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Abstract

This paper examines if incorporating investors’ uncertainty, as cap-
tured by the conditional volatility of sentiment, can help forecasting volatil-
ity of stock markets. In this regard, using the Markov-switching multi-
fractal (MSM) model, we find that investors’ uncertainty can substantially
increase the accuracy of the forecasts of stock market volatility accord-
ing to the forecast encompassing test. We further provide evidence that
the MSM outperforms the Dynamic Conditional Correlation-Generalized
Autoregressive Conditional Heteroskedasticity (DCC-GARCH) model.

Keyword: Investors’ uncertainty, Stock market risk, MSM, Volatility fore-
casting.

1 Introduction

In the wake of the recent global financial crisis, measuring (investors’) uncer-
tainty, a latent variable, and analyzing its impact on stock market movements
and the broader economy of the United States (US) (and internationally) has
grown in importance (see for example, Chuliá et al. (2017a, b), Gupta et al.
(2018, 2020a) for detailed literature reviews in this regard). As indicated above,
uncertainty is an unobservable concept, and hence, needs to be measured. Given
this, besides the various alternative metrics of uncertainty associated with finan-
cial markets (such as the implied-volatility indices (popularly called the VIX),
realized volatility, idiosyncratic volatility of equity returns, corporate spreads),
there are primarily three broad approaches to quantify uncertainty (Gupta et
al., 2019, 2020b): (1) A news-based approach, with the main idea behind this
method being to perform searches of major newspapers for terms related to eco-
nomic and policy uncertainty, and then to use the results to construct indices

1



of uncertainty; (2) Derive measures of uncertainty from stochastic-volatility es-
timates of various types of small and large-scale structural models related to
macroeconomics and finance, and; (3) Uncertainty obtained from dispersion of
professional forecaster disagreements.

In terms of alternative metrics of uncertainty, Escobari and Jafarinejad
(2019) proposed a measure of investors’ uncertainty by estimating the condi-
tional volatility of a widely used measure of investor sentiment namely, the
bull-bear spread in the American Association of Individual Investors (AAII)
Sentiment Survey. The measure aims to capture the dispersion in expectations
of market participants, which Escobari and Jafarinejad (2019) interpret as in-
vestors’ uncertainty about the future, which in turn is then linked with US stock
market risk, i.e., conditional volatility. The authors find that the conditional
volatility of major stock market indices (Center for Research in Security Prices,
CRSP; New York Stock Exchange, NYSE; American Stock Exchange, AMEX;
National Association of Securities Dealers Automated Quotations, NASDAQ;
Dow Jones Industrial Average, DJIA; and the S&P500) is positively related with
the metric of investors’ uncertainty, suggesting that uncertainty possibly induce
systematic risk (Lee et al., 1991), and increase the volatility of stock returns
(Andrei and Hasler, 2015).

We aim to extend the work of Escobari and Jafarinejad (2019) by analyzing
the out-of-sample predictive ability of the sentiment-based measure of investors’
uncertainty for the volatility of the above mentioned stock returns. This is an
important issue, since in-sample predictability does not guarantee forecasting
gains (Ben Nasr et al., 2016), with Campbell (2008) stressing that the ultimate
test of any predictive model (in terms of the econometric methodologies and
the predictors used) is in its out-of-sample performance. Moreover, appropri-
ate modeling and accurate forecasting of the process of volatility has ample
implications for portfolio selection, the pricing of derivative securities and risk
management (Poon and Granger, 2003; Rapach et al., 2008).

From an econometric perspective, while we follow Escobari and Jafarine-
jad (2019) to account for the joint dynamics of sentiment, uncertainty, returns
and risk using the Dynamic Conditional Correlation-Generalized Autoregres-
sive Conditional Heteroskedasticity (DCC-GARCH) method (Engle, 2002) as
our benchmark model, we also consider univariate and bivariate versions of the
Markov-switching multifractal (MSM) model of Calvet et al (2006). Note that,
research on long memory and structural changes in volatility has discussed the
connection between these phenomena, and have suggested that, in fact, volatil-
ity persistence may be due to switching of regimes in the volatility process
(Diebold, 1986; Lamoureux and Lastrapes, 1990). Hence, it could be very dif-
ficult to distinguish between true and spurious long memory processes. This
ambiguity motivates us to consider the MSM framework, which, despite allow-
ing for a large number of regimes, is more parsimonious in parameterization
than other regime-switching models. Moreover, it is well-known to give rise to
apparent long memory over a bounded interval of lags (Calvet and Fisher, 2004)
and it has limiting cases in which it converges to a ‘true’ long memory process.

