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Abstract 

Tea (Camellia sinensis) has enthralled both consumers and researchers, and its popularity has 

increased, due to its taste, aroma and its medicinal attributes, owed largely to its metabolites. 

The catechins and theaflavins in green and black tea, respectively, have been documented to 

possess anti-oxidant, anti-inflammatory, anti-cancer, as well as cardiovascular disease-

preventing properties. Tea consumers concern themselves with the quality of tea, in 

particular, its taste and aroma based on which consumers are willing to pay premium prices 

for the best quality teas. In turn, the quality of tea is undeniably affected by variations in its 

metabolite composition. In this study, two groups of black tea cultivars, one commercial and 

the second non-commercial, were compared using a metabolomics approach. Data were 

generated via untargeted GC-MS and semi-targeted 1H-NMR. The GC-MS results 

differentiated between the two groups, based on arabinose, sucrose, phloroglucinol and 

xylonic acid. The 1H-NMR results differentiated between the two groups, based on caffeine, 

catechin, EC, EGC, and the amino acids alanine, isoleucine, leucine, theanine, and valine. 

These metabolites applicability in the discrimination of newly developed cultivars into 

potentially commercialisable and non-commercialisable groups at an early stage in the tea 

improvement programme is demonstrated. This information may also help tea breeders to 

select promising high quality black and drought tolerant improved tea cultivars either for 

release or further field evaluations. 
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1. Introduction 

Tea has been documented to be the most consumed non-alcoholic beverage worldwide, 

second only to water (Cabrera et al., 2006). According to Dutta et al. (2011), tea production 

has increased from 850 000 tonnes in 2003 to 980 000 tonnes in 2007 (Dutta et al., 2011) and 

to 2 414 802 tonnes in 2018 (www.reportlinker.com/tea/reports). Tea quality is undeniably 

affected by variations in its metabolite composition, which determine its commercial market 

value (Qin et al., 2013). According to Le Gall et al., (2004), the taste of green tea is 

determined by the cultivar of tea tree, the season of plucking, as well as the method of 

cultivation employed. Amino acids such as theanine, which makes up between 60-70% of the 

free amino acids found in tea leaves, are responsible for tea’s brothy taste. Theanine also has 

anxiety and stress relieving properties (Unno et al., 2013). While its astringent taste can be 

attributed to catechin levels and lastly its bitter taste attributed to caffeine (Pongsuwan et al., 

2007). Caffeine also has fatigue relieving effects (Lorist and Tops, 2003). This fatigue 

relieving effect of caffeine is probably the most important attribute of tea since antiquity. Tea 

leaf comprises about 10% of total catechins and 2 - 3% (dry weight) caffeine. The 

predominant catechins are catechin (CAT), epicatechin (EC), epicatechin gallate (ECg), 

epigallocatechin (EGC), and epigallocatechin gallate (EGCg) (Koech et al., 2018), with 

EGCg being the principal catechin accounting for approximately 50-75% (Zhou et al., 2019) 

of all the total catechins. Black tea, on the other hand, consists of theaflavins and thearubigins 

as its major phenolics, which result from the dimerisation and polymerisation of the 

catechins. Black tea consists of theaflavin (TF1), theaflavin-3-monogallate (TF2), theaflavin-

3′-monogallate (TF3), and theaflavin-3,3′-digallate (TF4). Tea’s popularity as a beverage is 

dependent on its flavour, comprising of taste and aroma. Non-volatile organic compounds are 

responsible for its taste, while volatile organic compounds are responsible for its aroma 

(Chaturvedula and Prakash, 2011). Volatile organic compounds in tea fall into one of two 

groups, with Group I comprising of non-terpenoids, such as hexanol which confers the fresh 

green aroma; and Group II comprising of terpenoids, responsible for its sweet flowery aroma 

(Rawat et al., 2007). High-quality black teas are rich in Group II compounds and due to their 

flowery nature, achieve significantly higher prices; e.g. high-quality varieties of Longjing tea 

(pan-roasted green tea) sell for USD 16.5, while the low-quality varieties sell for USD 1 per 

Kg (Yu et al., 2008).  

Sensory evaluation by expert tea tasters has traditionally been employed to establish its 

specific aroma profile, which is important in determining the tea quality grade (Schuh and 
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Schieberle, 2006). These trained tasters have developed a language of their own which they 

use to describe numerous characteristics of a tea brew. This sensory evaluation has its own 

deficiencies, such as being time-consuming, prone to human subjectivity and inherent 

variability between tasters (Group et al., 2011). In this paper, we consider a more objective 

method for determining the quality of tea using a broader metabolomics approach to explore 

the metabolite composition of two groups of tea cultivars. Metabolomics has been defined as 

“the study of the quantitative measurement of the dynamic multi-parametric metabolic 

response of biological system and changes in metabolite concentrations or fluxes related to 

genetic or environmental perturbations” (Dunn et al., 2011). It is a discipline which assesses, 

classifies and quantifies endogenous and exogenous metabolites in a variety of biological 

samples. The information obtained from the study of metabolites is crucial in that it informs 

scientists about a biological system’s functional state, explaining the organism’s phenotypic 

traits. The analysis of metabolite profiles in biological systems allows for the unbiased 

analysis of alterations in their metabolic status as a result of e.g. genetic composition and 

environmental stress (Ludwig and Viant, 2010).  

It has been reported that areas with higher rainfall tend to produce teas of inferior quality and 

that black teas from South India have elevated concentrations of aroma causing metabolites 

during the dry season as compared to the rainy season. In these studies, 40 or fewer 

compounds were used to classify tea quality (Kowalsick et al., 2014). The profiling of plant 

metabolites has developed into a major metabolomics field of study, the reason being that 

plants manufacture a wide array of metabolites. The genetic improvement of crops with 

metabolomics is fast becoming a popular method; this has resulted in an increased demand 

for plant breeders skilled in the field of metabolomics (Chugh, 2013). When developing new 

cultivars, crop breeders encounter a common challenge of identifying important selection 

criteria. Tea breeders criteria of selection include but not limited to yield, quality, and 

drought tolerance. C. sinensis is an important cash crop for many countries with China, India, 

Kenya and Sri Lanka being leading world producers and exporters of black tea (ITC, 2019). 

