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Abstract. We consider the representation of forward entropic risk measures using the
theory of ergodic backward stochastic differential equations in a jump-diffusion framework.
Our paper can be viewed as an extension of the work considered by Chong et al [6] in
the diffusion case. We also study the behaviour of a forward entropic risk measure under
jumps when a financial position is held for a longer maturity.

1. Introduction

The purpose of this paper is to study an ergodic risk representation for the forward
entropic risk measure in a discontinuous setting, the jump-diffusion framework. In this
framework, we investigate the behaviour of the forward entropic risk measure when the
underlying stock price process is driven by an independent Brownian motion and the
Poisson processes. This risk measure is in a category of maturity-independent risk measures
introduced by Zariphopoulou and Žitković in [34]. The weakness of the classical coherent
or dynamic risk measures is that of the fixed time horizon. It is set at the beginning of the
investment period. If not this presents a challenge to determine whether the risk measure
is still the same after the fixed time horizon. This was the focus of the discussion in Chong
et al [6] we want to revisit and discuss it in a different framework.

Zariphopoulou and Žitković in [34] proposed maturity-independent risk measures to ad-
dress how to assess risk positions when the time horizon is not fixed. They formulated
the forward entropic risk measures using the forward exponential performance processes.
These forward performance processes are introduced and developed by Musiela and Za-
riphopoulou in ([22], [23], [24], [25]) to measure investment performance across all times

E-mail address: rodwell.kufakunesu@up.ac.za, lesedi.mabitsela@up.ac.za,

calistoguambe@yahoo.com.br or calisto.guambe@up.ac.za.
Date: May 17, 2022.
Key words and phrases. Forward exponential performance, Maturity independent risk measure, For-

ward entropic risk measure, Jump-diffusion, Ergodic backward stochastic differential equations, Long-term
maturity behaviour.
* Corresponding author.

1



2

t ∈ [0,∞), which makes the forward entropic risk measures to be defined for all times. Re-
cently, Liang and Zariphopoulou in [16] proposed the use of the ergodic backward stochastic
differential equation (ergodic BSDE) to construct the forward performance processes.

Kobylanski introduced BSDEs with the quadratic growth and random terminal time in
[15] and her work was developed by Briand and Confortola in [5]. Later, Morlais in [19]
proved existence and uniqueness results for the BSDEs with quadratic growth in a jump
framework (see also [20], [21] for further contributions).

Fuhrman et. al [11] introduced the notion of ergodic BSDE in and developed further
by Debusshe et. al [8]. The ergodic BSDEs are an asymptotic limit of the infinite horizon
BSDEs (as shown in [11] and [8]) and are represented as follows

dYt = (−g(Vt, Zt) + λ)dt+ ZtdWt,

where λ ∈ R is part of the solution. Cohen and Fedyashov [7],[10] extended the ergodic
BSDE to a jump-diffusion framework and is represented as follows

dYt = (−g(Vt, Zt,Ψt) + λ)dt+ ZtdWt +

∫
R\{0}

ΨtÑ(dt, dζ),

where 0 ≤ t ≤ T < ∞. We adapt this jump model with a different generator. In
our analysis, we extend and study with a quadratic growth in the control variable. The
structure of our paper is similar in some respects to that of Zariphopoulou and Žitković
[34]. We further study the behaviour of a forward entropic risk measure as the terminal
time of the investment period goes to infinity.

The rest of the paper is organized as follows. In Section 2, we introduce the jump-
diffusion model and all the notations that will be used in the rest of the paper. Section 3,
we provide the representation of the forward entropic risk measure using the classic BSDE
and the ergodic BSDE in a jump model setting. Section 4 analyzes the behaviour of a
forward entropic risk measure over a long-term horizon. Finally, we conclude the paper.

2. Problem Formulation

Suppose that (Ω,F , {Ft}t≥0,P) is the filtered probability space satisfying the usual con-
ditions (completeness and right-continuous) [33]. The filtration is generated by two in-
dependent processes, d-dimensional standard Brownian motion {Wt, t ≥ 0} defined on
Ω× [0,∞) and the compensated Poisson random measure Ñ(dt, dζ) = N(dt, dζ)− ν(dζ)dt
defined on Ω× [0,∞)×R\{0}. Here, N(dt, dζ) counts the number of jumps that occur on
or before t, and ν is a positive Lévy measure satisfying the conditions∫

|ζ|≤1

|ζ2|ν(dζ) <∞

and ∫
|ζ|≥1

ν(dζ) <∞.
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The last condition implies that the stock process has finite number of jumps with absolute
value greater than one [32] (Section 3.4).

Throughout this paper, we consider the following spaces of random and stochastic pro-
cesses:

(i) L∞(Ft) is the space of Ft-measurable, essentially bounded random variables. We
denote by L := ∪t≥0L∞(Ft) the space of all risk positions.

(ii) S∞(R) is the space of adapted processes Y : Rd → R with càdlàg path such that

ess sup
t
|Y (Vt)| <∞.

(iii) L2(W ) is the space of predictable processes Z : Rd → Rd such that

E[

∫ t

0

|Z(Vu)|2du] <∞.

(iv) L2
ν(Ñ) denotes the space of predictable processes Υ : Rd ×R\{0} → Rd, satisfying

E
[ ∫ t

0

∫
R\{0}

|Υ(Vu, ζ)|2ν(dζ)du
]
<∞.

Furthermore, we present the concept of bounded mean oscillating (BMO) martingale also
found in [19] (Page 3) and also in [14]. A process M := (M(t), 0 ≤ t ≤ T <∞) belonging
to Ft-local martingale is said to be a BMO martingale if it is a square integrable càdlàg
R-valued martingales and if there exists a constant C > 0 such that

E[〈M〉T − 〈M〉τ |Fτ ] ≤ C and |∆Mτ | ≤ C

for all F -stopping times τ , with 〈M〉 denoting the quadratic variation of M . The second
condition is to ensure boundedness to the jumps of M .

We recall from [34] (Definition 3.1) the definition of maturity-independent convex risk
measure.

Definition 2.1. A functional ρ : L → R is a maturity-independent convex risk measure if
it satisfies the following properties for all ξ, ξ̄ and α ∈ (0, 1) :

(i) Anti-positivity: ρ(ξ) ≤ 0, ∀ ξ ≤ 0,
(ii) Convexity: ρ(αξ + (1− α)ξ̄) ≤ αρ(ξ) + (1− α)ρ(ξ̄),

(iii) Translation invariance: ρ(ξ − c) = ρ(ξ) + c, ∀ c ∈ R,
(iv) Replication and maturity independent: ∀ t ≥ 0 and admissible investment strategies

π,

ρ(ξ) = ρ

(
ξ +

∫ t

0

πu
dSu
Su

)
.

As asserted in [34] (Section 2), the difference between maturity independent and stan-
dard risk measure is the choice of the domain L and the case that in Definition 2.1(iv) is



4

valid for all maturities t ≥ 0.

We consider a financial market with n risky investments, with price processes, Sit for
i = 1, . . . , n, satisfying the following stochastic differential equation (SDE)

dSit
Sit

= µi(Vt)dt+ σi(Vt)dWt +

∫
R\{0}

Υi(Vt, ζ)Ñ(dt, dζ), Si0 > 0. (2.1)

The coefficients of the stock price Si are affected by a stochastic factor, which is modelled
by a d-dimensional stochastic process V, satisfying:

dVt = η(Vt)dt+ κdWt. V0 = v0 > 0. (2.2)

We impose the following assumptions to the coefficients so that Equations (2.1) and
(2.2) have solutions.

Assumption 1. The drift µi(v) ∈ R, volatility σi(v) ∈ R1×d and jump rate Υi(v, ζ) > −1
are Ft-predictable and bounded processes for v ∈ Rd, satisfying the following condition∫ T

0

(
|µ(vt)|+ σ2(vt) +

∫
R\{0}

(Υi)2(vt, ζ)ν(ζ)
)
dt <∞, a.s.