To the best of our knowledge, this is the first attempt in forecasting the
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volatility process for major stock indices based on investors’ uncertainty using
bivariate volatility models that capture long-memory, structural breaks and the
fact that structural breaks can lead to the spurious impression of long-memory.
In addition, note that the bivariate approach also allows us to measure in-
vestors’ uncertainty, derived from conditional volatility of sentiment, simulta-
neously with the volatility of stock markets. In this regard, our study is also
different from the few studies that exist associated with in-sample and out-
of-sample predictability of stock market volatility based on primarily the new
papers-based measure of economic uncertainty, derived from outside the econo-
metric model associated with volatility (see for example, Liu and Zhang (2015),
Su et al. (2017, 2019), Fang et al. (2018), Li et al. (2019)). Modeling joint
dynamics is important, given the findings of recent studies (see for example,
Mumtaz and Theodoridis (2020), Ludvigson et al. (forthcoming)), which indi-
cates that uncertainty is in fact endogenous rather than exogenous. The rest of
the paper is organized as follows: Section 2 provides basic information on the
MSM model, while Section 3 presents the data and the empirical results, with
Section 4 concluding the paper.

2 Multifractal Models

In this section, we provide a brief description of the mutltifractal model uti-
lized in our volatility forecasting exercises. Multifractal process, which was
original introduced in stochastic physics when modelling turbulent dissipation.
Analogously, financial markets display properties in common with fluid turbu-
lence. Mandelbrot et al. (1997) first introduced the multifractal apparatus
into finance, adapting the approach of Mandelbrot (1974) to an asset-pricing
framework, followed by Harte (2001). This multifractal model of asset returns
(MMAR) assumes that asset returns rt follow a compound process, in which an
incremental fractional Brownian motion is subordinate to the cumulative distri-
bution function of a multifractal measure. However, the practical applicability
of MMAR suffers from the non-causal nature of the time transformation and
non-stationarity due to the inherent restriction to a bounded interval. These
limitations have been overcome by the development of an iterative version of the
multifractal models, including the Markov-switching multifractal model (MSM),
cf. Calvet and Fisher (2004) and Lux (2008), which have demonstrated the at-
tractive stochastic properties, with good description of stylized facts in financial
markets. In this approach, asset returns rt are modeled as

rt = σ

(
k∏

i=1

M
(i)
t

)1/2

· ϵt, (1)

where σ is the constant scale parameter, and instantaneous volatility is de-

termined by the product of k volatility components or multipliers, M
(1)
t , M

(2)
t

..., M
(k)
t , with ut drawn from a standard Normal distribution N(0, 1). Each

volatility component is renewed at time t with probability γi, depending on its
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rank within the hierarchy of multipliers, or remains unchanged with probability
1− γi. Calvet and Fisher (2004) propose to specify transition probabilities as

γi = 1− (1− γ1)
(bi−1), (2)

with parameters γ1 ∈ (0, 1) and b ∈ (1,∞); while Lux (2008) assumes γi =
2(k−i). Both specifications guarantee convergence of the discrete-time multi-
fractal process to a limiting continuous-time version with random renewals of
the multipliers.

This rather parsimonious approach allows us to preserve the hierarchical
structure of MMAR while dispensing with its restriction to a bounded interval.
While this model is asymptotically “well-behaved” (i.e. it shares all the conve-
nient properties of Markov-switching processes), it is still capable of capturing
several important properties of financial time series including volatility clus-
tering and the power-law behavior of the autocovariance function of absolute
moments, cf. Calvet and Fisher (2004) for a detailed proof.

