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Abstract
A group G = AB is a weakly totally permutable product of subgroups A and B
if for every subgroup, U of A such that U 6 A \ B or A \ B 6 U, permutes with
every subgroup of B and if for every subgroup V of B such that V 6 A \ B
or A \ B 6 V , permutes with every subgroup of A. Let the soluble group G = AB
be a weakly totally permutable product of subgroups A and B. Suppose that F
is a saturated formation containing U. We show that if H is an F-normaliser of A
and K is an F-normaliser of B, then HK is an F-normaliser of G. This generalises a
corresponding result by Ballester-Bolinches, Pedraza-Aguilera and Pérez-Ramos for
totally permutable products.
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1 Introduction

All groups considered in this article are finite.
Recall that a group G = AB is the totally permutable product of

subgroups A and B if every subgroup of A permutes with every sub-
group of B. This type of factorisation was first considered by Asaad
and Shaalan in [1]. They showed that if G = AB is a totally per-
mutable product of supersoluble subgroups A and B, then G is su-
persoluble (see Theorem 3.1 of [1]). In a seminal paper, Ballester-Bo-
linches and Pérez-Ramos [6] extended the result above by showing
that G 2 F, if A,B 2 F, where F is a formation containing the class of
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finite supersoluble groups. A theory was developed by many authors
and compiled in a book by Ballester-Bolinches et al. [2].

A group G = AB is a weakly totally permutable product of sub-
groups A and B if for every subgroup, U of A such that U 6 A \ B
or A \ B 6 U, permutes with every subgroup of B and if for every
subgroup V of B such that V 6 A \ B or A \ B 6 V , permutes with
every subgroup of A.

Totally permutable products can be viewed as a generalisation
of central products and weakly totally permutable products can be
viewed as a generalisation of products G = AB with normal sub-
groups A and B such that A\B 6 Z(G), the centre of G.

Since the concept of weakly totally permutable products is strictly
more general than that of totally permutable products (see [8], Re-
mark), we ask which results on totally permutable products can be
generalised to weakly totally permutable? In [8] and [9] some results
on totally permutable products in the framework of formation theory
and Fitting classes were extended to weakly totally permutable prod-
ucts. In this note, we shall we focus our attention on F-normalisers
of weakly totally permutable products. We shall recall a characterisa-
tion of an F-normaliser of a group. Note that GF denotes the F-resi-
dual subgroup of the group G, �(G) denotes the Frattini subgroup
of G and F(G) its Fitting subgroup.

Definition Let F be an arbitrary set of groups. A normal sub-
group N of a group G is called an F-limit normal subgroup if N 6 GF

and N/(N\�(G)) is a chief factor of G.
A maximal subgroup M of G is called an F-critical subgroup

if G = MN for some F-limit normal subgroup N of G.

Theorem 1 (see [7], Chapter V, Proposition 3.8) A subgroup H of a
group G is called an F-normaliser of G if H 2 F and there is a chain

G = M0 > M1 > . . . > Ms = H, s > 0

of subgroups of G such that Mi is a maximal F-critical subgroup of Mi-1,
i 2 {1, 2, . . . , s}.

If F is a saturated formation and G is a finite group, then the exis-
tence of an F-normaliser in G is guaranteed and if H is an F-norma-
liser of G, then G = HGF. All F-normalisers of G are conjugate in G
(see [7], Chapter V, Theorem 3.2). For a proper definition an F-nor-
maliser and more of its properties, see Chapter V of [7].
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In general there is no connection between between F-normalisers
of a finite group and those of a proper subgroup. For totally per-
mutable products, Ballester-Bolinches, Pedraza-Aguilera and Pé-
rez-Ramos, in [3], proved the following result.

Theorem 2 (see [3], Theorem C) Let the soluble group G = AB be
the product of totally permutable subgroups A and B. Suppose that F is
a saturated formation containing U, the class of finite supersoluble groups.
If H is an F-normaliser of A and K is an F-normaliser of B, then HK is
an F-normaliser of G.

The condition that F contains U is necessary. For if F is the satu-
rated formation of nilpotent groups and G = S3 is the totally per-
mutable product of cyclic subgroups C2 and C3, then G is supersol-
uble but not nilpotent.

The authors in [4] extended the result above to products

G = G1G2 . . . Gn

of pairwise totally permutable subgroups G1, G2, . . . , Gn, where n
is a positive integer. We generalize Theorem 2 by showing the result
holds for products of weakly totally permutable subgroups.

Theorem 3 Let the soluble group G = AB be the product of weakly totally
permutable subgroups A and B. Suppose that F is a saturated formation
containing U. If H is an F-normaliser of A and K is an F-normaliser of B,
then HK is an F-normaliser of G.

