 2 of 10
clusters sample, with unbalanced cluster sizes.

Figure 1. Plots of the standardised values of the proposed outlier statistic for two simulation cases in which

perturbed models were used to generate data in first two clusters. Source: Researcher.
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Table 1 shows the success rates of the proposed statistic in detecting cluster 1 and
2 as outliers based on a cutoff presented before, for simulation cases that involved
separate perturbations of model parameters and balanced cluster design. It is shown
that the outlier statistic was effective, when the perturbations involved fixed and not
random effects. In situations where β1 or β2 was perturbed in clusters 1 and 2, the
residual generally identified the two clusters as having unusual survival outcomes
compared to the rest clusters. But, the values of the proposed statistic were not
different across clusters for cases that involved perturbed random effects in clusters
1 and 2. This reflects the fact that subjects from the same cluster share a random
effect, which might contribute less to within-cluster variation of the deviance residual
that is used in the proposed outlier method, unlike fixed covariates values that vary
from subject to subject even within the same cluster.

Furthermore, the results show that performance of the statistic improved with in-
creasing fixed-effect size as well as cluster sample size. In cases of large effect sizes,
i.e., β1 = 2.7 and β2 = 2.5 or cluster sample of 500, the success rates of the statistic
steadily converged to very high values of not less than 88.9% at both 100 and 1000
replications. But, the rates were generally low in scenarios of low effect sizes and small
cluster sizes of 10, and with high inconsistency between 100 and 1000 simulations.
Finally, the outlier statistic performed equally across different number of clusters per
data set, holding constant the cluster sample size and fixed effect size.
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Table 1. The percentage of the clusters 1 and 2 that were correctly identified as outliers, for different number

of clusters and cluster sizes; a case of separate perturbations 1 to β1, β2 or b1 ∼ b2

100 replicates 1000 replicates
M ni β1 β2 b1 ∼ b2 Cluster1 Cluster2 Cluster1 Cluster2