Assumption 2. There exists a large enough constant Cη > 0, for v1, v2 ∈ Rd such that
the drift coefficient η(v) ∈ Rd of the factor model satisfies:

(η(v1)− η(v2))(v1 − v2) ≤ −Cη|v1 − v2|2.
Furthermore, the volatility matrix κ ∈ Rd×d is positive definite and normalized to |κ| = 1.

Let πit be a self-financing portfolio representing the amount of wealth invested in stock
i. The wealth process X solves

dXt =
n∑
i=1

πitdS
i
t

Sit
= πt

(
µ(Vt)dt+ σ(Vt)dWt +

∫
R\{0}

Υ(Vt, ζ)Ñ(dt, dζ)
)
, X0 > 0, (2.3)

where the initial wealth is given by X0 = x ∈ R. An investment strategy πt ∈ Rn is said to
be admissible if it is Rn valued Ft-progressively measurable satisfying E(

∫ t
0
|π2
t |ds < ∞).

The process Xt is a unique strong solution of Equation (2.3) using πt, such that Xt ≥ 0
for all t ≥ 0, a.s. The set of all admissible strategies is denoted by A.

We now recall from [6] (Definition 2) the notion of forward performance process.

Definition 2.2. A process U(t, x), (t, x) ∈ [0,∞) × R, is a forward performance process
if:

(i) for each x ∈ R, U(t, x) is Ft−progressively measurable,
(ii) for each t ≥ 0, the mapping x 7→ U(t, x) is strictly increasing, strictly concave, con-
tinuously differentiable and satisfies the Inada conditions, i.e. limx→∞ U

′(x) = 0 and
limx→−∞ U

′(x) = +∞.
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(iii) for all π ∈ A and 0 ≤ t ≤ s,

U(t,Xπ
t ) ≥ EP[U(s,Xπ

s )|Ft],
and there exists an optimal π̃ ∈ A such that,

U(t,X π̃
t ) = EP[U(s,X π̃

s )|Ft],
with Xπ, X π̃ solving Equation (2.3).

We derive the associated stochastic partial differential equation (SPDE) for the perfor-
mance process by applying the Itô-Ventzell formula to U(t, x) for any strategy π ∈ A (see
[26] on deriving the SPDE and [28] for the Itô-Ventzell formula for a jump process). We
first assume that U(t, x) admits the Lêvy decomposition

dU(t, x) = b(t, x)dt+ a(t, x)dWt +

∫
R\{0}

Φ(t, x, ζ)Ñ(d−t, dζ),

where the processes b(t, x), a(t, x) and Φ(t, x, ζ) are Ft−progressively measurable processes
and Ñ(d−t, dζ) represents a forward integral. Then we obtain

dU(t,Xt)

= b(t,Xt)dt+ a(t,Xt)dWt + Ux(t,Xt)dXt +
1

2
Uxx(t,Xt)d〈X〉t + ax(t,X)d〈W,X〉t

+

∫
R\{0}

[U(t,Xt + πΥ(t, ζ))− U(t,Xt)− Ux(t,Xt)πΥ(t, ζ)]ν(dζ)dt

+

∫
R\{0}

[Φ(t,Xt + πΥ(t, ζ))− Φ(t,Xt)]ν(dζ)dt

+

∫
R\{0}

[
U(t−, Xt− + πΥ(t, ζ))− U(t−, Xt−)

+Φ(t−, Xt− + πΥ(t, ζ))
]
Ñ(d−t, dζ)

=

[
b(t,Xt) + πµ(Vt)Ux(t,Xt) + πσ(Vt)ax(t,Xt) +

1

2
π2σ2(Vt)Uxx(t,Xt)

+

∫
R\{0}

(
[U(t,Xt + πΥ(t, ζ))− U(t,Xt)− Ux(t,Xt)πΥ(t, ζ)]

+[Φ(t,Xt + πΥ(t, ζ))− Φ(t,Xt)]ν(dζ)

]
dt

+

(
a(t,Xt) + πσ(Vt)Ux(t,Xt)

)
dWt +

∫
R\{0}

[
U(t−, Xt− + πΥ(t, ζ))

−U(t−, Xt−) + Φ(t−, Xt− + πΥ(t, ζ))
]
Ñ(d−t, dζ). (2.4)

The volatility a(t, x) and the process Φ(t, x, ζ) for t ≥ 0 are model inputs determined by
the investor’s preference.
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From Definition 2.2, we know that the process U(t,Xπ
t ) is a super-martingale for any

admissible investment strategy π, that is

U(t,Xπ) ≥ E[U(t, x)].

Hence, there exists an optimal strategy π̃ when the process U(t,Xπ
t ) is a true martingale.

The process U(t,Xπ
t ) is a true martingale when the drift term in Equation (2.4) is zero.

Therefore the optimal strategy is given by

π̃ = inf
π∈A

[
πµ(Vt)Ux(t,Xt) + πσ(Vt)ax(t,Xt) +

1

2
π2σ2(Vt)Uxx(t,Xt)

+

∫
R\{0}

(
[U(t,Xt + πΥ(t, ζ))− U(t,Xt)− Ux(t,Xt)πΥ(t, ζ)]

+[Φ(t,Xt + πΥ(t, ζ))− Φ(t,Xt)]

)
ν(dζ)

]
.

We consider an exponential forward performance process given by

U(t, x) = −e−γx+f(t,Vt), (t, x) ∈ [0,∞)× R (2.5)

where γ > 0 and a function f : [0,∞) × Rd → R. By the application of Itô’s formula
to U(t, x) and setting the resulting drift term to zero, we see that the function f solves a
semi-linear partial differential equation of the form

0 =
∂

∂t
f + η(Vt)∇f +

1

2
κ2∇2f + g(v, κ∇f,Υ),

with g defined as

g(v, κ∇f,Υ) =
1

2
γ2σ2(v)

[
π −

µ(v)− 1
2
σ(v)κ∇f

γσ2(v)

]2

+
1

2

(
µ(Vt)−

1

2
σ(v)κ∇f

)
+

1

2
κ2(∇f)2

+

∫
R\{0}

[
e−γπΥ(t,ζ) − 1 + γπΥ(t, ζ)

]
ν(dζ). (2.6)

We consider the following ergodic backward stochastic differential equation

dYt = (−g(Vt, Zt,Ψt) + λ)dt+ ZtdWt +

∫
R\{0}

Ψ(Vt, ζ)Ñ(dt, dζ), (2.7)

for 0 ≤ t ≤ T <∞ and a given function g : Rd×Rd×Rd → R and Zt ∈ L2(W ), Ψ(Vt, ζ) ∈
L2
ν(Ñ). To ensure the solution to (2.7) exists and it is unique we have to impose certain

assumptions on g.

Assumption 3. There exist constants K > 0, K̂ > 0 Cv > 0 and Cz > 0 such that the
generator g satisfy

|g(t, 0, 0, 0)| ≤ K̂. (2.8)

|g(v1, z, ψ)− g(v2, z, ψ)| ≤ Cv(1 + |z|)|v1 − v2|, (2.9)
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and
|g(v, z1, ψ)− g(v, z2, ψ)| ≤ Cz(1 + |z1|+ |z2|)|z1 − z2| (2.10)

for any v1, v2, z1, z2 ∈ R.

Furthermore, there exists −1 < K1 ≤ 0 and K2 ≥ 0 such that

g(v, z, ψ1)− g(v, z, ψ2) ≤
∫
R\{0}

(ψ1 − ψ2)ϕv,z,ψ1,ψ2(ζ)ν(dζ) (2.11)

where ϕv,z,ψ1,ψ2 : Ω× [0, T ]×Rd×Rd×R\{0} → [−1,∞) is P⊗B-measurable and satisfies
K1(1 ∧ |ζ|) ≤ ϕ(ζ) ≤ K2(1 ∧ |ζ|) (see Section 2 of [31]). With P denoting the predictable
σ-field and B the Borel σ-field on R.