2 Preliminaries

The results below will be useful to prove our main theorem.

Lemma 4 (see [8], Lemma 10) Let a group G = AB be the weakly totally
permutable product of subgroups A and B. Suppose that F is saturated
formation containing U. Then AF and BF are normal subgroups of G.

Lemma 5 (see [8], Theorem 1) Let a group G = AB be the weakly totally
permutable product of subgroups A and B. Suppose that F is saturated
formation containing U. Then AFBF = GF.

Lemma 6 Let G be a soluble group. Let H,K and N be subgroups of G
such that H is a maximal subgroup of K and N is a permutable subgroup
of G. Then either NH = NK or NH is a maximal subgroup of NK.
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Proof — Suppose NH 6= NK. We want to show that NH is a max-
imal subgroup of NK. Suppose that M be a subgroup of NK such
that

NH 6 M 6 NK.

If NH 6= M, then there is a g 2 M \NH and g = nk for some n 2 N
and k 2 K. Then k 2 M \H. Now hk,H,Ni 6 M. But

hk,H,Ni = hk,HiN = KN

by the maximality of H in K. Hence the result follows. ut

3 F-normalisers

We begin this section with a lemma on F-normalisers of weakly to-
tally permutable subgroups.

Lemma 7 Let the soluble group G = AB be the product of weakly totally
permutable subgroups A and B. Suppose that F is a saturated formation
containing U. If H is an F-normaliser of A and K is an F-normaliser of B,
then A\B 6 H and A\B 6 K.

Proof — Now H 2 F and A \ B 2 U ✓ F by Lemma 2 (iii) of [8].
Note that H(A\B) 2 F by Lemma 5 since H(A\B) is the product of
totally permutable subgroups H and A \ B. We show that H(A \ B)
is an F-normaliser of A. Since H is an F-normaliser, there is a chain

G = M0 > M1 > . . . > Ms = H, s > 0

of subgroups of G such that Mi is a maximal F-critical subgroup
of Mi-1, i 2 {1, 2, . . . , s}. Then

G = M0(A\B) > M1(A\B) > . . . > Ms(A\B) = H(A\B), s > 0.

Using Lemma 6, we refine the new chain to

G = M0(A\B) > M1(A\B) > . . . > Mr(A\B) = H(A\B)

with 0 6 r 6 s by removing Mj(A \ B) if Mj(A\B) = Mj-1(A\B)
for some j. Then Mj is a maximal F-critical subgroup of Mj-1,
i 2 {1, 2, . . . , r}. Hence H(A \ B) is an F-normaliser of A. Since H
and H(A \ B) are conjugate (see [7], Chapter V, Theorem 3.2), our
result follows.

Arguing in a similar fashion, we also have that A\B 6 K. ut
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We are ready to prove our theorem which we restate below.

Theorem 8 Let the soluble group G = AB be the product of weakly totally
permutable subgroups A and B. Suppose that F is a saturated formation
containing U. If H is an F-normaliser of A and K is an F-normaliser of B,
then HK is an F-normaliser of G.

Proof — We prove this theorem by induction on |G| + |A| + |B|.
If A 2 F and B 2 F, then G 2 F using Lemma 5. We may as-
sume that A does not belong F, that is, AF 6= 1. If AF is contained
in �(A), then A 2 F since F is a saturated formation, a contradiction.
Hence AF is not contained in �(A). Since A is soluble, there is a sub-
group T of A such that F(AF/(AF \�(A))) = T/(AF/(AF \�(A)) 6= 1.
Note that T \�(A) = AF \�(A). Using Theorem 3.7 of [5], it follows
that T is a nilpotent subnormal subgroup of G. Choose a maximal
subgroup M of A such that T is not contained in M. Then

A = TM = AFM = F(A)M.

Therefore M is a maximal F-critical subgroup of A. By Lem-
ma 3.7 (Chapter V) of [7], an F-normaliser of M is also an F-nor-
maliser of A. Since F-normalisers of A are conjugate by Theorem 3.2
(Chapter V) of [7], we may assume that H 6 M. Now,

G = T(MB) = F(G)(MB) = GF(MB).

This is because AF 6 GF by Lemma 4. Note that A \ B 6 H 6 M
by Lemma 7. If G = MB, then G is the product of weakly totally
permutable subgroups M and B and also

|G|+ |M|+ |B| < |G|+ |A|+ |B|.

Using induction, we have that HK is an F-normaliser of G and the
result follows. We may assume that MB < G. But MB is a maxi-
mal F-critical subgroup of G. Note that by induction, HK is an F-nor-
maliser of MB. Using Lemma 3.7 (Chapter V) of [7], we have that HK
is also an F-normaliser of G and the result follows. ut
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