10 10 0.5 1 N(10, 2.52) 0 0 0 0
10 0.5 1 N(15, 5.52) 0 0 0 0

10 80 0.5 1 N(10, 2.52) 0 0 0 0
80 0.5 1 N(15, 5.52) 0 0 0 0

10 500 0.5 1 N(10, 2.52) 0 0 0 0
500 0.5 1 N(15, 5.52) 0 0 0 0

20 10 0.5 1 N(10, 2.52) 0 0 0 0
10 0.5 1 N(15, 5.52) 0 0 0 0

20 80 0.5 1 N(10, 2.52) 0 0 0 0
80 0.5 1 N(15, 5.52) 0 0 0 0

20 500 0.5 1 N(10, 2.52) 0 0 0 0
500 0.5 1 N(15, 5.52) 0 0 0 0

50 10 0.5 1 N(10, 2.52) 0 0 0 0
10 0.5 1 N(15, 5.52) 0 0 0 0

50 80 0.5 1 N(10, 2.52) 0 0 0 0
80 0.5 1 N(15, 5.52) 0 0 0 0

50 500 0.5 1 N(10, 2.52) 0 0 0 0
500 0.5 1 N(15, 5.52) 0 0 0 0

10 10 1.8 1 N(0, 0.42) 0 0 0 0
10 2.7 1 N(0, 0.42) 0 0 0 0

10 80 1.8 1 N(0, 0.42) 0 0 0 0
80 2.7 1 N(0, 0.42) 20 17 22 22

10 500 1.8 1 N(0, 0.42) 50 50 25.8 24.9
500 2.7 1 N(0, 0.42) 100 100 88.9 89.6

20 10 1.8 1 N(0, 0.42) 0 0 0 0
10 2.7 1 N(0, 0.42) 0 0 0 0

20 80 1.8 1 N(0, 0.42) 3 3 0.6 0.4
80 2.7 1 N(0, 0.42) 17 7 2.2 1.7

20 500 1.8 1 N(0, 0.42) 84 83 17.4 18.9
500 2.7 1 N(0, 0.42) 96 100 95.2 95.5

50 10 1.8 1 N(0, 0.42) 0 0 0 0
10 2.7 1 N(0, 0.42) 1 3 0 0

50 80 1.8 1 N(0, 0.42) 11 15 8.0 8.2
80 2.7 1 N(0, 0.42) 6 2 0.7 0.7

50 500 1.8 1 N(0, 0.42) 57 59 31.7 34.6
500 2.7 1 N(0, 0.42) 100 98 98.5 97.5

10 10 0.5 2.0 N(0, 0.42) 6 6 0 0
10 0.5 2.5 N(0, 0.42) 23 25 6.7 6.1

10 80 0.5 2.0 N(0, 0.42) 95 92 57 59.6
80 0.5 2.5 N(0, 0.42) 100 100 92.7 93.8

10 500 0.5 2.0 N(0, 0.42) 100 100 99.9 99.6
500 0.5 2.5 N(0, 0.42) 100 100 100 100

20 10 0.5 2.0 N(0, 0.42) 29 21 12.8 10.4
10 0.5 2.5 N(0, 0.42) 52 44 29.5 32.7

20 80 0.5 2.0 N(0, 0.42) 82 83 72.8 74.7
80 0.5 2.5 N(0, 0.42) 99 98 92.5 93

20 500 0.5 2.0 N(0, 0.42) 100 100 99.7 100
500 0.5 2.5 N(0, 0.42) 100 100 99.7 99.7

50 10 0.5 2.0 N(0, 0.42) 43 25 23.9 24.1
10 0.5 2.5 N(0, 0.42) 53 43 42.4 41.3

50 80 0.5 2.0 N(0, 0.42) 93 89 79.6 80.4
80 0.5 2.5 N(0, 0.42) 98 97 87.2 87.8

50 500 0.5 2.0 N(0, 0.42) 100 100 99.1 99.1
500 0.5 2.5 N(0, 0.42) 100 100 99.9 99.8

1 No perturbations were done to data in other clusters except clusters 1 and 2. The remaining clusters had
β1 = 0.5, β2 = 1, and bi ∼ N(0, 0.42).

10



The results in Table 2 show the success rates of the proposed statistic from
simulation cases with jointly perturbed parameters. It is shown that the statistic
correctly detected clusters 1 and 2 as outliers in comparison with the other clusters.
As was the case with separate perturbations, the random effects had no contribution
in making clusters 1 and 2 outliers, the success rates of the statistic from joint
perturbations of β1 and β2 were generally not different from those of jointly perturbed
β1, β2 and bi.

Similar to separate perturbations, the results in Table 2 show that the success rates
of the outlier statistic improved with sample size and fixed effect size. In addition,
the joint effect sizes for β1 and β2 combined with large sample size of 500 yielded
even higher success rates of not less than 95.2%. Thus, proper mix of the fixed effect
covariates in the fitted model is another important factor to consider in the application
of the proposed statistic. Again, the statistic performed equally between different
number of clusters per dataset, controlling for cluster sample size and fixed effect size.

11



Table 2. The percentage of the clusters 1 and 2 that were correctly identified as outliers, for different number

of clusters and cluster sizes; a case of joint perturbations 1 among β1, β2, and b1 ∼ b2

100 replicates 1000 replicates
M ni β1 β2 b1 ∼ b2 Cluster1 Cluster2 Cluster1 Cluster2