Theorem 2.1. Suppose Assumption (1), (2) and (3) hold. Then, the ergodic BSDE (2.7)
with generator given by

g(v, z(vt),Ψ(vt, ζ)) =
γ2

2

[
πσ(v)− µ(vt)/σ(vt)− z(vt)

γ

]2

+
1

2

(
µ(vt)/σ(vt)− z(vt)

)2
+

1

2
z2(vt)

+

∫
R\{0}

[
e−γπΥ(vt,ζ)+Ψ(vt,ζ) − 1− γπΥ(v, ζ) + Ψ(v, ζ)

]
ν(dζ), (2.12)

has a unique Markovian solution

(Y, Z,Ψ, λ) = (y(Vt), z(Vt), ψ(Vt), λ),

for 0 ≤ t ≤ T <∞, with

|Yt| ≤
K

α
, |Zt| ≤ Cz :=

Cv
Cη − Cv

and |Ψ(vt, ζ)| ≤ 2K

α
. (2.13)

Proof. For the proof, we adapted the method in [6] (see also Appendix section of [16], Page
27) to jump framework. We start by establishing that the driver g satisfies Assumptions
(3). We consider truncation functions q̃ : Rd → Rd, defined as

q(z) :=
min(|z|, Cz)
|z|

z1{z 6=0}, and q̃(ψ) := 1|ψ|≤1.

and define a truncated ergodic BSDE

dYt = (−g(Vt, q(Zt), q̃(Ψt)) + λ)dt+ ZtdWt +

∫
R\{0}

Ψ(Vt, ζ)Ñ(dt, dζ), (2.14)

for t ≥ 0. We verify that the generator g(v, q(z), q̃(ψ)) satisfies Assumption (3), i.e.

|g(v1, q(z), q̃(ψ))− g(v2, q(z), q̃(ψ))| ≤ Cv(1 + Cz)|v1 − v2|, (2.15)

|g(v, q(z1), q̃(ψ))− g(v, q(z2), q̃(ψ))| ≤ Cz(1 + 2Cz)|z1 − z2| (2.16)

and

|g(v, q(z), q̃(ψ1))− g(v, q(z), q̃(ψ2))| ≤
∫
R\{0}

(ψ1 − ψ2)ϕv,z,ψ1,ψ2(ζ)ν(dζ). (2.17)



8

We now, have to prove that there exists a Markovian solution (Yt, Zt,Ψt, λ) to the truncated
ergodic BSDE (2.14) that satisfies |Zt| ≤ Cz and |Ψ(vt, ζ)| ≤ 2K

α
for t ≥ 0, then q(Zt) = Zt

and q̃(Ψt) = Ψt. As a result, this solution (Yt, Zt,Ψt, λ), will also solve the ergodic BSDE
(2.7). For this part of the proof, we consider a strictly monotonic BSDE with a constant
of monotonicity α > 0, on a finite horizon [0, n], i.e.

Y v,α,n
t =

∫ n

t

(g(Vu, q(Z
v,α,n
u ), q̃(Ψv,α,n

u ))− αY v,α,n
u )du+

∫ n

t

Zv,α,n
u dWu (2.18)

+

∫ n

t

∫
R\{0}

Ψv,α,n(Vu, ζ)Ñ(du, dζ).

We deduce from Cohen and Fedyashov [7], Theorem 8, (see also [4] for the diffusion case),
that BSDE (2.18) has a unique solution (Y v,α,n

t , Zv,α,n
u ,Ψv,α,n

u ) satisfying |Yt| ≤ K
α

with

Zv,α,n
u ∈ L2(W ) and Ψv,α,n

u ∈ L2
ν(Ñ). Moreover, we conclude that (Y v,α,n

t , Zv,α,n
u ,Ψv,α,n

u ), is
a unique adapted square integrable solution to the BSDE (2.18) for t ≥ 0. Hence, there
exists an adapted square integrable limiting processes (Y v,α

t , Zv,α
u ,Ψv,α

u ) such that

lim
n→∞

(Y v,α,n
t , Zv,α,n

u ,Ψv,α,n
u ) = (Y v,α

t , Zv,α
u ,Ψv,α

u ),

with |Yt| ≤ K
α

. Furthermore, the solution is Markovian, that is, there exist functions
yα(·), zα(·) and ψα(·) such that

(Y v,α
t , Zv,α

t ,Ψv,α
t ) = (yα(Vt), z

α(Vt), ψ
α(Vt)),

is a solution to the infinite horizon BSDE

dY v,α
t = (−g(V v

t , q(Z
v,α
t ), q̃(Ψv,α

t )) + αY v,α
t ) + Zv,α

t dWt +

∫
R\{0}

Ψv,α
t Ñ(dt, dζ). (2.19)

The next part of the proof is to demonstrate that the Lipschitz continuity property

|yα(V v1
t )− yα(V v2

t )| ≤ Cz|V v1
t − V v2

t | ,
for all v1, v2 ∈ Rd with the Lipschitz constant Cz. Let δYt = Y α,v1

t − Y α,v2
t , δZt =

Zα,v1
t − Zα,v2

t and δΨt = Ψα,v1
t −Ψα,v2

t , for t ≥ 0. Subsequently

dδYt = −(g(V v1
t , q(Zα,v1

t ), q̃Ψ(V α,v1
t ))− g(V v2

t , q(Zα,v2
t ), q̃Ψ(V α,v2

t )))dt+ αδYtdt+ δZtdWt

+

∫
R\{0}

δΨtÑ(dt, dζ)

= −(g(V v1
t , q(Zα,v1

t ), q̃Ψ(V α,v1
t ))− g(V v2

t , q(Zα,v2
t ), q̃Ψ(V α,v2

t )))dt+ αδYtdt

+δZt(dWt − βtdt) +

∫
R\{0}

δΨt(N(dt, dζ)− ϕv,z,ψ1,ψ2ν(dζ)dt), (2.20)

where

βt =
g(V v1

t , q(Zα,v1
t ), q̃Ψ(V α,v1

t ))− g(V v2
t , q(Zα,v2

t ), q̃Ψ(V α,v2
t ))

|δZt|2
δZt1δZt 6=0
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By Inequality (2.15), β is bounded. From the Girsanov’s theorem we define W β
t = Wt −∫ t

0
βudu and Ñϕ(dt, dζ) = N(dt, dζ) −

∫ t
0
ϕv,z,ψ1,ψ2ν(dζ)du, for 0 ≤ t ≤ T , where ϕv,z,ψ1,ψ2

is defined in Assumption (2.11). Therefore taking conditional expectation with respect to
Q on Ft for 0 ≤ t < T <∞, we get

δYt = e−α(T−t)EQ[δYT |Ft] + EQ
[ ∫ T

t

e−α(u−t)δgudu|Fu
]
.

From condition (2.13), we note that the first expectation is bounded by 2K/α, and therefore
will go to zero as T →∞. We deduce from (2.15) that the second expectation is bounded
by

EQ
[ ∫ T

t

e−α(u−t)δgudu|Fu
]
≤ Cv(1 + Cz)EQ

[ ∫ T

t

e−α(u−t)|V v1
u − V v2

u |du|Fu
]

≤ Cv(1 + Cz)
eαt(e−(α+Cη)t − e−(α+Cη)T )

α + Cη
|v1 − v2|. (2.21)

The last inequality is based on the Grownwall Inequality. Hence, as T →∞ yields

|yα(V v1
t )− yα(V v2

t )| ≤ Cz|V v1
t − V v2

t |. (2.22)

To obtain the third inequality in Condition (2.15), we consider a stochastic factor with
a jump term 1, this yields

dVt = η(Vt)dt+ κdWt +

∫
R\{0}

ζÑ(dt, dζ) ,

where the coefficients satisfy Assumptions (1) and (2). Suppose that yα(·) ∈ C2(Rd). By
Itô’s formula to yα(V v

t ) we get

dyα(V v
t ) = ∇yα(V v

t )η(V )dt+∇yα(V v
t )κdWt +

1

2
∇2yα(V v

t )κ2dt∫
R\{0}

(yα(V v
t + ζ)− yα(V v

t )−∇yα(V v
t )ζ)ν(dζ)dt

+

∫
R\{0}

(yα(V v
t + ζ)− yα(V v

t ))Ñ(dt, dζ).