According to the Kenya National Bureau of Statistics (2019), tea is the largest agribusiness in 

Kenya, with the total export volume of January 2019 being significantly higher, at 47.92 

Million Kg compared to the January 2018 total export volume of 31.94 Million Kg. It is for 

this reason that tea quality is an important selection criterion from an economic perspective as 

it is the major determinant of market price (Yan, 2007). Tea quality, whether for black, white, 

purple or green tea, is governed by the metabolic profile/composition of the tea leaves, 
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influencing its aroma, briskness, brightness and taste (Dutta et al., 2011); the agronomic traits 

i.e. yield and quality are dependent on leaf physiognomies. As previously noted, due to the 

effects of global warming, specifically altered precipitation patterns, elevated temperatures 

and protracted drought spells in the tea growing regions, the Kenyan tea industry has been 

facing challenges (FAO, 2015). It is for this reason that rigorous breeding programmes need 

to be developed to produce new cultivars with better metabolic profiles and improved 

drought tolerance. A previous study on drought tolerance in C. sinensis saw the development 

of the Short-time Withering Assessment of Probability for Drought Tolerance (SWAPDT) 

method. The SWAPDT method was validated by targeted metabolomics, to predict tolerance 

in tea cultivars by generating metabolic profiles, which showed the differences between the 

drought-tolerant, and drought-susceptible cultivars under wet conditions. This method 

employs the % relative water content of tea leaves after a five-hour withering period 

(Nyarukowa et al., 2016).  

Nuclear magnetic resonance (1H-NMR) spectroscopy and gas chromatography mass 

spectrometry (GC-MS) were the analytical metabolomics platforms used in this study. GC-

MS, though tedious in the sample preparation stage, has a higher sensitivity as compared to 

1H-NMR, capable of detecting metabolites with concentrations lower than the limit of 

detection of 1H-NMR. 1H-NMR has the advantage of having simple sample preparation, as 

well as being semi-quantitative and non-destructive (Dumas et al., 2006), but limited by 

resolution and the availability of plant metabolites in compound databases. The objective of 

this study was to use data generated through an untargeted metabolomics approach to identify 

metabolites, which were expressed differently in the two groups, namely the commercial 

(Comm) and non-commercial (NComm) cultivars.  

2. Materials and Methods 

2.1. Plant material 

All the cultivars used in this study were maintained using uniform agronomic practices in an 

experimental field site in Kericho (0° 22′ S, 35° 17′ E), Kenya as described by Koech et al., 

(2018). Sixty open-pollinated cultivars, pre-selected for their high yield, and good tea liquor 

since the 1950s formed the Comm group. These cultivars were vegetatively propagated by 

stem cuttings from elite mother bushes. Each Comm cultivar is cultivated in over 10 Hectares 

with 13,448 bushes per Ha. The NComm group of 250 cultivars were the F1 progeny of a 

reciprocal cross between two heterozygous parental clones TRFK 303/577 and GW Ejulu. 
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The NComm cultivars comprise two populations of TRFK St. 504 (TRFK 303/577 x GW 

Ejulu) with 106 progeny, and the TRFK St. 524 (GW Ejulu x TRFK 303/577) with 144 

progeny, which were bred at the Tea Research Institute (TRI) of Kenya (Koech et al., 2018). 

The GW Ejulu is a commercial cultivar that produces high-quality black tea, with high total 

catechins and moderate caffeine content; it is, however, a low-yielding and drought-

susceptible clone. Cultivar TRFK 303/577, on the other hand, is a high yielding, drought 

tolerant (DT) commercial cultivar, which produces medium-quality black tea, with moderate 

levels of caffeine and total catechins. All the plants were vegetatively propagated and planted 

in 15-bush observation plots comprising 3 rows and 5 plants per row spaced at 1.22 m 

between rows and 0.61 m within rows (i.e. 13,448 plants/ha) in a randomised complete block 

design with three replicates.  

2.2. Sample collection and processing 

About 500 grams fresh shoots comprising two leaves and a bud were harvested from the 

respective tea bushes, between September 2013 and February 2014. The fresh shoots were 

placed in appropriately labelled zip-lock plastic bags (Nyarukowa et al., 2018). The plastic 

bags were placed on ice blocks to keep cool until processing at the TRI mini-factory within 

24 hours. Half the shots of each sample were freeze-dried and ground using a coffee grinder, 

sieved using a 355 µm sieve, sealed in zip-lock plastic bags and stored at 4°C in a fridge until 

analysis. 

2.3. GC-MS sample preparation and analysis 

2.3.1. Sample preparation 

A 70% MeOH solution was used for extraction. For all samples of approximately 150 mg, 1.5 

mL extraction solution was added. The samples were vortex mixed and incubated for 10 

minutes at 70°C. The samples were vortex mixed halfway through the incubation period as 

well as at the end. After cooling, the samples were centrifuged for 5 minutes at 6000 g and 

the 1 mL supernatant transferred to GC vials before drying under nitrogen. The dried samples 

were derivatised by adding 120 μl methoxyamine (10 mg/mL in pyridine) and incubated for 1 

hour at 60°C; followed by the addition of 80 μl BSTFA (containing 1% 

trimethylchlorosilane) and incubated for another hour at 60°C. Samples were transferred to 

inserts before GC-MS analysis. Pooled quality control (QC) samples were prepared, and 

these underwent the same extraction and derivatisation procedures as the samples. 



7 
 

2.3.2. GC-MS analyses 

Analyses were performed on a GC-TOF-MS system, comprising of an Agilent 7890A GC 

front-end system with an Agilent 7693 autosampler and a Leco Pegasus HT TOFMS. 