In order to study the interactions and comovements among financial assets,
multifractal models can be easily extended to a multivariate setting without im-
posing too many restrictions such as a bivariate specification. For two financial
return series rn,t (for n = 1, 2) and assuming that instantaneous volatility is
composed of heterogeneous frequencies, the bivariate model of asset returns rt
can be specified as

rt = σ ⊙ [g(Mt)]
1/2 ⊙ ut, (3)

where, rt, σ, and ut are all bivariate vectors: rt = (r1,t, r2,t)
′, σ = (σ1, σ2)

′,
ut = (u1,t, u2,t)

′. σ is the vector of constant scale parameters (the unconditional
standard deviation); ut is a 2 × 1 vector whose elements follow a bivariate
standard Normal distribution with an unknown correlation parameter ρ, and
g(Mt) is the vector of the products of multifractal volatility components, i.e.

g(Mt) =

[
g(M1,t)
g(M2,t)

]
, (4)

where each g(Mq,t) is defined, as in the univariate case, as the product of the
volatility components for n series

g(Mn,t) =

k∏
i=1

M
(i)
n,t, (5)

with M
(i)
n,t denoting the volatility component at frequency i of series n. M

(i)
t =

(M
(i)
1,t ,M

(i)
2,t )

′. In this specification, M
(i)
t are drawn from a bivariate Binomial

distribution M = (M1, M2)
′, with M1 taking values m1 ∈ (1, 2) and 2 −m1,

and M2 taking values m2 ∈ (1, 2) and 2 −m2. Finally, whether or not certain
volatility components (new arrivals) are updated for the individual multifractal
processes is governed by the transition probabilities γi, which are specified as
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in the univariate version, cf. Eq. (2). The correlation of arrivals between the
two series is characterized by a parameter λ ∈ [0, 1], i.e., the probability of a
new arrival at hierarchy level i for one time series given a new arrival in the
other time series is (1 − λ)γi + λ. New arrivals are independent if λ = 0 and
simultaneous if λ = 1.

3 Data and Results

As indicated earlier, we use AAII Sentiment Survey, which is a widely cited mea-
sure of sentiment that collects investors’ opinion every week . Every Wednes-
day, editors of Investors Intelligence report the percentage of bullish, bearish,
or neutral investors, based on the previous Friday’s newsletters’ recommenda-
tions, with the investor sentiment being measured as the difference between
the bullish and bearish percentages. The data is publicly available for down-
load from: www.aaii.com/sentimentsurvey/sent-results. We also use the weekly
log-returns of six major stock indices, namely, CRSP, NYSE, AMEX, NAS-
DAQ, S&P500 and DJIA from Datastream as proxies for the overall perfor-
mance of the stock market from 24/07/1987 to 04/04/2019. Figure 1 presents
the plots of empirical data of investors’ sentiments (bull-bear spread) and the
six stock indices returns. Table 1 reports their pertinent descriptive statistics,
and the bottom two rows of heteroskedasticity test and ADF test, which confirm
the ARCH effects and stationarity. We study the out-of-sample volatility fore-
casts assessment and conduct comparisons of univariate and bivariate MSM, and
DCC-GARCH models with the in-sample estimation period being 24/07/1987
to 15/04/2004, and the rest of the data being used for the out-of-sample com-
parison of volatility forecasts.

For the univariate MSM model estimates, we use the simulation based max-
imum likelihood approach proposed by Calvet et al. (2006). For bivariate MSM
models, we estimate the model with pair data, i.e., the bull-bear spread with
each of the six stock market indices, respectively. We adopt the same approach
with a two-stage procedure, which combines a maximum likelihood estimator
for the first group of parameters {m1,i, σi} with i = {1, 2}, i = 1 refers to
sentiment data, and i = 2 refers to stock markets indices, i.e., CRSP; DJIA;
NYSE; SP500; NASDAQ; AMEX. For the second stage, we keep the first set of
estimates, and estimate the second group {ρ, λ} via simulation based maximum
likelihood estimation which is implemented via particle filter. The two-stage
approach allows to reduce computation time compared to the full maximum
likelihood approach, it also makes the choice of larger number of cascade level
k feasible, and we use k = 8 which is consistent to existing literature. The first
four of these parameters could be identified by estimates for a univariate mul-
tifractal model, while the remaining ones require the complete bivariate data
set.