(2.23)

Comparing terms in the infinite horizon BSDE (2.19) and Equation (2.23), we deduce that

Zα,v
t = ∇yα(V v

t )κ, (2.24)

1Note that for this work we consider a stochastic factor in the diffusion case throughout the paper. If
we include a jump term in the stochastic factor then our generator will be dependent on the Y variable.
Hence, the stochastic factor with jumps will not be ideal for risk representation using BSDE, because the
translation invariance property will not hold.
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αY v,α
t = ∇yα(V v

t )η(V ) +
1

2
∇2yα(V v

t )κ2 +

∫
R\{0}

(yα(V v
t + ζ)− yα(V v

t )−∇yα(V v
t )ζ)ν(dζ)

+g(V v
t , q(Z

v,α
t ), q̃(Ψv,α

t )) (2.25)

and

Ψ(Vt, ζ) = yα(V v
t + ζ)− yα(V v

t ), (2.26)

for v ∈ Rd. Equation (2.25) is a Partial Integro-Differential Equation (PIDE) with a unique
bounded solution, yα(·) ∈ C2(Rd). We conclude that |yα(v)| ≤ K

α
. Furthermore, using As-

sumption (2) and Equation (2.24) and from condition (2.22), we conclude that for t ≤ 0,
|Zα,v

t | ≤ Cz. From Equation (2.26), we have that |Ψ(Vt, ζ)| ≤ 2K
α

.

To show that λ is a constant, the proof follows similarly as in Lian and Zariphopoulou
[16] (Appendix Section, Page 30). �

In the following theorem, we connect the solution of the ergodic BSDE with jumps (2.7)
to the exponential forward performance process (2.5). To do this, we adopt the procedure
by Liang and Zariphopoulou [16] (in Theorem 11), where they made the same connection
under the diffusion case.

Theorem 2.2. Suppose that Assumptions 1 and 2 hold, and let (Yt, Zt,Ψt, λ), t ≥ 0 be a
unique Markovian solution to Equation (2.7). Then,

(i) the process U(t, x), (t, x) ∈ [0,∞) × R, is an exponential forward performance
process defined as

U(t, x) = −e−γx+Yt−λt, (2.27)

with volatility

a(t, x) = −e−γx+Yt−λtZt

and jump rate

Φ(t, x, ζ) = −e−γx+Yt−λt(e−Ψ − 1).

(ii) The optimal investment strategy is given by

π̃ = inf
π∈A

(
γ2

2

[
πσ(v)− µ(vt)/σ(vt)− z(vt)

γ

]2

+
1

2

(
µ(vt)/σ(vt)− z(vt)

)2
+

1

2
z2(vt)

+

∫
R\{0}

[
e−γπΥ(vt,ζ)+Ψ(vt,ζ) − 1− γπΥ(v, ζ) + Ψ(v, ζ)

]
ν(dζ)

)
. (2.28)

Proof. We start by first showing that U(t, x) satisfies the super-martingale property for
any admissible investment strategy π ∈ A for all 0 ≤ t ≤ s, that is

EP[−e−γx+Ys−λs|Ft] ≤ −e−γx+Yt−λt,

and for an optimal investment strategy π̃, U(t, x) is a martingale, that is,

EP[−e−γXπ̃+Ys−λs|Ft] = −e−γXπ̃+Yt−λt.
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Based on the wealth process (2.3), e−γX can be written as

e−γXs = e−γXu exp

{
−
∫ s

t

γπµ(Vu)du−
∫ s

t

γπσ(Vu)dWu −
∫ s

u

∫
R\{0}

γπΥ(u, ζ)Ñ(du, dζ)

}
.

(2.29)

On the other hand, the ergodic BSDE (2.7) is given by

Ys − λs = Yt − λt−
∫ s

t

g(Vu, Zu,Ψu)du+

∫ s

t

ZudWu +

∫ s

t

∫
R\{0}

Ψ(u, ζ)Ñ(du, dζ).

Combining the above expressions yields

e−γXs+Ys−λs = e−γXt+Yt−λt exp

{
−
∫ s

t

(
γµ(Vu)π + g(Vu, Zu,Ψu)

)
du

−
∫ s

t

(γπσ(Vu)− Zu)dWu

−
∫ s

t

∫
R\{0}

(γπΥ(v, ζ)−Ψ(v, ζ))Ñ(du, dζ)

}
. (2.30)

Then we take expectation under the probability measure P, given Ft, i.e.,

EP[e−γXs+Ys−λs | Ft] = e−γXt+Yt−λtEP

[
exp

{
−
∫ s

t

(
γµ(Vu)π + g(Vu, Zu,Ψu)

)
du

−
∫ s

t

(γπσ(Vu)− Zu)dWu

−
∫ s

t

∫
R\{0}

(γπΥ(v, ζ)−Ψ(v, ζ))Ñ(du, dζ)

}∣∣∣∣Ft]. (2.31)

We define a new probability measure Q, for s ≥ 0 and π ∈ A using the process M̃u,
u ∈ [0, s] defined as the Radon-Nikodym derivative of Q with respect to P, therefore

M̃u =
dQ
dP

∣∣∣∣
Ft

= E(M)u,

where

Mu = exp

{
−
∫ s

t

(γπσ(Vu)− Zu)dWu −
∫ s

t

∫
R\{0}

(γπΥ(v, ζ)−Ψ(v, ζ))Ñ(du, dζ)

}
.

Since the processes Zu, πu and Ψu belong to BMO(P), the process Mu is a BMO-
martingale, and consequently the stochastic exponential E(M)u is a true martingale (see
Lemma 2 in [19]). Hence

EP

[
exp

(∫ s

t

(
gπ(Vu, Zu,Ψu)− g(Vu, Zu,Ψu)

)
du

)
M̃s

M̃t

∣∣∣∣Ft]
= EQ

[
exp

(∫ s

t

(
gπ(Vu, Zu,Ψu)− g(Vu, Zu,Ψu)

)
du

)∣∣∣∣Ft], (2.32)
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with

gπ(v, z(vt), ψ(vt, ζ)) :=
γ2

2

[
πσ(v)− µ(vt)/σ(vt)− z(vt)

γ

]2

+
1

2

(
µ(vt)/σ(vt)− z(vt)

)2
+

1

2
z2(vt)

+

∫
R\{0}

[
e−γπΥ(vt,ζ)+ψ(vt,ζ) − 1− γπΥ(v, ζ) + ψ(v, ζ)

]
ν(dζ).(2.33)

Since gπ(v, z(Vt), ψ(v, ζ)) ≤ g(v, z(Vt), ψ(v, ζ)), we can conclude that

EP[−e−γXπ+Ys−λs|Ft] ≤ −e−γX+Yt−λt.

Further, for π = π̃ defined in (2.28), we have gπ̃(v, z(Vt), ψ(vt)) = g(v, z(Vt), ψ(vt)) and
hence

EP[−e−γXπ̃+Ys−λs|Ft] = −e−γXπ̃+Yt−λt.

To show the second part of the theorem, we apply Itô’s formula to Equation (2.27) that
yields,

dU(t, x) = (· · · )dt+ U(Zt − γπσ(Vt))dWt + U

∫
R\{0}

(e−γπΥ(v,ζ)+Ψ(v,ζ) − 1)Ñ(dt, dζ).