Hydrogen was used as carrier gas at a flow-rate of 1.8 mL/min; 0.2 μl sample was injected in 

splitless mode (allowing 30s purge delay). The inlet temperature was kept at 250°C. 

Compounds were separated on a Restek RX-1MS column (20 m x 180 μm x 0.18 μm). The 

transfer line and source temperatures were 250 and 200°C, respectively. Solvent delays of 

200 s were allowed where after masses (50 – 800 m/z) were recorded at 20 spectra/sec. 

Universal EI settings were used for ionisation while the detector was operated at 50 V above 

tune voltage. 

2.4. 1H-NMR sample preparation and analysis	

2.4.1. 1H-NMR buffer solution 

A 1.5 M KH2PO4 buffer solution was prepared by dissolving 20.4 g of KH2PO4 in 80 mL of 

deuterium oxide (D2O). Next, 13 mg of sodium azide and 100 mg of trimethylsilyl-2,2,3,3-

tetradeuteropropionic acid (TSP) were dissolved in 10 mL of D2O and added to KH2PO4 

solution. The combined solution was mixed well under sonication before adjusting the pH to 

7.4 using potassium hydroxide in H2O. The final solution was then transferred to a 100 mL 

volumetric flask and the volume topped up to the mark using D2O. 

2.4.2. 1H-NMR sample preparation 

Freeze-dried samples were sent in individual plastic bags of 50 mg weight to the 1H-NMR 

lab. A pooled QC sample was created by collecting 5 mg from each of n=294 samples. 

Samples were prepared by adding 4.5 mL ddH20 to each 45 mg weight of the dry sample to 

create a 10 mg/mL concentration. Each sample was vortexed at 0, 20 and 40 minutes. At 60 

minutes, a volume of 540 µL of the sample was collected in a microcentrifuge tube, with 60 

µL 1H-NMR buffer solution. The sample was mixed under vortex and centrifuged at 12 000 g 

for 5 minutes to sediment any particulates. A final volume of 540 µL of supernatant was 

carefully transferred to a 5 mm 1H-NMR glass tube and loaded onto an autosampler for 1H-

NMR analysis. 

2.4.3. 1H-NMR analyses 

The samples were measured at 500 MHz on a Bruker Avance III HD NMR spectrometer 

equipped with a triple-resonance inverse (TXI) 1H{15N, 13C} probe head and x, y, z gradient 

coils. 1H spectra were acquired as 128 transients in 64 K data points with a receiver gain of 

64 and a spectral width of 10 000 Hz. The sample temperature was maintained at 300K and 
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the H2O resonance was presaturated by single-frequency irradiation during a relaxation delay 

of 4 s, with a 90° excitation pulse of 8 μs. Shimming of the sample was performed 

automatically on the deuterium signal. The resonance line widths for TSP and metabolites 

were <1 Hz. Fourier transformation and phase and baseline correction were done 

automatically. Software used for 1H-NMR processing was Bruker Topspin (V3.5). Bruker 

AMIX (V3.9.14) was used for metabolite identification and quantification. (Ellinger et al., 

2013). 

2.5. Metabolite identification 

Spectral matching to the NIST11 commercial library (for GC-MS metabolites) and Bruker 

BBIOREFCODE (pH 7.0) and in-house pure compound spectral libraries (pH 7.4) (for 1H-

NMR metabolites) were used to identify the compounds. A level 2 identity was awarded 

when a spectral match of 80% similarity was achieved. A level 1 identity was awarded when 

the retention time or retention index of the GC-MS information matched that of standards 

(Schymanski et al., 2014) or 2D 1H-NMR information confirmed 1D 1H-NMR spectral 

identifications. 

2.6. Data pre-processing	

ChromaTOF software (Leco) was used to perform data extraction for the GC-MS data, which 

included baseline removal using the “spanning” tracking method, with an offset of 1. The 

software performed automatic smoothing. An expected peak width of 3 s and signal-to-noise 

ratio of 20 was used to detect the peaks with five apexing masses. GC-MS data was 

normalised using the “total useful signal” correction method, as described by Warrack et al., 

(2009). A subset of the data was aligned for exploratory statistical analysis since the add-on 

function of ChromaTOF (Statistical Compare) is unable to align > 250 samples. The subset 

consisted of approximately 140 randomly selected Comm and NComm cultivar samples from 

every batch (including QCs). With the exploratory statistics, a list of compounds that differed 

between the groups was generated, which was used to create a reference chromatogram 

within ChromaTOF. The reference was used to extract the peaks of interest from all the 

samples in a “targeted” manner. The target peaks lists were aligned into a data matrix with 

MS Excel using the “consolidate” function. The reason for pre-processing was to transform 

the data to enhance ease and improve the data analysis. 1H-NMR spectra pre-processing 

involved binning and scaling (Ebbels et al., 2011). 

 1H-NMR variables were scaled relative to the internal standard (TSP) by dividing each bin 

by the corresponding TSP value for the same sample. Next, the combined GC-MS and 1H-
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NMR variables with more than 10% missing values in both groups were eliminated; if two 

variables had a high correlation, one was removed; outliers were removed. The remaining 

missing values for each group, deemed to be below the quantification threshold of the 

instrument, were imputed with random numbers drawn from a uniform distribution between 

one and two-thirds of the lowest non-zero observations. Imputations were performed for each 

variable independently. 