10 10 1.8 2.0 N(0, 0.42) 12 10 0 0
10 2.7 2.5 N(0, 0.42) 22 14 0 0

10 80 1.8 2.0 N(0, 0.42) 55 68 39.1 41.8
80 2.7 2.5 N(0, 0.42) 90 89 74.6 72.7

10 500 1.8 2.0 N(0, 0.42) 100 100 99.4 99.1
500 2.7 2.5 N(0, 0.42) 100 100 100 100

20 10 1.8 2.0 N(0, 0.42) 5 10 7 6
10 2.7 2.5 N(0, 0.42) 18 21 15.3 12.3

20 80 1.8 2.0 N(0, 0.42) 58 58 43.4 44.8
80 2.7 2.5 N(0, 0.42) 86 88 70.2 69.6

20 500 1.8 2.0 N(0, 0.42) 99 99 98.9 98.6
500 2.7 2.5 N(0, 0.42) 100 100 100 100

50 10 1.8 2.0 N(0, 0.42) 8 15 7.1 7.9
10 2.7 2.5 N(0, 0.42) 32 26 21.4 20.4

50 80 1.8 2.0 N(0, 0.42) 59 54 41.2 39.7
80 2.7 2.5 N(0, 0.42) 86 87 69 66.8

50 500 1.8 2.0 N(0, 0.42) 100 100 99 98.5
500 2.7 2.5 N(0, 0.42) 100 100 97.7 98

10 10 1.8 2.0 N(10, 2.52) 6 7 0 0
10 2.7 2.5 N(15, 5.52) 9 12 0 0

10 80 1.8 2.0 N(10, 2.52) 75 74 38.7 40.9
80 2.7 2.5 N(15, 5.52) 85 86 74.6 72.6

10 500 1.8 2.0 N(10, 2.52) 100 100 99.3 99.2
500 2.7 2.5 N(15, 5.52) 100 100 100 100

20 10 1.8 2.0 N(10, 2.52) 9 17 4.1 4.1
10 2.7 2.5 N(15, 5.52) 19 25 15.5 15.9

20 80 1.8 2.0 N(10, 2.52) 48 54 38.3 35.4
80 2.7 2.5 N(15, 5.52) 82 76 73.4 73.3

20 500 1.8 2.0 N(1, 2.52) 100 100 97.9 98.4
500 2.7 2.5 N(15, 5.52) 100 100 99.5 99.3

50 10 1.8 2.0 N(10, 2.52) 15 15 8.2 9.8
10 2.7 2.5 N(15, 5.52) 30 25 19.2 19.8

50 80 1.8 2.0 N(10, 2.52) 65 51 41.6 40.8
80 2.7 2.5 N(15, 5.52) 79 80 68.9 71.8

50 500 1.8 2.0 N(10, 2.52) 100 99 96.1 95.2
500 2.7 2.5 N(15, 5.52) 100 100 98.7 99.4

1 No perturbations were done to data in other clusters except clusters 1 and 2. The remaining clusters had
β1 = 0.5, β2 = 1, and bi ∼ N(0, 0.42).

Table 3 presents results of performance of the statistic from unbalanced cluster
designs of the simulations, that involved both separate and joint perturbations of fixed
effects. It is shown that the proposed statistic was equally effective in the unbalanced
cluster design, as in the balanced cluster sizes. Like in balanced cluster sizes, the
performance of the statistic was higher in cases where the effect size was high. Again,
the proposed statistic performed equally across different number of clusters per sample,
controlling for effect size.
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Table 3. The percentage of the clusters 1 and 2 that were correctly identified as outliers, for different number

of clusters and cluster sizes; a case of unbalanced cluster sample sizes with average size of 200