We then, compare the above equation to Equation (2.4) and obtain the following

a(t, x) = −e−γx+Yt−λtZt,

and
Φ(t, x, ζ) = −e−γx+Yt−λt(e−Ψ − 1).

It is not difficult to see that the infimum function in Equation (2.28) is convex with
respect to π that is the second derivative respect to π of the infimum function is positive.
Therefore the minimum in Equation (2.28) exists. �

3. Forward entropic risk measure and ergodic BSDE with jumps

In this section, we recall the definition of forward entropic risk measure. We then provide
the representation of a forward entropic risk measure as the solution of a BSDE and ergodic
BSDE.

Definition 3.1. Consider the forward exponential performance process
U(x, t) = −e−γx+Yt−λt, with (t, x) ∈ [0,∞) × R. Consider a risk position ξT ∈ L∞T , where
T > 0 is arbitrary and the risk position is entered into at the initial time t = 0. Then,
the forward entropic risk measure ρt(ξT , T ), t ∈ [0, T ], is the unique Ft-measurable random
variable that satisfies the indifference condition

ess sup
π∈A[t,T ]

EP

[
U(Xπ

u + ρu(ξT ;T ) + ξT , T )

∣∣∣∣Ft] = sup
π∈A[t,T ]

EP

[
U(Xπ

u , T )

∣∣∣∣Ft] (3.1)

for all (t, x) ∈ [0, T ]× R.
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If we let ξ ∈ L and consider Tξ := inf{T ≥ 0 : ξ ∈ FT}, then the forward entropic risk
measure of ξ is defined, for t ∈ [0, Tξ], as

ρt(ξ) := ρt(ξ;Tξ).

Therefore, for ξT ∈ L∞(FT ), we have ρt(ξ) := ρt(ξT ;T ).

The next theorem gives a representation of the forward entropic risk measure as a solution
of an associated BSDE, with a generator that depends on a solution of the ergodic BSDE.

Theorem 3.1. Let ξT ∈ L∞(FT ) be a risk position with an arbitrary maturity T > 0.
Supposes that Assumptions 1, 2 and 3 hold, and the processes Z and Ψ in the ergodic
BSDE (2.7) are uniformly bounded. Consider, the BSDE

Y T,ξ
t = −ξT +

∫ T

t

G(Vu, Zu, Z
T,ξ
u ,Ψu,Ψ

T,ξ
u )du−

∫ T

t

ZT,ξ
u dWu −

∫ T

t

∫
R\{0}

ΨT,ξ
u Ñ(du, dζ),

(3.2)

where the generator G(v, z, z̃, ψ, ψ̃) = 1
γ

(
g(v, z+γz̃, ψ+γψ̃)−g(v, z, ψ)

)
, with g(·, ·, ·) given

by (2.33). Then the following statements hold:

(i) The BSDE (3.2) has a unique solution (Y T,ξ
t , ZT,ξ

t ,ΨT,ξ
t ) ∈ S∞(R)×L2(W )×L2

ν(Ñ),
for t ∈ [0, T ].

(ii) The forward entropic risk measure of a position in ξT is given by

ρt(ξT ) = Y T,ξ
t ,

for t ∈ [0, T ].

Proof. Since the associated parameters are bounded and Lipschitz continuous (Assumption
(1) and (2)), and the generator g in (2.33) satisfies Assumption (3). These assumptions
imply that g is Lipschitz continuous in z and υ, a.s.. Therefore, we know from Morlais [19]
(Section 3.2, Theorem 1 and 2), (see also Royer [31] and Guambe and Kufakunesu [12])
that there exists a unique solution to the BSDE (3.2) with a generator given by g in (2.33)
and the risk position ξT ∈ L∞(Ft).

(i) For t ∈ [0, T ], the generator G(v, Z, z̃,Ψ, ψ̃) is Lipschitz continuous in z and ψ, that
is,

|G(v, Zt, z̃1,Ψt, ψ̃)−G(v, Zt, z̃2,Ψt, ψ̃)| ≤ Cz(1 + 2Zt + γ|z̃1|+ γ|z̃2|)|z̃1 − z̄2|
and

|G(v, Zt, z̃,Ψt, ψ̃1)−G(v, Zt, z̃,Ψt, ψ̃2)| ≤
∫
R\{0}

|ψ̃1 − ψ̃2|ϕv,z,ψ1,ψ2ν(dζ)

where Zt and Ψt are uniformly bounded in L2(W ) × L2
ν(Ñ). Considering that G

is a linear combination of g, we deduce that G has the same form as g in (2.33).
Therefore, using the fact that ξT ∈ L∞(Ft), we conclude (following Morlais [19],
Royer [31] and Guambe and Kufakunesu [12]) that Equation (3.2) has a unique
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solution for t ∈ [0, T ].

(ii) We consider the forward performance process in (2.27) and that ρt(ξT ) ∈ Ft, t ∈
[0, T ]. Then we have

ess sup
π∈A[t,T ]

EP

[
U(Xπ

u + ρu(ξT ;T ) + ξT , T )

∣∣∣∣Ft]

= e−γρt(ξT )ess sup
π∈A[t,T ]

EP

[
− exp

{
− γ
(
x+

∫ T

t

πuµ(Vu)dt+

∫ T

t

πuσ(Vu)dWu

+

∫ T

t

∫
R\{0}

πuΥuÑ(du, dζ)

)
+ YT − λT − γξT

}∣∣∣∣Ft].
(3.3)

In order to prove the second part of the theorem, we define for s ∈ [t, T ], the process

P π
s := − exp

{
− γ
(
x+

∫ s

t

πsµ(Vs)dt+

∫ s

t

πsσ(Vs)dWs +

∫ s

t

∫
R\{0}

πsΥsÑ(ds, dζ)

)
+Ys − λs+ γY T

s

}
. (3.4)

As in [6] (Proof of Theorem 6, Page 12), we will show that the process P π
s is a

super-martingale for all π ∈ A[t,T ] and that there exists π̃ ∈ A[t,T ] such that P π̃
s is

a martingale.

For 0 ≤ t ≤ r ≤ s ≤ T , the exponent of P π
s satisfies

−γ
(
x+

∫ s

t

πuµ(Vu)du+

∫ s

t

πσ(Vu)dWu +

∫ s

t

∫
R\{0}

πuΥuÑ(du, dζ)

)
+ Ys − λs+ γY T

s

= −γ
(
x+

∫ r

t

πuµ(Vu)du+

∫ r

t

πuσ(Vu)dWu +

∫ r

t

∫
R\{0}

πuΥuÑ(du, dζ)

)
+ Yr − λr + γY T

r

−γ
(
x+

∫ s

r

πuµ(Vu)du+

∫ s

r

πuσ(Vu)dWu +

∫ s

r

∫
R\{0}

πuΥuÑ(du, dζ)

)
+(Ys − Yr)− (λs− λr) + γ(Y T

s − Y T
r ).

Furthermore, from the ergodic BSDE (2.7) and BSDE (3.2), we have that

(Ys − Yr)− λ(s− r) = −
∫ s

r

g(Vu, Zu,Ψu)du+

∫ s

r

ZudWu +

∫ s

r

∫
R\{0}

ΨuÑ(du, dζ)

and

Y T
s − Y T

r = −1

γ

∫ s

r

(
g(Vu, Zu + γZT

u ,Ψu + γΨT
u )− g(Vu, Zu,Ψu)

)
du+

∫ s

r

ZT
u dWu
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+

∫ s

r

∫
R\{0}

ΨT
u Ñ(du, dζ).