Table 2 reports the in-sample univariate and bivariate multifractal model es-
timates. The estimates for sentiments are reported in the second column, with
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subsequent columns reporting the estimates including the bivariate parameters
estimates of ρ and λ for stock indices. In terms of fractality of volatility as
measured by the parameters m1 (note: m1 ∈ [1, 2]), we observe sound fractality
and with not much fluctuations across all data. For the unconditional volatil-
ity parameters σi, estimate of Bull-Bear Spread shows apparently much higher
volatility comparing with ones of stock indices; among the six stock indices,
AMEX show relatively high volatility level. In terms of the correlation of inno-
vations, ρ, all data exhibit positive though somewhat weak correlations between
sentiment and stock market index. We also observe positive correlation across
the sentiment and stock market indices often pertains to volatility arrivals λ,
which appear quite plausible.

Table 3 reports in sample estimates of DCC-GARCH(1,1) model of Engle
(2002). DCC-GARCH model is an extension of the conventional GARCH (1,1)
model of Engle (1982), specified as r = µ + ϵt, and ϵt|It−1 ∼ N(0, σt), with
the volatility process following σt = ω + α · ϵ2t−1 + β · σ2

t−1. The GARCH
parameters for each series(ω, β, α, µ) are with their usual interpretation. In the
bottom panel of Table 3 presents the empirical estimates for the DCC-GARCH,
which has a non-linear GARCH type specification for the conditional correlation:
Qt = (1− a− b)Q̄+ aϵt · ϵ′t−1+ bQt−1. a and b are the so-called news and decay
coefficients, respectively. Q̄ = E[ϵt · ϵ′t−1] is the unconditional variance matrix
of the standardized residuals (the unconditional correlation) and ρ12 represents
the unconditional correlation coefficient in matrix Q̄.

Table 4 presents the performance metrics for out-of-sample forecasts from
univariate and bivariate multifractal models, DCC-GARCH(1, 1) model respec-
tively. We consider various forecast horizons ranging from 1 to 100 steps. We
report in the tables the relative mean square error (MSE) and the relative mean
absolute error (MAE), computed by dividing the MSE and MAE estimates by
the pertinent MSE and MAE of the naive volatility predictor (using historical
volatility), therefore any values smaller than 1 indicate an improvement against
historical volatility.

Let us first look at the forecast performances based on the univariate and bi-
variate MSM models whose MSE and MAE are reported in 4th and 5th columns
of Table 4. It is not surprising to observe that there are most of forecasts are su-
perior to ones based on historical volatility as can be seen most of values <1. By
comparing with levels of MSE and MAE of univariate and bivariate MSM mod-
els, one can find results based on bivariate MSM models almost unanimously
generate smaller values than univariate models. By conducting the Diebold-
Mariano test (cf. Diebold and Mariano (1995)) reported in the 7th column of
table 4 labeled p(DM), it appears there are only limited significance cases and
most of them are at at 10% level, namely one case of CRSP at 1-week horizon
for MSE, and 3 cases for MAE; one case of DJIA for MAE; for NYSE, there
are 2 cases for each MSE and MAE criteria respectively; there are also 3 MAE
cases for NASDAQ at 10% level significance, as well as MAE cases of AMEX
which are close to 5% level. Though there are many cases too small to be
significant under the Diebold-Mariano tests, we on the other hand, performed
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forecast encompassing tests using the regression (cf. Harvey et al., 1998):

e1,t = θ(e1,t − e2,t) + ϵt (6)