2.7. Statistical analysis 

In metabolomics, uni- and multivariate statistical techniques are used in combination to help 

pinpoint relevant variation (e.g. between groups of interest) in datasets that are often large 

and high-dimensional (Saccenti et al., 2014). The univariate statistical tool used here was the 

t-test with resulting p-value and associated effect size. Independent samples t-tests were 

performed assuming unequal group variance and a 5% significance using MATLAB with 

Statistics Toolbox (2019), version 9.5.0 (R2018b) software (Natick, Massachusetts: The 

MathWorks Inc). Effect sizes were incorporated as an indication of the practical relevance of 

significant differences (P≤0.05) based on Cohen’s d-value (Ellis and Steyn, 2003) and 

calculated manually as the absolute difference between group means divided by the larger of 

the two group standard deviations (SD). To control the family wise error rate, p-values were 

adjusted using the Bonferonni-Holm correction for multiple testing (Holm, 1979)). 

Two multivariate approaches were included, principal component analysis (PCA), and partial 

least squares discriminant analysis (PLS-DA). PCA was used as the first step in multivariate 

statistical analysis, as it is highly expedient when it comes to e.g. outlier identification, 

pattern and trend detection. PCA scores plots were generated to provide a visual summary of 

the predominant variation in each dataset and the association with the two experimental 

groups. This could be achieved as the PCA models constructed here were unsupervised and 

so received no group information. PLS-DA is another multivariate statistical approach 

employed in metabolomics data analysis. PLS-DA has been described as a versatile algorithm 

capable of being used for discriminative variable selection, as well as descriptive and 

predictive high-dimensional dataset modelling (Worley et al., 2013). PLS-DA is a better 

suited statistical approach, compared to the PCA, when it comes to distinguishing between 

the two groups of samples as it is a supervised method, especially in instances where the 

metabolite profiles are influenced/affected by several factors (Kang et al., 2008). That said, 

PLS-DA models are prone to overfit and must be validated. A leave-one-out cross-validation 

(LOO-CV) procedure was followed here to validate the variance explained in the grouping 
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variables. PLS-DA scores plots were generated to assess the predictive ability of the model. 

Prior to identifying compounds that are largely responsible for any visible separation, the 

goodness-of-fit statistics (R-squared), as well as the LOO-CV (Q-squared) statistics, were 

compared to assess model validity. R-squared values above 80% were considered sufficient 

but conditioned to no dramatic deterioration during LOO-CV, that is Q-squared values above 

60% were considered acceptable. PCA and PLS-DA analysis were performed using 

MATLAB with Statistics Toolbox (2019), version 9.5.0 (R2018b) software (Natick, 

Massachusetts: The MathWorks Inc) in conjunction with the PLS_Toolbox (2019), version 

8.7 software (Wenatchee, WA: Eigenvector Research Inc. Software available 

at http://www.eigenvector.com). Prior to statistical analysis, the data were pre-processed to 

help ensure the accuracy of results. The GC-MS analysis was untargeted and as expected the 

resulting dataset contained many zero values. Both the 1H-NMR as well as GC-MS datasets 

were log transformed (shifted natural log transformation with shift parameter set to 1) to 

correct for the skewness in distribution known to plaque metabolomics data, and auto-scaled 

(subtracting the mean and dividing by the SD) so compounds in different abundances receive 

equal attention during multivariate analysis (van den Berg et al., 2006). Finally, the PCA 

model based scores plots and Hotelling’s T-squared distances were employed to detect 

outliers within each group given a 95% confidence interval (CI). 

3. Results 

3.1. GC-MS and 1H-NMR PCA	

Results presented in Figure 1 show that the ellipsoids representing 95% CI of score centroids 

of the Comm and NComm groups separate better by 1H-NMR (Figure 1B) than GC-MS 

(Figure 1A). The percentage of the overall variation in the measured compounds explained by 

each principal component (PC) is indicated along the three axes. 
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Figure 1: The 3D PCA scores plots for PCs one, two and three, for GC-MS (A) and 1H-NMR (B), the two 

parents of the NComm cultivars are represented by the two black circles in the ellipsoid of the NComm 

cultivars. The sum of the three PCs explain 48% and 52% of the variation found in the GC-MS and the 1H-NMR 

respectively. 

3.2. GC-MS and 1H-NMR PLS-DA 

Similar to PCA plots, ellipsoids represent 95% CI of score centroids of each group. The 

percentage of the overall variation in the measured compounds (X) and group membership 

(Y), as explained by each latent variable (LV), which is indicated along each axis, as shown 

in Figure 2. 

 

Figure 2: The 3D PLS-DA scores plots for LVs one, two and three, for GC-MS (A) and 1H-NMR (B), the two 

parents of the NComm cultivars are represented by the two black circles in the ellipsoid of the NComm 

cultivars. The goodness-of-fit values achieved for the GC-MS model were R2=62% and Q2=55% making it 

unreliable for discriminant identification, while the 1H-NMR model was deemed reliable with R2=87% and 

Q2=85%. 
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Table 1: The list of tentatively identified metabolites detected by GC-MS, expressed in arbitrary units. 

 

Comm vs NComm  
variables 

Analytical
platform 

Relative normalised intensity Fold 
change 

Reported literature 
concentration (mg/g) 

References 
Comm 

 
NComm 

Acetoacetic acid GC-MS 0.050 0.040 1.2 20.0 Naveed et al., 2017
Arabinose GC-MS 0.011 0.005 2.2* 37.3 Nara et al., 2001
Arabitol GC-MS 0.010 0.008 1.3 20.0 Roser et al., 1992
Catechin GC-MS 0.070 0.110 0.6* 30.0 Gramza et al., 2006
1-Cyclohexenecarboxylic Acid GC-MS 0.034 0.027 1.3* 4.7 Baeza et al., 2016
Gallic acid GC-MS 0.056 0.040 1.4 5.4 Kaneko et al., 2006
Glycerol GC-MS 0.006 0.006 1.0 10.0 Jones et al., 2008
Linolenic acid GC-MS 0.002 0.001 2.0 0.1 Stephan and Steinhart, 2000
Malic acid GC-MS 0.011 0.008 1.4* 10.0 Ackerman et al., 1992
Phloroglucinol GC-MS 0.003 0.003 1.0 45.1 Matanjun et al., 2008
Psicose GC-MS 0.0005 0.001 0.5* 1.3 Mu et al., 2012
Ribitol GC-MS 0.007 0.003 2.3* 20.0 Roser et al., 1992
Sucrose GC-MS 0.040 0.012 3.6* 30.9 Kumar et al., 2011
Threonic acid GC-MS 0.006 0.018 0.3* 0.2 Horemans et al., 2000
Xylonic acid GC-MS 0.001 0.001 1.0 4.5 Habibi et al., 2004
Total sweeteners GC-MS 0.095 0.047 2.0* N.A N.A
 

*indicate a statistically significant difference in the mean concentration of the metabolite between the Comm and NComm cultivars at the 95% level of significance after 
correcting for multiple testing. N.A = not available. 
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Table 2: The list of metabolites detected by 1H-NMR, expressed in mg/g.  