Combining the above three equations and applying the conditional expectation,
yields

EP

[
− exp

{
− γ
(
x+

∫ s

t

πuµ(Vu)du+

∫ s

t

πuσ(Vu)dWu +

∫ s

t

∫
R\{0}

πuΥuÑ(du, dζ)

)
+Ys − λs+ γY T

s

}∣∣∣∣Fr]
= − exp

{
− γ
(
x+

∫ r

t

πuµ(Vu)du+

∫ r

t

πuσ(Vu)dWu +

∫ r

t

∫
R\{0}

πuΥuÑ(du, dζ)

)
+Yr − λr + γY T

r

}
× EP

[
exp

{∫ s

r

(
− γπuµ(Vu)− g(Vu, Zu + γZT

u ,Ψu + γΨT
u )
)
du

+

∫ s

r

(
− γπuσ(Vu) + Zu + γZT

u

)
dWu

+

∫ s

r

∫
R\{0}

(
− γπuΥu + Ψu + γΨT

u

)
Ñ(du, dζ)

}∣∣∣∣Fr].
(3.5)

We consider a processMs := exp
{ ∫ s

r

(
−γπuσ(Vu)+Zu+γZT

u

)
dWu+

∫ s
r

∫
R\{0}

(
−γπuΥu+

Ψu+γΨT
u

)
Ñ(du, dζ)

}
, with −γπuΥu+Ψu+γΨT

u > −1 for a.s. (ω, t, ζ). From Assumptions

(1)-(2) and the fact that (ZT,ξ
t ,ΨT,ξ

t ) ∈ L2(W )×L2
ν(Ñp), we conclude that the processMs

is a BMO-martingale. Define a probability measure Qπ by

dQπ

dP
= E(M)T ,

on FT , where

E(M)T

= exp

{∫ T

0

(
− γπuσ(Vu) + Zu + γZT

u

)
dWu −

1

2

∫ T

0

(
− γπuσ(Vu) + Zu + γZT

u

)2
du

+

∫ T

0

∫
R\{0}

[
e(−γπuΥu+Ψu+γΨTu ) − 1 +

(
− γπuΥu + Ψu + γΨT

u

)]
ν(dζ)du

+

∫ T

0

∫
R\{0}

(
− γπuΥu + Ψu + γΨT

u

)
Ñ(du, dζ)

}
,

(3.6)

provided that
∫ T

0

∫
R\{0}(e

(−γπuΥu+Ψu+γΨTu ) − 1)2ν(dζ)du < ∞ {for more on exponential

martingale see [2], [27] and [29]}. Therefore, dQπ
dP |FT = E(M)T is uniformly integrable,
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given that the process Ms is a BMO-martingale. Now, we have that

exp

{∫ s

r

(
− γπuσ(Vu) + Zu + γZT

u

)
dWu +

∫ s

r

∫
R\{0}

(
e−γπuΥu + Ψu + γΨT

u

)
Ñ(du, dζ)

}
= exp

{
1

2

∫ s

r

(
− γπuσ(Vu) + Zu + γZT

u

)2
du

−
∫ s

r

∫
R\{0}

[
e(−γπuΥu+Ψu+γΨTu ) − 1 +

(
− γπuΥu + Ψu + γΨT

u

)]
ν(dζ)du

}
E(M)s
E(M)r

.

(3.7)

Hence, from (3.5),

EP

[
− exp

{
− γ
(
x+

∫ s

t

πuµ(Vu)du+

∫ s

t

πσ(Vu)dWu +

∫ s

t

∫
R\{0}

πuΥuÑ(du, dζ)

)
+Ys − λs+ γY T

s

}∣∣∣∣Fr]
= − exp

{
− γ
(
x+

∫ r

t

πuµ(Vu)du+

∫ r

t

πuσ(Vu)dWu +

∫ r

t

∫
R\{0}

πuΥuÑ(du, dζ)

)
+Yr − λr + γY T

r

}
× EP

[
exp

{∫ s

r

(
− γπuµ(Vu)− g(Vu, Zu + γZT

u ,Ψu + γΨT
u )
)
du

+
1

2

∫ s

r

(
− γπuσ(Vu) + Zu + γZT

u

)2
du

−
∫ s

r

∫
R\{0}

[
e(−γπuΥu+Ψu+γΨTu ) − 1 +

(
− γπuΥu + Ψu + γΨT

u

)]
ν(dζ)du

}
E(N)s
E(N)r

∣∣∣∣Fr].
= − exp

{
− γ
(
x+

∫ r

t

πuµ(Vu)du+

∫ r

t

πuσ(Vu)dWu +

∫ r

t

∫
R\{0}

πuΥuÑ(du, dζ)

)
+Yr − λr + γY T

r

}
× EQπ

[
exp

{∫ s

r

(
− γπuµ(Vu)− g(Vu, Zu + γZT

u ,Ψu + γΨT
u )
)
du

+
1

2

∫ s

r

(
− γπuσ(Vu) + Zu + γZT

u

)2
du

−
∫ s

r

∫
R\{0}

[
e(−γπuΥu+Ψu+γΨTu ) − 1 +

(
− γπuΥu + Ψu + γΨT

u

)]
ν(dζ)du

}∣∣∣∣Fr].
(3.8)

Following the same procedure as in [6] (Proof of Theorem 6, Page 12), we show that for
any u ∈ [r, s],

−γπuµ(Vu) +
1

2

(
− γπuσ(Vu) + Zu + γZT

u

)2 −
∫ s

r

∫
R\{0}

[
e(−γπuΥu+Ψu+γΨTu ) − 1
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+
(
− γπuΥu + Ψu + γΨT

u

)]
ν(dζ) ≥ g(Vu, Zu + γZT

u ,Ψu + γΨT
u ), (3.9)

then

EQπ

[
exp

{∫ s

r

(
− γπuµ(Vu)− g(Vu, Zu + γZT

u ,Ψu + γΨT
u )
)
du

+
1

2

∫ s

r

(
− γπuσ(Vu) + Zu + γZT

u

)2
du

−
∫ s

r

∫
R\{0}

[
e(−γπuΥu+Ψu+γΨTu ) − 1 +

(
− γπuΥu + Ψu + γΨT

u

)]
ν(dζ)du

}∣∣∣∣Fr] ≥ 1.

(3.10)

As a result the super-martingale property

EP

[
− exp

{
− γ
(
x+

∫ s

t

πuµ(Vu)du+

∫ s

t

πuσ(Vu)dWu +

∫ s

t

∫
R\{0}

πuΥuÑ(du, dζ)

)
+Ys − λs+ γY T

s

}∣∣∣∣Fr] ≤ − exp

{
− γ
(
x+

∫ r

t

πuµ(Vu)du+

∫ r

t

πuσ(Vu)dWu

+

∫ r

t

∫
R\{0}

πuΥuÑ(du, dζ)

)
+ Yr − λr + γY T

r

}
will hold. Note that the left hand side of the equation (3.9) can be written as

−γπuµ(Vu) +
1

2

(
− γπuσ(Vu) + Zu + γZT

u

)2 −
∫ s

r

∫
R\{0}

[
e(−γπuΥu+Ψu+γΨTu ) − 1

+
(
− γπuΥu + Ψu + γΨT

u

)]
ν(dζ)

=
γ2

2

∣∣πσ − (ZT +
Zu + µ(Vu)/σ(Vu)

γ
)
∣∣2 − 1

2

∣∣Zu + γZT
u + µ(Vu)/σ(Vu)

∣∣2 +
1

2
|Zu + γZT

u |2

−
∫ s

r

∫
R\{0}

[
e(−γπuΥu+Ψu+γΨTu ) − 1 +

(
− γπuΥu + Ψu + γΨT

u

)]
ν(dζ).