with e1,t and e2,t being the errors of the forecasts from univariate and bivari-
ate MSM models. The encompassing test tests the null hypothesis of H0 : θ = 0
which means that the univariate MSM model encompasses the bivariate setting,
rejection of H0, i.e. estimates of θ significantly different from zero indicates that
the bivariate MSM model contributes useful information to the forecast prob-
lem in question on top of what the univariate model already contributes. The
8th and 9th columns of Table 4 provide the estimates and standard error of θ.
Our results are not entirely homogeneous, but are quite encouraging. We find
majority estimates of θ significantly different from zero for various horizons,
except with one case for CRSP, NYSE and SP500; and two cases for DJIA and
AMEX. These results imply that univariate MSM model does not encompass
the forecasts from the bivariate models at most forecast horizons. Hence, the
bivariate MSM models do add significant value on top of forecasts based on
univariate MSM model.

Next, we turn our attention to compare with the DCC-GARCH model fore-
casting. The 6th column of Table 4 reports the relative MSE and MAE values
for the volatility forecasts based on the bivariate DCC-GARCH model. We
have also conducted the Diebold-Mariano test whose results are reported in the
last column of Table 4 labeled as p(DM). Apparently bivariate multifractal
models outperform the DCC-GARCH model in most cases according to both
MSE and MAE criteria across all stock indices (62 out of total 72 cases). The
DCC- GARCH model generally produces better forecasts in most short-term
horizons, i.e. one case of CRSP at 1-week horizon for MSE; 2 cases of DJIA at
1 and 5-week horizons for MSE; one MSE and one MAE cases at 1-week horizon
for S&P500 and NASDAQ respectively; for AMEX, there are 2 cases for MSE
at 1 and 5-week horizons and one MAE case at 1-week horizon. It is actually
plausible that multifractal model offers more accurate predictions at all longer
horizons as it genuinely captures long memory of volatility, also be noted, MSM
models are parsimonious with much less number of parameters comparing with
multivariate GARCH models.

4 Concluding remarks

In this paper, we study the role of investors’ uncertainty, as measured by the
conditional volatility of investor sentiment, in forecasting volatility of six ma-
jor stock market indices using bivariate Markov-switching multifractal (MSM)
models. Our results demonstrate that forecasting stock markets volatility in
combination with information associated with investors’ uncertainty generates
smaller forecasts errors, relative to univariate MSM models, which does not in-
clude the metric of uncertainty. We also find that forecasts based on bivariate
MSM are superior to the DCC-GARCH models, in particular at longer hori-
zons. Our results suggest that investors can improve their portfolio allocation
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and risk management by accommodating the role of uncertainty into their mod-
els of volatility.

As part of future research, it would be interesting to extend our analysis to
other developed and emerging markets, and even analyze the importance of US
investors’ uncertainty for cross-market volatility.
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Figure 1: Investors’ opinion and stock indices returns
Note: The first figure is investors opinion (sentiment) measured by bull-bear spread, the
below 6 figures are returns of the stock indices: CRSP (value-weighted returns from Center
for Research in Security Prices), NYSE (New York Stock Exchange), AMEX (American Stock
Exchange), NASDAQ (National Association of Securities Dealers Automated Quotations),
S&P500, and DJIA (Dow Jones Industrial Average), respectively.
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Table 2: In-sample estimates of univariate and bivariate MSM models.

Spread CRSP DJIA NYSE SP500 NASDAQ AMEX

m1 1.225 1.251 1.262 1.263 1.254 1.306 1.285
(0.026) (0.025) (0.028) (0.028) (0.026) (0.031) (0.026)

σ 22.451 2.242 2.337 2.082 2.203 2.330 3.067
(2.102) (0.273) (0.252) (0.227) (0.266) (0.227) (0.250)

ρ 0.097 0.126 0.117 0.024 0.038 0.132
(0.022) (0.013) (0.010) (0.010) (0.013) (0.015)

λ 0.150 0.135 0.151 0.135 0.146 0.128
(0.018) (0.019) (0.012) (0.012) (0.026) (0.017)

Note: This table reports the in-sample estimates of the univariate and bivariate MSM models
for invertors’ sentiment, and six major stock indices, namely, CRSP, DJIA, NYSE,S&P500,
NASDAQ and AMEX. the first two rows are parameters estimates of {m1, σ} for univariate
MSMmodels. Since we adopt two-stage estimation for bivariate MSMmodels via particle filter
apprach (with number of particles being 10000), the estimates of {m1, σ} for each individual
time series data are almost identical with univariate models, we skip to report them in pairs
again to save spaces, while reporting the extra bivariate parameters estimates of {ρ, λ} in the
bottom two rows, numbers in parenthesis are standard errors.
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Table 3: In-sample estimates of bivariate DCC-GARCH (1, 1)models.