100 replicates 1000 replicates
M β1 β2 bi Cluster1 Cluster2 Cluster1 Cluster2

10 1.8 1 N(0, 0.42) 22 19 3.9 3.9
2.7 1 N(0, 0.42) 73 68 33.6 32.5

20 1.8 1 N(0, 0.42) 15 24 5.7 5.4
2.7 1 N(0, 0.42) 80 78 46.1 47.8

50 1.8 1 N(0, 0.42) 17 21 6.5 6.2
2.7 1 N(0, 0.42) 63 66 28.3 27.2

10 0.5 2.0 N(0, 0.42) 97 95 90.5 89.7
0.5 2.5 N(0, 0.42) 100 100 99.3 99.0

20 0.5 2.0 N(0, 0.42) 99 100 95.2 94.5
0.5 2.5 N(0, 0.42) 99 100 99.3 99.0

50 0.5 2.0 N(0, 0.42) 96 97 95.8 96.8
0.5 2.5 N(0, 0.42) 100 100 98.8 99.3

10 1.8 2.0 N(0, 0.42) 96 98 83.1 82.7
2.7 2.5 N(0, 0.42) 100 100 98.1 97.9

20 1.8 2.0 N(0, 0.42) 95 97 75.6 79.5
2.7 2.5 N(0, 0.42) 97 99 94.8 95.8

50 1.8 2.0 N(0, 0.42) 85 84 76.1 77.1
2.7 2.5 N(0, 0.42) 96 97 91.3 93.9

No perturbations were done to data in other clusters except clusters 1 and 2. The remaining clusters had
β1 = 0.5, β2 = 1.

4. Application to child clustered survival data from Malawi

4.1. Data description

We applied the proposed outlier statistic along with the standard method of visual
inspection of standardised residuals [10] on child survival data from the 2015-16
MDHS. The MDHS was conducted between 19 October 2015 and 18 February
2016, and it collected child survival data from women respondents aged between
15 and 49 years, who provided birth histories. The survey used two-stage strati-
fied sampling, with emuneration areas and households as primary and secondary
sampling units, respectively [13]. We studied a total of 17,286 children who were
born during the 5 years preceding implementation of the survey. These children
were clustered at the 28 districts in Malawi, and each district was further split
into rural or urban areas. Thus, for this study, we used the 56 subdistricts to
illustrate the usefulness of our proposed multivariate survival data outlier detection
method. The Demographic and Health Surveys (DHS) program provides free and
publicly available datasets that can be accessed upon submitting a request at
https://dhsprogram.com/data/new-user-registration.cfm.

The main outcome was the survival time in months of a child, from birth to either
death (event) or not yet dead (censored) before his or her fifth birthday. For the
predictor variables, we pre-selected some of them based on the existing literature on
the determinants of child mortality in the region. For our study, we included birth
order, sex of child, weight of the child at birth, mother’s age at childbirth, mother’s
education, place of residence, place of delivery and household wealth index [8, 15]. In
addition to controlling for the fixed effects variables, a sub-district was considered as
a random effect in the shared frailty Cox regression model for the analysis of child
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survival in Malawi. Due to missing data in some variables, our analysis was based
on complete case of 14,645 children, of whom 539 (3.68%) had died before age 60
months.

Table 4 shows the distribution of deaths and characteristics of the 14,645 children
that were analysed. About 49.5% of the children were females. Nearly, 82.6% of the
children were residing in rural areas. The majority (97.5%) of the babies were delivered
at a health facility. The mean birth weight (SD) was 3,241.63 (777.12); the smallest and
largest birth weights were 500 and 6000 grams, respectively. About 15.0% of the babies
weighed <2500g. The log-rank test showed that there was a significant difference in
survival of the children across levels of most variables except mother’s education level
(p-value = 0.3), place of delivery (p-value = 0.8), and household wealth index (p-value
= 0.2).

Table 4. Distribution of deaths by socio-demographic characteristics of children, 2015-16 MDHS (n = 14,645).

Child’s characteristics Children, n (%) Deaths, n (%) Log-rank Test (p-value)

Overall sample 14,645 (100) 539 (3.68)

Sex of child
Male 7,393 (50.5) 298 (4.03) 5.6 (0.02)
Female 7,252 (49.5) 241 (3.32)

Birth weight
≥ 2500gms 12,465 (85.1) 430 (3.45) 12.9 (< 0.001)
< 2500gms 2,180 (14.9) 109 (5.00)
Mean (SD) 3,241.63 (777.12)

Mother’s age at child birth
12−19 yrs 2,121 (14.5) 109 (5.14) 18.7 (< 0.0001)
20−34 yrs 10,531 (71.9) 346 (3.29)
35−49 yrs 1,993 (13.6) 84 (4.21)

Mother’s education level
No education 1,588 (10.8) 55 (3.46) 2.2 (0.3)
Primary 9,611 (65.6) 370 (3.85)
Secondary or above 3,446 (23.5) 114 (3.31)