(3.11)

In particular, for any πu ∈ A[t,T ],

γ2

2

∣∣πσ − (ZT +
Zu + µ(Vu)/σ(Vu)

γ
)
∣∣2 − 1

2

∣∣Zu + γZT
u + µ(Vu)/σ(Vu)

∣∣2 +
1

2
|Zu + γZT

u |2

−
∫ s

r

∫
R\{0}

[
e(−γπuΥu+Ψu+γΨTu ) − 1 +

(
− γπuΥu + Ψu + γΨT

u

)]
ν(dζ)

≥ inf
πu∈A[t,T ]

{
γ2

2

∣∣πσ − (ZT +
Zu + µ(Vu)/σ(Vu)

γ
)
∣∣2

−1

2

∣∣Zu + γZT
u + µ(Vu)/σ(Vu)

∣∣2 +
1

2
|Zu + γZT

u |2
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−
∫ s

r

∫
R\{0}

[
e(−γπuΥu+Ψu+γΨTu ) − 1 +

(
− γπuΥu + Ψu + γΨT

u

)]
ν(dζ)

}
,

and using g(Vu, Zu + γZT
u ,Ψu + γΨT

u ) as in (2.6), we conclude that the super-martingale
property holds true.

The martingale property of the process P π̃, holds true if π̃ ∈ A[t,T ] and

π̃ = inf
πu∈A[t,T ]

{
γ2

2

∣∣πσ − (ZT +
Zu + µ(Vu)/σ(Vu)

γ
)
∣∣2

−1

2

∣∣Zu + γZT
u + µ(Vu)/σ(Vu)

∣∣2 +
1

2
|Zu + γZT

u |2

−
∫ s

r

∫
R\{0}

[
e(−γπuΥu+Ψu+γΨTu ) − 1 +

(
− γπuΥu + Ψu + γΨT

u

)]
ν(dζ)

}
.

Combining the results from above, we obtain that EP[P π
T |Ft] ≤ P π

t , and hence, for any
π ∈ A[t,T ],

EP

[
− e−γ

(
x+

∫ T
t πuµ(Vu)du+

∫ T
t πuσ(Vu)dWu+

∫ T
t

∫
R\{0} πuΥuÑ(du,dζ)

)
+YT−λT−γξT

∣∣∣∣Ft]
≤ −e−γx+Yt−λt+γY Tt ,

(3.12)

and for π = π̃ ∈ A[t,T ], we obtain

EP

[
− e−γ

(
x+

∫ T
t πuµ(Vu)du+

∫ T
t πuσ(Vu)dWu+

∫ T
t

∫
R\{0} πuΥuÑ(du,dζ)

)
+YT−λT−γξT

∣∣∣∣Ft]
= −e−γx+Yt−λt+γY Tt .

(3.13)

Subsequently,

ess sup
π∈A[t,T ]

EP

[
− e

−γ

(
x+

∫ T
t πuµ(Vu)dt+

∫ T
t πuσ(Vu)dWu+

∫ T
t

∫
R\{0} πuΥuÑ(du,dζ)

)
+YT−λT−γξT

∣∣∣∣Ft].
= −e−γx+Yt−λt+γY Tt ,

(3.14)

and using condition (3.1), we obtain

−e−γρt(ξT )−γx+Yt−λt+γY Tt = −e−γx+Yt−λt,

and hence,
ρt(ξT ) = Y T

t ,

which concludes the proof. �
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Similar to [6] (Section 3, Page 15), the above representation also satisfies the time-
consistent property, which means any risk position defined at time T can be evaluated
indifferently at any intermediary time u for any 0 ≤ t ≤ u ≤ T <∞. See also Bion [3] for
construction of risk measures using BSDE with jumps. Chong [6], highlights the difference
between the traditional entropic risk measure and the forward entropic risk measure. The
first difference is that the forward entropic risk measure is defined for all time t ≤ 0, while
the traditional entropic risk measure is determined for a finite time t ∈ [0, T ]. The second
difference is that the generator of the BSDE (3.2), depends on the process Z, which is part
of the solution of the ergodic BSDE (2.7) that gives the forward exponential process in
(2.27).

4. Long-term maturity behaviour of the forward entropic risk measure

We consider a contingent claim written on the stochastic factor, this position is repre-
sented as follow

ξT = −h(VT ), (4.1)

where h : R 7→ R is uniformly bounded and is Lipschitz continuous function with a Lipschitz
constant Ch. From Theorem 3.1, we know that the risk of the position is represented as
the solution for the BSDE (3.2), that is ρ(ξT ) = Y T,ξ

t , where Y T,ξ
t satisfies

Y T,h
t = h(VT ) +

∫ T

t

G(Vu, Zu, Z
T,h
u ,Ψu,Ψ

T,h
u )du−

∫ T

t

ZT,h
u dWu−

∫ T

t

∫
R\{0}

ΨT,h
u Ñ(du, dζ).

To analyse the long term behaviour of the forward risk measure, we associate the above
BSDE to the ergodic BSDE given as

Ŷt = ŶT ′+

∫ T ′

t

(
G(Vu, Zu, Ẑu,Ψu, Ψ̂u)−λ

)
du−

∫ T ′

t

ẐudWu−
∫ T ′

t

∫
R\{0}

Ψ̂uÑ(du, dζ), (4.2)

for 0 ≤ t ≤ T ′ < ∞. We analyze the approximation of Y T,h
0 by Ŷ0 + λ̂T for large T . In

Chong et al. [6] the driver of the ergodic BSDE (4.2) depends only on the solution Zt of
the ergodic BSDE (2.7) of the forward performance process. In our case, the driver of the
ergodic BSDE (4.2) will depend on the solution Z and Ψ of the ergodic BSDE (2.7). As
was pointed by Chong et al. [6], this creates technical issues, which results in examining
the Markovian and non-Markovian forward processes separately. Following a similar route,
we analyze the long-term maturity behaviour in the Markovian case. The non-Markovian
case follows closely as in Chong et al. [6].

4.1. Markovian forward performance process.
Let us consider the case

U(t, x) = −e−γx+y(Vt)−λt (4.1.1)
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where (Y (Vt), Z(VT ),Ψ(Vt)) = (y(Vt), z(Vt), ψ(Vt), λ), is the solution of the ergodic BSDE

(2.7). The driver G(Vu, Zu, Ẑu,Ψu, Ψ̂u) of the ergodic BSDE (4.2) depends on z(Vt) and
ψ(Vt). The functions z(·) and ψ(·) are bounded and hence the driver G is Lipschitz con-

tinuous in ẑ and ψ̂ as in (2.10) and (2.11). However, the generator G may not be Lipschitz
continuous in v, which affects the existence and uniqueness of the solution to the ergodic
BSDE (4.2). To overcome this problem, we consider an auxiliary quadratic BSDE defined
by,

Ŷ T,h
t = h(VT ) +

YT − λT
γ

+

∫ T

t

1

γ
g(Vu, γẐ

T,h
u , γΨ̂T,h

u )du−
∫ T

t

ẐT,h
u dWu (4.1.2)

−
∫ T

t

∫
R\{0}

Ψ̂T,h
u Ñ(du, dζ),

with (Ŷ T,h
t , ẐT,h

t , Ψ̂T,h
t ) given as

(Ŷ T,h
t , ẐT,h

t , Ψ̂T,h
t ) :=

(
Y T,h
t +

Yt − λt
γ

, ZT,h
t +

Zt
γ
,ΨT,h

t +
Ψt

γ

)
,

and g is given in (2.33).

We now recall from [6] (Proposition 7) the following proposition with some results for
the stochastic factor model.

Proposition 4.1. [6] If Assumption 2 holds, then for all t ≥ 0,

(i) the stochastic factor process satisfies |V v1
t −V v2

t |2 ≤ e−2Cηt|v1−v2|2 where v1, v2 ∈ Rd.
(ii) If we assume that the process V v satisfies the following SDE

dV v
t = (η(V v

t ) +H(V v
t ))dt+ κdWH

t ,

where H : R 7→ R is a measurable bounded function, QH and P are equivalent
probability measures, and WH is a QH-Brownian motion. Then, for some constant
C > 0, EQH [|V v

t |2] ≤ C(1 + |v|2).
(iii) For any measurable function φ : Rd → R with polynomial growth rate ϑ > 0, and

v1, v2 ∈ Rd,

|EQH [|φ(V v1
t )− φ(V v2

t )|] ≤ C(1 + |v1|1+ϑ + |v2|1+ϑ)e−Ĉηt,

where the constants C and Ĉη depend on the function H only through supv∈Rd |H(v)|.
The proof of (i) and (ii) follows from the Gronwall’s inequality and application of the

Lyapunov argument respectively (see [6] and [9] Lemma 3.1). For the proof to the third
part of the proposition (basic coupling estimate) is given in Lemma 3.4 of [13] and also see
Theorem 2.4 of [8] and Theorem 5 of [7].