Comm vs NComm 
variables 

Analytical  
platform 

Comm concentration 
(mg/g) 

NComm concentration 
(mg/g) 

Fold 
change 

Reported literature 
concentration 

(mg/g) 

References 

Min Max Mean Min Max Mean 

Acetic acid 1H-NMR 25.01 60.97 34.8 28.80 70.71 42.2 0.8 40.0 Bandurski and Schulze, 1977 

Alanine 1H-NMR 0.11 0.32 0.2 0.16 0.40 0.2 1.0  4.2 Min et al., 2017 

Caffeine 1H-NMR 6.24 20.02 12.6 6.14 19.12 11.6 1.1*  30.0 Chin et al., 2008 

Catechin 1H-NMR 6.17 30.32 15.4 2.66 28.89 14.2 1.08  30.0 Gramza et al., 2006 

Chlorogenic acid 1H-NMR 2.65 6.44 4.2 2.51 6.07 4.0 1.02  6.9 Marks et al., 2007 

Epicatechin 1H-NMR 7.92 28.16 14.6 8.84 26.26 14.2 1.02  70.0 Gramza et al., 2006 

Epicatechin gallate 1H-NMR 4.01 23.03 13.5  4.32 22.13 13.2 1.02  169.0 Gramza et al., 2006 

Epigallocatechin 1H-NMR 20.55 117.41 51.7 17.12 113.49 49.6 1.04*  150.0 Gramza et al., 2006 

Epigallocatechin gallate 1H-NMR 19.02 66.6 39.0 17.36 57.58 35.6 1.1*  173.0 Gramza et al., 2006 

Formic acid 1H-NMR 19.07 46.40 27.2 16.01 31.08 21.0 1.3* 21.0 Sanhueza, E., and Andreae, 1991 

Gallic acid 1H-NMR 0.53 2.04 1.1 0.60 2.98 1.0 1.1  5.4 Kaneko et al., 2006 

Glucose 1H-NMR 5.38 11.72  7.5 4.97 10.36 7.2 1.04  6.9 Melgarejo et al., 2000 

Isoleucine 1H-NMR 0.13 0.41 0.2 0.01 0.27 0.2 1.0  2.6 Min et al., 2017 

Leucine 1H-NMR 0.06 0.23 0.2 0.08 0.30 0.1 2.0*  3.9 Min et al., 2017 

Methanol 1H-NMR 0.07 0.29 0.2 0.07 0.25 0.1 2.0* 0.04 Fall and Benson, 1996 

Sucrose 1H-NMR 5.91 21.54 15.0 6.61 23.14 13.6 1.1*  30.9 Kumar et al., 2011 

Theanine 1H-NMR 2.82 22.22 8.6 4.19 13.79 8.0 1.1  50.0 Vuong et al., 2011 

Quinic acid 1H-NMR 1.01 2.70 1.9 1.03 3.04 2.0 1.0  5.0 Rodrigues et al., 2007 

Valine 1H-NMR 0.11 0.29 1.7 0.09 0.27 1.7 1.0  3.4 Min et al., 2017 

Total amino acid 1H-NMR 13.22 33.89 21.8 11.97 32.85 20.9 1.04 N.A N.A 

Total catechins 1H-NMR 55.73 241.18 121.58 51.22 160.3 114.96 1.1* N.A N.A 

Total sweeteners 1H-NMR 4.37 22.91 9.3 3.51 15.81 8.7 1.07* N.A N.A 
 

*indicate a statistically significant difference in the mean concentration of the metabolite between the Comm and NComm cultivars at the 95% level of significance after 
correcting for multiple testing. N.A = not available.
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4. Discussion  

Metabolomics statistical data analysis can be employed as a supportive tool to aid breeders in 

the selection and improvement process for new tea cultivars. As mentioned, the objective of 

this study was to identify potential classifiers for the 310 genotypes investigated into either of 

the two groups, Comm or NComm cultivars, with GC-MS and 1H-NMR as the metabolomics 

platforms. Figures 1 and 2 show the PCA and PLS-DA plots, respectively, considering the 

clustering of the Comm vs the NComm cultivars. From these plots, it can be seen that there is 

some separation between the two groups in each platform. Table 1 and 2 show a total of 15 

and 19 metabolites, which were identified using GC-MS and 1H-NMR respectively. The GC-

MS results showed that arabinose, catechin, gallic acid, glycerol, phloroglucinol, sucrose and 

xylonic acid, a sugar acid generated through the complete oxidation of xylose, were 

detectable metabolites, which separated the Comm from the NComm cultivars in terms of 

arbitrary response units. Arabinose, sucrose and xylonic acid were higher in the Comm 

cultivars. These three metabolites have been shown to have positive correlations with 

metabolites such as ribose and sucrose, in other studies. They have been shown to play a role 

in improving the sweet taste of sugarcane (Lavarack et al., 2002) and to be up-regulated 

during strawberry fruit maturation (Zhang et al., 2010). It can thus be postulated that the tea 

cultivars with high levels of these sugars will produce sweet-tasting, higher-quality liquor. 