Place of delivery
Home and other 369 (2.50) 15 (4.07) 0.1 (0.8)
Health facility 14,276 (97.5) 524 (3.67)

Household wealth index
Poor 6,166 (42.1) 245 (3.97) 2.8 (0.2)
Middle 2,823 (19.3) 100 (3.54)
Rich 5,656 (38.6) 194 (3.43)

Place of residence
Urban 2,544 (17.4) 77 (3.03) 3.5 (0.06)
Rural 12,101 (82.6) 462 (3.82)

Birth order
1 3,769 (25.7) 169 (4.48) 11.7 (0.003)
2-3 5,480 (37.2) 175 (3.19)
≥ 4 5,396 (36.9) 195 (3.61)
Mean (SD) 3.16 (2.04)

SD=standard deviation; n = sample size.
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4.2. Model estimates results

We considered four models with Model 0 being a standard Cox model without
accounting for clustering of survival times, but included all the covariates from Table
4, namely: sex of child, birth weight, mother’s age at child birth, mother’s education,
household wealth index, place of residence, place of delivery and birth order. The
other three were shared frailty models, where Model 1 included all covariates as
in Model 0, Model 2 included all covariates in Model 1 except mother education,
household wealth index and place of delivery. Model 3 included all covariates in
Model 2 except place of residence. Model comparison was done through the Akaike
information criterion (AIC) [21].

The results in Table 5 show that Models 2 and 3 had lowest AIC. These two models
were subsequently used in the detection of U5M outlying subdistricts. Female gender,
mother’s age-at-child birth of 20 years and above, and higher birth order were asso-
ciated with with a reduced risk of U5M. Birth weights of less than 2500 grams and
residing in rural areas were associated with increased risk of U5M. The coefficients
of birth order and squared birth order imply a U-shaped relationship between birth
order and U5M. The results are consistent with previous findings [8, 14].

Table 5. Regression parameter estimates from fitting Cox PH frailty model on Malawi child survival data,
2015-16 MDHS.

Fixed effects predictors Estimate (SD) Estimate (SD) Estimate (SD) Estimate (SD)

1 Model 0 Model 1 Model 2 Model 3
Sex of child

Male 0 0 0 0
Female -0.231 (0.087) -0.232 (0.087) -0.233 (0.087) -0.233 (0.087)

Birth weight
≥2500gms 0 0 0 0
<2500gms 0.603 (0.108) 0.599 (0.108) 0.370 (0.108) 0.607 (0.108)

Mother’s age at child birth
12−19 yrs 0 0 0 0
20−34 yrs -0.307 (0.134) -0.308 (0.134) -0.318 (0.132) -0.334 (0.131)
35−49 yrs -0.056 (0.216) -0.061 (0.216) -0.089 (0.213) -0.116 (0.212)

Mother’s education
No education 0 0
Primary 0.173 (0.150) 0.158 (0.151)
Secondary or above 0.128 (0.184) 0.114 (0.185)

HH wealth index
Poor 0 0
Middle -0.104 (0.119) -0.100 (0.119)
Rich -0.053 (0.110) -0.040 (0.110)

Place of residence
Urban 0 0 0
Rural 0.191 (0.137) 0.197 (0.138) 0.208 (0.125)

Place of delivery
Home and other 0 0
Health facility -0.014 (0.263) -0.015 (0.263)

Birth order of child -0.115 (0.075) -0.114 (0.075) -0.126 (0.062) -0.103 (0.074)

Birth order squared 0.012 (0.008) 0.012 (0.008) 0.013 (0.006) 0.011 (0.008)

Sub-district random effect SD 0.149 0.155 0.158

AIC 10,132.79 10,129.28 10,121.01 10,121.89
1 Model 0 is the standard univariate Cox PH model without cluster-specific random effects term.
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4.3. Outlying Sub-Districts to child mortality

Detection of U5M outlier sub-districts was based on Models 2 and 3 as they had
smallest AIC values. We used a national U5M rate of 63 deaths per 1000 live births as
the baseline hazard [13]. We also used the visual inspection method for standardised
residuals in the detection of outlier sub-districts [10].