Theorem 4.2. Let Assumption 1 and 2 hold, and assume that the forward performance
process U(t, x) is given by (2.27). Then

(i) there exists a unique solution (Ŷ T,h
t , ẐT,h

t , Ψ̂T,h
t ) = (ŷT,h(Vt), ẑ

T,h(Vt), ψ̂
T,h(Vt)) of the

quadratic BSDE (4.1.2) for t ∈ [0, T ].
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(ii) For (t, v) ∈ [0,∞)× Rd, we have that

|ŷT,h(t, v)| ≤ CT (1 + |v|)

and ẑT,h, ψ̂T,g are uniformly bounded such that,

|ẑT,h(v, t)| ≤ Cz, |ψ(vt, ζ)| ≤ 2K

α

Proof. The existence and uniqueness of the solution to the quadratic BSDE (4.1.2) follows
from Morlais [19] (Section 3.2, Theorem 1 and 2). Analogous to Chong et al. [6], the linear

growth condition of the function ŷT,g(t, v) follows from the boundedness of Y T,h
t and the

linear growth condition of y(·). We consider a truncated BSDE version of (4.1.2)

Ŷ T,h
t = h(VT ) +

YT − λT
γ

+

∫ T

t

1

γ
g(Vu, γq(Ẑ

T,h
u ), γq̃(Ψ̂T,h

u ))du−
∫ T

t

ẐT,h
u dWu(4.1.3)

−
∫ T

t

∫
R\{0}

Ψ̂T,h
u Ñ(du, dζ),

where the truncation functions q(·) : Rd → Rd and q̃ : Rd → Rd are defined as

q(z) :=
min(|z|, Cz)
|z|

z1{z 6=0}, and q̃(ψ) := 1|ψ|≤1.

Now, it then follows that the generator g of the truncated BSDE (4.1.3) is Lipschitz i.e.

|g(v1, γq(z), γq̃(ψ))− g(v2, γq(z), γq̃(ψ))| ≤ Cv|v1 − v2|, (4.1.4)

|g(v, γq(z1), γq̃(ψ))− g(v, γq(z2), γq̃(ψ))| ≤ Cz|z1 − z2| (4.1.5)

and

|g(v, γq(z), γq̃(ψ1))− g(v, γq(z), γq̃(ψ2))| ≤
∫
R\{0}

|ψ1 − ψ2|ϕv,z,ψ1,ψ2ν(dζ), (4.1.6)

for any v1, v2, z1, z2, ψ1, ψ2 ∈ Rd. Consequently, we have

Ŷ T,t,v1
t − Ŷ T,t,v2

t

= h(V t,v1
T )− h(V t,v2

T ) +
1

γ
(Y t,v1

T − Y t,v2
T )

+

∫ T

t

1

γ

[
g
(
V t,v1
u , γq(ẐT,t,v1

u ), γq(Ψ̂T,t,v1
u )

)
− g
(
V t,v2
u , γq(ẐT,t,v2

u ), γq(Ψ̂T,t,v2
u )

)]
du

−
∫ T

t

(
ẐT,t,v1
u − ẐT,t,v2

u

)
dWu −

∫ T

t

∫
R\{0}

(
Ψ̂T,t,v1
u − Ψ̂T,t,v2

u

)
Ñ(du, dζ)

= h(V t,v1
T )− h(V t,v2

T ) +
1

γ
(y(V t,v1

T )− y(V t,v2
T ))

+

∫ T

t

1

γ

[
g
(
V t,v1
u , γq(ẐT,t,v1

u ), γq(Ψ̂T,t,v1
u )

)
− g
(
V t,v2
u , γq(ẐT,t,v2

u ), γq(Ψ̂T,t,v2
u )

)]
du
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−
∫ T

t

(
ẐT,t,v1
u − ẐT,t,v2

u

)
(dWu − βdu)

−
∫ T

t

∫
R\{0}

(
Ψ̂T,t,v1
u − Ψ̂T,t,v2

u

)
(Ñ(du, dζ)− ϕv,z,ψ1,ψ2ν(dζ)du)

(4.1.7)

and denote

βt :=

[
g
(
V t,v1
u , γq(ẐT,t,v1

u ), γq(Ψ̂T,t,v1
u )

)
− g
(
V t,v2
u , γq(ẐT,t,v2

u ), γq(Ψ̂T,t,v2
u )

)]
γ|ẐT,t,v1

u − ẐT,t,v2
u |2

×

×|ẐT,t,v1
u − ẐT,t,v2

u |1{ẐT,t,v1u 6=ẐT,t,v2u }

Using the Girsanov’s theorem we can define W β
t := Wt −

∫ t
0
βdu and Ñϕ(dt, dζ) :=

Ñ(dt, dζ) −
∫ t

0
ϕv,z,ψ1,ψ2ν(dζ)du for 0 ≤ t ≤ T , where ϕv,z,ψ1,ψ2 is defined in Assumption

(2.11). For all t we define δZt := ẐT,t,v1
t − ẐT,t,v2

t and δΨt := Ψ̂T,t,v1
t − Ψ̂T,t,v2

t and introduce

Mt =

∫ t

0

δZtdW
β
u +

∫ t

0

∫
R\{0}

δΨuÑ
ϕ(du, dζ),

which is a local martingale under the measure Q, equivalent to P, defined on FT . Thus,
taking conditional expectation under the Q measure on Ft and using the Lipschitz condition
of h(v), in (4.1), y(v) in (2.13) and g(v, γq(z), γq̃(ψ)) in (4.1.4) to (4.1.6), we obtain the
following results

|Ŷ T,t,v1
t − Ŷ T,t,v2

t | = |ŷT,t,v1t − ŷT,t,v2t |

≤ ChEQ[|V t,v1
T − V t,v2

T ||Ft] +
K

γ
EQ[|V t,v1

T − V t,v2
T ||Ft]

+
Cv
γ
EQ

[ ∫ T

t

|V t,v1
u − V t,v2

u ||Ft
]
. (4.1.8)

Furthermore, using the results from Proposition 4.1 we conclude that

|Ŷ T,t,v1
t − Ŷ T,t,v2

t | ≤
(
Ch +

K

γ
+
Cv
γ

)
|v1 − v2|.

�

The proof of the asymptotic behaviour of the forward entropic risk measure is the same
as the diffusion can in Theorem 10 of [6], where they show that the forward entropic risk
measure converges to a constant as the time horizon increases.

5. Conclusion

In this paper, we have introduced jumps into the ergodic BSDE with quadratic growth
in the control variable. We have proved that under certain conditions there exists a unique
Markovian solution for a quadratic-exponential ergodic BSDE with bounded jumps.
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The solution of the quadratic-exponential ergodic BSDE with bounded jumps was used to
derive the representation of a forward entropic risk measure. We have noticed that when
the stochastic factor includes jumps, the corresponding generator of the ergodic BSDE
contains Yt and consequently the translation invariance property is not satisfied.
We have also, derived the connection between the ergodic BSDEs with jumps and the
PIDE. which allowed us to determine the representation of a forward entropic risk measure
using the solution of a quadratic-exponential ergodic BSDE with bounded jumps. This
work can be extended to study the differentiability of the ergodic BSDE with jumps in
order to determine capital allocation representation of the forward entropic risk measure
in the spirit of [17].
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