Spread CRSP DJIA NYSE SP500 NASDAQ AMEX

µ 11.923 0.305 0.269 0.228 0.220 0.369 0.202
(0.862) (0.061) (0.070) (0.060) (0.065) (0.085) (0.086)

ω 52.508 0.103 0.189 0.148 0.063 0.261 0.064
(25.534) (0.083) (0.324) (0.175) (0.066) (0.137) (0.057)

α 0.341 0.145 0.139 0.158 0.108 0.251 0.076
(0.090) (0.072) (0.102) (0.088) (0.065) (0.101) (0.031)

β 0.515 0.845 0.835 0.820 0.886 0.752 0.920
(0.155) (0.071) (0.147) (0.110) (0.066) (0.081) (0.032)

a 0.008 0.000 0.000 0.000 0.000 0.006
(0.004) (0.000) (0.000) (0.000) (0.000) (0.015)

b 0.987 0.845 0.848 0.842 0.824 0.962
(0.008) (0.339) (1.291) (0.346) (2.570) (0.127)

ρ12 0.077 0.039 0.021 0.032 0.052 0.129
(0.097) (0.034) (0.035) (0.034) (0.034) (0.039)

lkl -5561.964 -5632.855 -5530.574 -5596.696 -5804.078 -5862.729

Note: This table reports the in-sample estimates of the DCC-GARCH(1, 1) models for inver-
tors’ sentiment, and six major stock indices, namely, CRSP, DJIA, NYSE,S&P500, NASDAQ
and AMEX, numbers in parenthesis are standard errors. the last row reports their maximized
log likelihood values
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Table 4: Comparison of volatility forecasts

Data Uni MSM Biv MSM DCC-GARCH Uni vs Biv MSM Biv MSM vs. DCC-GARCH

CRSP Horizons MSE p(DM) θ std.er p(DM)
1 0.898 0.88 0.875 0.104 0.496 0.088 0.339
5 0.961 0.946 0.967 0.317 0.387 0.092 0.012
10 0.989 0.983 1.07 0.713 0.155 0.071 0.009
20 0.991 0.983 1.06 0.614 0.207 0.104 0.025
50 1.015 1.011 1.094 0.723 -0.362 0.165 0.011
100 1.051 1.056 1.09 0.626 -0.061 0.257 0.048

MAE
1 0.886 0.866 0.913 0.097 0.053
5 0.915 0.888 0.989 0.085 0.006
10 0.93 0.912 1.063 0.102 0.005
20 0.954 0.94 1.13 0.209 0.005
50 0.976 0.965 1.286 0.207 0.004
100 1.029 1.028 1.421 0.921 0.003

DJIA Horizons MSE p(DM) θ std.er p(DM)
1 0.929 0.917 0.945 0.278 0.351 0.118 0.054
5 0.973 0.963 0.997 0.536 0.297 0.136 0.036
10 0.984 0.979 1.017 0.804 0.147 0.017 0.039
20 0.988 0.982 1.014 0.543 -0.225 0.206 0.079
50 1.016 1.018 1.052 0.793 0.676 0.497 0.061
100 1.044 1.054 1.016 0.657 -1.382 0.271 0.085

MAE
1 0.829 0.821 0.847 0.456 0.096
5 0.853 0.845 0.911 0.375 0.051
10 0.873 0.875 0.969 0.802 0.041
20 0.896 0.9 1.033 0.621 0.016
50 0.934 0.947 1.156 0.194 0.013
100 0.978 1.001 1.188 0.079 0.017