For Model 2, the estimates of the proposed statistic in Figure 2(a) show that most
subdistricts were well-fitted by the model, as the residual values were close to zero.
The outlier statistic detected two sub-districts, namely: Likoma rural and Rumphi
rural as U5M outlier sub-districts. This means that the U5M rates in the two sub-
districts were uniquely higher or lower compared to the rest sub-districts. Considering
the individual observation outliers in Figure 2(b), we see that the deviance residuals
were concentrated towards zero, with few children having larger values. Some of the
sub-districts had several single observation outliers. However, the visual results in
Figure 2(b) could not help in determining whether any of the affected sub-districts is
an outlier, since the ranges of the plots in different sub-districts are overlapping.

(a) Estimates of proposed outlier statistic per sub-
district based on Model 2.

(b) Plots of deviance residuals for children in each
subdistrict based on Model 2.

Figure 2. Outlier results for the proposed statistic compared with visual inspection of residuals using Model

2

For Model 3, the outlier results in Figure 3(a) show that the majority of the sub-
districts were also well-fitted by the model. Fitting Model 3 resulted in more sub-
district outliers than Model 2. Now, Lilongwe urban, Dedza rural, Likoma rural, Balaka
urban, Neno rural, Zomba urban and Rumphi rural were detected as U5M outlier
sub-districts, two of which were also outliers under Model 2. Using single observation
outliers in Figure 3(b), one can not conclusively identify outlier sub-districts, because
of the overlaps in the range of the plots across the sub-districts.

(a) Estimates of proposed outlier statistic per sub-

district based on Model 3.

(b) Plots of deviance residuals for children in each

sub-district based on Model 3.

Figure 3. Outlier results for the proposed statistic compared with visual inspection of residuals using Model
3
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5. Conclusion

In statistical modelling, the presence of extreme data points that deviate from the
other observations in the dataset could bias and influence estimates. The basic
assumptions of regression as well as other statistical models could also be impacted
by the presence of outlier observations. Much of the work has been devoted to the
detection of univariate outliers in linear models. In linear mixed models, limited
work has been done on multivariate outliers. Detection of multivariate outliers for
multivariate survival models, that are now commonly used to model correlated
survival data, has received relatively scant research attention. This study was set out
to derive a novel group outlier detection statistic for multivariate survival data. Using
a broad simulation study, the proposed outlier statistic performed exceedingly well in
detecting groups with extremely low or high survival times at a moderate number of
clusters and cluster size as well as with appropriate combination of fixed covariates.

For a well-fitted multivariate survival model, the outlying groups may provide
information about unique patterns of survival outcomes that are prevalent in the
outlier groups. The unusual values in a data set could be due to typos or unique mea-
surements in one of the covariates or the response variable worth investigating [36].
In the application of child survival with 56 sub-districts, our outlier group detection
tool identified between 2 and 7 under-five mortality outlier sub-districts, depending
on the fit of the multivariate survival model. The detected outlying sub-districts
could be further investigated by child health policy makers to understand the risk
factors that are adversely impacting child health. In this way, appropriate child health
impact interventions could be implemented or enhanced in the sub-districts. Or, it
could be that the unusual child survival data observed in the outlying sub-districts
relate to errors in data management, which could also be investigated. Our proposed
group outlier detection method was more accurate than the usual visual inspection
of univariate outliers [10] in detecting the sub-districts with unusually high or low
under-five mortality rates in Malawi.

We believe that our proposed group outlier detection statistic could be of use in
the context of finding clusters (e.g. subnational areas and hospitals) with much lower
than normal survival rates under a multivariate survival model. We relied on time-
constant covariates and the Cox proportional hazards frailty regression model in this
study. Future studies may develop outlier statistics for various formulations of the
multivariate survival model, such as stratified and time-dependent survival models.
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