Arabinose has been reported in a study on serendipity berries from the Dioscoreophyllum 

cumminsii Diels plant, which is indigenous to tropical West Africa, and is grown in Guinea, 

Cameroon, and in the rain forests of central Africa. Arabinose levels were found to be higher 

in the fruits of some varieties of these berries and were determined to be the reason for the 

sweetness in these varieties (Inglett, 1971). In addition, polyols such as arabitol and ribitol, 

which also enhance the sweetness of fruits, have been reported in the literature at 

concentrations ranging between 20 and 60 mg/g dry weight (Roser et al., 1992). In a study 

evaluating the sucrose, and taste-related amino acids content in soybean, a sucrose 

concentration of 30.9 mg/g dry weight was reported (Kumar et al., 2011). The present study, 

however, detected average sucrose levels of 15 mg/g and 13.6 mg/g dry weight for the Comm 

and NComm cultivars respectively. Our results for higher concentrations of arabinose and 

sucrose in the Comm cultivars, agree with those in the literature where these compounds are 

higher in sweeter sugarcanes, ripening strawberries and sweeter cultivars of serendipity 

berries.  
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Literature has shown that abiotic stress such as drought affects the photosynthetic pathway of 

plants (Kerchev et al., 2012), and in so doing drastically impacts their primary metabolism, 

which in turn affects sugars, sugar alcohols, and amino acids. The DT plants, tend to be of a 

higher quality than the drought susceptible (DS), as they efficiently up-regulate their 

production of sugars, which they utilise as an energy source during stress (Kaplan and Guy, 

2004). This could also explain why the DT cultivars produce better tasting liquor. Further, 

carbohydrates have also been shown to influence the biosynthesis of other energy-generating 

metabolites, responsible for the alteration of gene expression and signal transduction 

(Hoekstra et al., 2001). Phloroglucinol is a plant polyphenolic compound, which possesses 

antioxidant properties. It has been compared to ascorbic acid, and has been shown to be more 

powerful against e.g. DPPH and peroxide radicals; it is considered a natural antioxidant 

(Adkins et al., 2007; Archana and Vijayalakshmi, 2018). Phloroglucinol has been described 

in the literature as sweet (Taylor, 1928), and contributes to the sweet fruity taste of the grapes 

used to make Pinot noir wines (Cortell et al., 2008). Phloroglucinol was one of the 

metabolites identified, which was higher in the Comm cultivars as compared to the NComm 

cultivars. The higher concentration of phloroglucinol in the Comm cultivars agrees with the 

higher concentration of this compound in sweet fruity Pinot noir grapes. The higher 

concentration of phloroglucinol in the Comm cultivars can be explained in part by the fact 

that DT cultivars have been shown to have higher levels of polyphenols, which in turn results 

in them having a higher levels of antioxidants so they are able to scavenge free radicals better 

than the DS cultivars and this results in their survival under drought stress (Nyarukowa et al., 

2016). Malic acid is a dicarboxylic acid, which was identified as a distinguisher between the 

Comm and NComm cultivars. This compound has been reported in ripening apples at 

concentrations of 10 mg/g (Ackermann et al., 1992); it has been reported to be responsible for 

the sour taste of fruits. In another study on apples by Ma et al., (2015), where the sugar and 

malic acid composition in cultivated vs wild apples was compared, it was found that a 

significant difference between the malic acid concentrations of the cultivated vs the wild 

apples existed. Furthermore, the study also showed that malic acid composition highly 

correlated with that of glucose and sucrose contents, suggesting that the selection of fruit 

acidity also has a significant effect on the amounts of sugars present in apple fruits. This 

means sugar metabolism is influenced by malic acid accumulation (Borsani et al., 2009). The 

wild apples were shown to be more acidic as compared to the cultivated apples. Apple 

breeders select for apples richer in malic acid content, due to its strong impact on sugar 

concentration in apples, resulting in sweeter apples (Ma et al., 2015). The Comm tea cultivar 
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results for malic acid agree with the malic acid results found in literature for commercial 

apple cultivars (Ma et al., 2015). Psicose was also detected in this study; this metabolite has 

been documented to confer sweetness to, for example, Worcester sauce and fruit juice. 

Oshima et al., (2006) reported psicose, a product of fructose breakdown, at concentrations 

ranging from 0.005 mg/g in coffee to 1.31 mg/g in Worcester sauce. Our study found the 

arbitrary psicose units to be significantly lower in the Comm cultivars compared to the 

NComm cultivars, indicating it is a significant distinguisher. 

Some key metabolites responsible for the taste of tea are caffeine, which comprises up to 5% 

of the shoot dry weight; theobromine and theophylline, which are < 3% of the shoot dry 

weight (Khan and Mukhtar, 2007). Caffeine has, in addition to being a stimulant, been 

documented to contribute to tea briskness (Nitin Seetohul et al., 2006), while theophylline 

and theobromine have been shown to contribute to the mellowness and sweetness of oolong 

tea (Chaturvedula and Prakash, 2011). Furthermore, research has shown that caffeine reduces 

weight gain by suppressing the accumulation of body fat (Kobayashi-Hattori et al., 2005). 

The 1H-NMR results indicate that levels of caffeine were higher in the Comm cultivars as 

compared to the NComm cultivars. According to Chin et al., (2008), the average caffeine 

content in black, and green tea is 7-30 mg/g serving of tea, with the average size of a tea bag 

being 2 g. The current untargeted study found average green leaf caffeine content of 12.6 and 

11.6 mg/g in the Comm and NComm cultivars, respectively. These results agree with those of 

Mazzafera and Silvarolla, (2010), which showed that coffee beans from high-quality cultivars 

had a higher caffeine concentration of 25 mg/g dry weight compared to the low-quality 

cultivars with a lower caffeine concentration of 9.64 mg/g. 