NYSE Horizons MSE p(DM) θ std.er p(DM)
1 0.923 0.897 0.9 0.094 0.516 0.085 0.576
5 0.973 0.952 0.961 0.102 0.428 0.094 0.309
10 0.992 0.981 1.048 0.256 0.396 0.109 0.074
20 0.99 0.98 1.013 0.253 0.406 0.144 0.089
50 1.003 0.999 1.021 0.699 -0.399 0.325 0.081
100 1.032 1.036 1.021 0.724 1.83 0.431 0.097

MAE
1 0.915 0.914 0.937 0.881 0.104
5 0.936 0.934 1.002 0.797 0.057
10 0.959 0.964 1.083 0.306 0.042
20 0.985 0.997 1.138 0.122 0.029
50 1.005 1.028 1.213 0.103 0.035
100 1.053 1.087 1.232 0.068 0.084

SP500 Horizons MSE p(DM) θ std.er p(DM)
1 0.911 0.899 0.916 0.115 0.401 0.098 0.206
5 0.967 0.954 0.98 0.172 0.36 0.099 0.094
10 0.989 0.982 1.061 0.226 0.382 0.104 0.055
20 0.988 0.982 1.065 0.374 0.207 0.131 0.029
50 1.013 1.011 1.128 0.722 -0.298 0.133 0.011
100 1.046 1.051 1.152 0.239 -0.425 0.173 0.021

MAE
1 0.863 0.85 0.871 0.166 0.153
5 0.89 0.874 0.935 0.108 0.042
10 0.907 0.897 1.016 0.238 0.035
20 0.929 0.924 1.095 0.284 0.018
50 0.963 0.964 1.287 0.903 0.005
100 1.017 1.027 1.492 0.126 0.002

NASDAQ Horizons MSE p(DM) θ std.er p(DM)
1 0.798 0.794 0.775 0.238 0.215 0.092 0.224
5 0.894 0.883 0.993 0.269 -0.268 0.093 0.085
10 0.959 0.953 1.165 0.462 -0.208 0.097 0.033
20 0.97 0.959 1.23 0.201 -0.214 0.099 0.025
50 1.028 1.018 1.793 0.181 0.422 0.094 0.003
100 1.098 1.086 1.825 0.235 0.209 0.064 0.004

MAE
1 0.732 0.719 0.707 0.238 0.248
5 0.763 0.747 0.806 0.097 0.083
10 0.787 0.775 0.924 0.131 0.042
20 0.809 0.791 1.1 0.112 0.018
50 0.854 0.837 1.701 0.104 0.007
100 0.912 0.894 1.788 0.092 0.002

AMEX Horizons MSE p(DM) θ std.er p(DM)
1 0.938 0.937 0.956 0.948 0.199 0.068 0.136
5 0.976 0.969 1.011 0.752 -0.338 0.185 0.107
10 1.015 1.001 1.066 0.216 -0.375 0.197 0.048
20 1.017 1.003 1.069 0.198 -0.454 0.205 0.054
50 1.028 1.012 1.067 0.169 0.585 0.243 0.067
100 1.038 1.022 1.063 0.116 0.715 0.315 0.071

MAE
1 0.704 0.679 0.702 0.058 0.111
5 0.743 0.704 0.778 0.043 0.044
10 0.776 0.733 0.852 0.051 0.025
20 0.798 0.75 0.886 0.045 0.036
50 0.838 0.786 0.977 0.039 0.022
100 0.877 0.823 1.086 0.043 0.014

Note: The table exhibits mean squared errors (MSE) and mean absolute errors (MAE) of
out-of-sample volatility forecasts for univariate and bivariate MSM models and DCC-GARCH
models. MSE and MAE as reported in the table have been standardized by dividing by the
MSE and MAE of a naive forecast using historical volatility (so that values <1 indicate an
improvement against historical volatility), p(DM) denotes the probability of the Diebold-
Mariano test, while θ is the slope estimate of the forecast encompassing regression, Eq. (6),
followed by its standard error in the subsequent column.
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