The 1H-NMR results show that amino acids valine and isoleucine were detected across all 

samples. These two amino acids were found to be higher in the Comm cultivars. A study on 

Poplar trees further showed that isoleucine levels were up-regulated in the DT Poplar trees 

than in the DS under drought stress (Hamanishi et al., 2015). Moreover, amino acids have 

been documented to improve taste and aroma in tea infusions, namely alanine, leucine, 

phenylalanine, tryptophan, tyrosine, and valine (Tan et al., 2011). Alanine and phenylalanine 

have been reported as being responsible for the flowery and rose-like aromas of tea, 

respectively, whilst leucine has been shown to produce a spicy aroma (Sanderson and 

Grahamm, 1973). 

Chlorogenic acid was one of the metabolites consistently detected in the Comm and NComm 

cultivars. Chlorogenic acid has been shown to contribute to bitterness (Iiyama et al., 1995) in 
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foods such as coffee. In a study by Szejtli and Szente, (2005), chlorogenic acid was 

complexed with the tasteless β-cyclodextrin, to eliminate the undesired bitter taste and 

resultant sensation in the mouth. This elimination of chlorogenic acid from coffee extracts 

using β-cyclodextrin was as efficient as using activated charcoal (Imamura et al., 1995). In 

another study on apples, it was shown that from the 20 varieties investigated, the sweeter 

varieties were those with lower chlorogenic acid concentrations, as low as 1.8 mg/g fresh 

weight, with the less sweet varieties having as high as 6.9 mg/g fresh weight (Marks et al., 

2007). In the present study, chlorogenic acid concentrations were comparable in both groups 

with the Comm and NComm cultivars having average dry weight concentrations of 4.2 and 4 

mg/g, respectively. 

Quinic acid was also detected in the Comm and NComm cultivars. Literature has documented 

quinic acid to be responsible for the astringency taste associated with coffee (Buffo and 

Cardelli-Freire, 2004). However, there was no statistically significant difference between the 

Comm and NComm cultivars for quinic acid. The metabolite 1-cyclohexenecarboxylic acid 

was also detected in the present study, and was significantly higher in the Comm cultivars 

than the NComm cultivars. Cinnamic acids are trans-phenyl-3-propenoic acids found in 

plants as e.g. p-coumaric, caffeic, ferulic, dimethoxycinnamic, and trimethoxycinnamic acids, 

to name a few. These metabolites conjugate, through their carboxylic groups, with amino 

acids, polysaccharides, and glycosides. The most predominant of these reactions is the 

transesterification with quinic acid to form cinnamate esters, which are collectively known as 

chlorogenic acids (Baeza et al., 2016). Furthermore, cinnamic acids conjugated with a 

derivative from quinic acid, shikimic acid, results in 3,4,5-trihydroxy-1-

cyclohexenecarboxylic acid, which is also a cinnamate ester (Jaiswal et al., 2010). These 

cinnamate esters are extensively found in fruits and vegetables, particularly green coffee 

beans, which are rich in this type of polyphenol, up to 14% (w/w) (Clifford, 2000). 1-

cyclohexenecarboxylic acid, like other chlorogenic acids, is bitter in taste, and has been 

documented to confer bitterness in green coffee beans (Baeza et al., 2016). 

The present study also detected methanol as a potential biomarker, separating the Comm 

from the NComm cultivars. In a study by Fall and Benson, (1996), it was documented that 

methanol is a natural metabolism product, emitted from plant leaves. Their study showed 

high concentrations of methanol in the forest air, similar to results reported in a separate 

study by Fehsenfeld et al., (1992), further substantiating the likelihood that the forest plants 

were producing this compound. Employing GC analysis or direct enzymatic analysis of gas-

phase methanol, significant methanol emissions were observed from the leaves of forest 
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plants using leaf and branch enclosure approaches, typically ranging between 0.0003 - 0.017 

mg methanol per g dry weight (MacDonald and Fall, 1993), with young leaves emitting up to 

0.04 mg methanol per g dry weight (Nemecek-Marshall et al., 1995). It has been postulated 

that the source of methanol in the leaves is cell wall pectin demethylation (O'neill et al., 

1990). Methanol has been shown to possess a sweet taste and is used in artificial sweeteners 

(Chattopadhyay et al., 2014). The present study found the concentrations of methanol in the 

Comm cultivars to be double that of the NCom, at 0.2 and 0.1 mg/g, respectively.  

Glycerol is another metabolite that was detected on the GC-MS platform. Literature shows 

that glycerol enhances the aroma and sweetness levels in wines. In a study investigating the 

effects of glycerol in red and white wines, it was documented that a glycerol concentration of 

10 g/L was sufficient to enhance the aroma, and suppress the bitterness, resulting in these 

wines being reported as sweet-tasting even when glucose and fructose levels were below the 

detection threshold reported in other studies (Jones et al., 2008; Sokolowsky and Fischer, 

2012). In earlier, similar studies, the glycerol sweetness thresholds for dry white wine were 

reported as 5.2 mg/g (Noble and Bursick, 1984) and 9 mg/g (Hinreiner et al., 1955). This 

study found no significant difference in the concentrations of glycerol in the Comm and 

NComm cultivars.   

Since several metabolites described above relate to sweetness, the summation of the 

metabolites; arabinose, arabitol, glycerol, malic acid, phloroglucinol, psicose, ribitol, sucrose, 

and xylonic acid for the GC-MS, and glucose, methanol and sucrose for the 1H-NMR, in each 

of the 310 cultivars was calculated. This sum of sweeteners was labelled total sweeteners. 

Interestingly, the total sweeteners were significantly higher (P<0.05) in Comm cultivars. We 

report here for the first time in the leaves of black tea cultivars that several metabolites, 

related to sweetness, which are higher in the Comm than the NComm cultivars. Sweetness 

may have contributed to these cultivars being selected for commercial production since the 

1950s. 

As documented below, several metabolites were also detected that are responsible for other 

taste qualities i.e. bitterness and umami. Plants are rich in bitter-tasting metabolites, which 

serve to deter herbivores. To reduce bitterness or off-taste, plants produce sweet, acidic, or 

strong fruity flavoured molecules, which mask the bad tastes (Ley, 2008; Tripathi et al., 

2011). The present study shows that the Comm cultivars have a higher total sweeteners 

concentration of 9.3 mg/g, which is significantly higher (P<0.05) from the total sweeteners 

concentration in the NComm of 8.7 mg/g dry weight. Furthermore, the total amino acid 
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concentration, calculated by adding the amino acids alanine, isoleucine, leucine, theanine, 

and valine, was higher in the Comm than the NCom, at 21.8 and 20.9 mg/g dry weight. These 

compounds could, therefore, mask the bitterness, resulting from e.g. caffeine and chlorogenic 

acid. As mentioned in the foregoing, amino acids are responsible for the aroma of tea, 

therefore, the higher the total amino acids, the more aromatic the tea. The total amino acid 

and total sweeteners concentrations being higher in the Comm cultivars result in the teas 

produced from these cultivars having a better taste. 

Linolenic acid was another metabolite detected by the GC-MS, which was higher but not 

statistically significant, in the Comm cultivars. Linolenic acid has been documented as being 

responsible for the bitter taste observed in soybean lecithins, and linseed oil obtained from 

different varieties (Stephan and Steinhart, 2000; Brühl et al., 2008). A study by Toumi et al., 

(2008), revealed linolenic acid to be the most abundant fatty acid in grapevine leaves, and it 

was higher in the leaves of DT cultivars, which corroborates our findings. The total lipid 

membrane composition in plants increases during drought, reducing the amount of water lost 

by the plant. It is therefore no surprise that DT cultivars have higher linolenic acid content, as 

it serves as a mechanism for coping with drought stress (Welti et al., 2002). Threonic acid is a 

by-product of ascorbate catabolism, whose production is induced, and regulated by stresses 

such as light and drought; this metabolite confers protection to the plant (Renault et al., 

2017). It has been documented to be involved in stomatal closure during drought stress 

(Valpuesta and Botella, 2004). The levels of threonic acid found in this study were 

significantly higher (P<0.05) in the Comm cultivars than the NComm cultivars. This is 

expected as threonic acid has been reported to confer drought tolerance properties in plants, 

and as such it can be postulated that this metabolite contributes to the drought tolerance 

properties observed in the Comm cultivars.  

Correlations have been documented in the literature between the umami taste found in green 

tea and theanine. Theanine concentrations have been reported to range between 10-50 mg/g 

dry weight (Vuong et al., 2011) in C. sinensis and the higher the concentration, the more the 

umami taste. The average theanine levels detected in this study were higher, but insignificant, 

in the Comm (8.6 mg/g) compared to the NComm cultivars (8.0 mg/g) dry weight. Gallic 

acid was detected to have slightly higher concentrations in the Comm cultivars (1.1 mg/g) 

than the NComm (1.0 mg/g). In a study by Kaneko et al. (2006), the umami taste intensity of 

green tea without any additives was evaluated and was scored at intensity of 1.5 out of five. 

However, following the addition of 5.4 mg/g of natural gallic acid, the intensity of the umami 
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taste increased to a score of 2.4. This higher umami score indicates the significance of gallic 

acid in the taste of tea. According to literature, fresh green tea leaves contain trace amounts of 

gallic acid, which then increase during the manufacturing process of black tea as a result of 

galloyl ester hydrolysis from the catechins and theaflavin gallates. The high levels of gallic 

acid in some cultivars have been attributed to correspondingly high levels of gallated 

catechins, which result in the generation and consequent degradation of the theaflavins. It has 

been documented that EGCg and ECg are principal taste metabolites in tea, which are 

responsible for tea astringency, while caffeine is responsible for bitterness (Xu et al., 2018). 

The gallated catechins ECg and EGCg significantly contribute to the generation of 

theaflavins in black tea. As such, high concentrations of ECg and EGCg may be markers for 

high-quality black teas. It has been reported that the ratio of di-hydroxyl flavan-3-ols to tri-

hydroxyl flavan-3-ols impacted the quality of black tea; high quantities of simple catechins 

such as catechin, EC and ECg compared to the gallo-catechins EGC and EGCg, results in 

higher amounts of theaflavins (Kwach et al., 2016). According to Hilton and Palmer-Jones 

(1973), the concentration of EGC in the fresh tea shoots strongly correlates with theaflavins 

amounts, thus influencing black tea pricing (Owuor and Obanda, 2007). The higher EGC 

found in the Comm cultivars agrees with Owuor and Obanda’s findings (Owuor and Obanda, 

2007).  

From the results obtained in the present study, the Comm cultivars had a significantly 

(P<0.05) higher total catechins content of 121.58 mg/g compared to the 114.96 mg/g dry 

weight of the NComm cultivars. The total catechins were calculated by adding CAT, EC, 

ECg, EGC, and EGCg. The catechins are the substrates from which theaflavins and 

thearubigins are produced during the manufacture of black tea. Theaflavins are responsible 

for the astringency, another important trait in the quality determination of tea. The theaflavin 

digallate, is approximately 6.4 times more astringent than theaflavin, while also being 2.88 

times more astringent than both theaflavin-3-monogallate and theaflavin-3’-monogallate 

(Obanda et al., 2001). According to Lin et al., (1996), a 200 mL cup of green tea contains 305 

mg EGCg, 145 mg EGC, 70 mg ECg, 28 mg EC, and 8 mg CAT. It can, therefore, be 

concluded that the total catechins may have contributed to the selection of the Comm 

cultivars since the 1950s.  
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5. Recommendation and conclusion 

Further targeted metabolomics studies are warranted on these metabolites reported in Table 1. 

This study successfully identified metabolites expressed differently in the Comm and 

NComm cultivars. The metabolites can be used for selection of high quality black and 

drought tolerant tea cultivars.  
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