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Abstract

The paper is concerned with a system of linear hyperbolic differential

equations on a network coupled through general transmission conditions

of Kirchhoff’s type at the nodes. We discuss the reduction of such a prob-

lem to a system of 1-dimensional hyperbolic problems for the associated

Riemann invariants and provide a semigroup theoretic proof of its well-

posedness. A number of examples showing the relation of our results with

recent research is also provided.
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1 Introduction

In this paper we are concerned with dynamics described by a system of 2 × 2

linear hyperbolic differential equations, defined on a collection of disconnected
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intervals and coupled through transmission conditions at the intervals’ end-

points. A useful interpretation of such a system is a dynamical system on a

metric graph, where the edges are identified with the intervals and thus the

network problem is converted into a system of equations on an interval. We

note that the restriction to 2 × 2 systems is purely for convenience; the theory

can be extended to hyperbolic systems of any (finite) dimension at each edge.

Dynamical systems on graphs, or networks, have been studied since the early

80s, beginning with the pioneering paper [26]. They received more prominence

in the context of quantum graphs, see [24, 27] and extensive references therein,

where the dynamics on the edges are given by the heat or Schrödinger equations.

More general study of the diffusion on graphs can be found in [30, 11, 7]. Wave

equations, both linear and nonlinear, on networks were considered in [1, 2], and

a comprehensive study of first order transport equations was undertaken in a

series of papers such as [22, 14, 9, 7]. On the other hand, systems of hyperbolic

first order equations have not received much attention until recently. Here we

note the paper [12] on linearized blood flow, the papers on the momentum

operator [17] and recent works on more general hyperbolic problems on graphs

such as [28, 18]; the latter contains a comprehensive bibliography of the subject.

Let us consider the system

∂tp + M∂xp + Np = 0, t > 0, 0 < x < 1, (1.1)

where p = (p1, p2)T , M = (Mlk)1≤l,k≤2 and N = (Nlk)1≤l,k≤2 are real, possibly

x-dependent, matrices, with M being strictly hyperbolic, that is, M has two

distinct, real and nonzero eigenvalues. This implies the diagonalizability of M,

that is, the existence of an invertible linear operator F such that F−1MF is a

diagonal matrix. The components of Fp are known as the Riemann invariants

of the system. In this way, (1.1) with N = 0 becomes a system of decoupled

equations for the Riemann invariants. If we consider a collection of hyperbolic

systems (1.1) on a network, then it must be complemented by boundary con-

ditions which, in the simplest, local, case, express the relations between the

values of the solutions along the edges at the nodes connecting these edges.
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The diagonalization of the differential operators on each edge leads to a system

of decoupled differential equations, with boundary conditions for the resulting

Riemann invariants coupled at the vertices of incident edges. Since the Rie-

mann invariants have well-defined directions at which they move through the

domain, we can talk about their incoming and outgoing values at a given end-

point. Given that each edge was parametrized and identified with the interval

(0, 1), the boundary conditions express a relation between the incoming and

outgoing values of the Riemann invariants (and thus of the values of the solu-

tion) at 0 and 1. In this way, the problem becomes a special case of general

1-d hyperbolic systems, [10], or first order equations on a one dimensional spa-

tial domain, [32, 20], that recently have gained the name of (linear) first order

port-Hamiltonian systems [21, Definition 7.1.2]. Since in the linear case the

differential equations of the system do not create much problem, the main issue

in the analysis is ensuring that the general system of linear equations coupling

the boundary values at 0 and 1 determines a sufficient (and necessary) number

of the outgoing values to make the whole problem well-posed. We note that

in, e.g. [13], the boundary conditions are written in an explicit form, already

solved for the outgoing values at the endpoints. The general form of local linear

boundary conditions is considered in [32, 20], where, in contrast to [13], the

authors also provide a fairly comprehensive solvability theory of such systems

based, however, on some advanced results from control theory, [29, Chapter 7].

One of the main remaining problems is to relate the results obtained for

general port-Hamiltonians with the structure of the original network problem,

where it is of importance to assign correct boundary conditions at the nodes

of the network so that the resulting flow has some specified properties. Such

conditions have appeared in e.g. [23, Section 3] in the context of quantum

graphs, where the dynamics on each edge is given by the heat or Schrödinger

operators and it is required to construct boundary conditions ensuring the self-

adjointness of the problem. Recently, similar ideas have been used in [28, 18],

where the authors considered hyperbolic systems at the edges of a network

and at each node they constructed general boundary conditions that ensure

3



the dissipativity of the problem in an appropriately weighted L2-space. The

construction is based on the integration by parts along each edge and ensuring

that the end-point terms of the integration by parts are non-negative. The

authors achieve this by assuming that the vertex values of the solution belong

to the so-called totally isotropic subspace associated with the quadratic form

defined by a symmetrization of the matrix M. Due to this approach, the theory

of [28, 18] is strongly dependent on the Hilbert space setting.

Though the choice of the underlying state space for a problem is somewhat

arbitrary, it should nevertheless be related to the physics of the problem as

much as it is mathematically feasible. In fact, the same model can be analysed

in different state spaces. Thus, to choose a proper mathematical setting, we

should revisit the origins of the analysed model.

Example 1.1. System (1.1) is often referred to as the telegraph (or telegra-

pher’s) system due to its interpretation as the system governing the electric

voltage p1 = V and the current p2 = I in a transmission line. In the simplest

case of the lossless line there is neither resistance, nor inductance, hence N = 0,

[19, Section 7.7]. In this case, M11 = M22 = 0, 1
M12

= C and 1
M21

= L are,

respectively, the (constant) capacitance and the inductance per unit length of

the line. If we want to control the energy of the system, given by,

E(t) =
1

2

1∫

0

(CV 2(x, t) + LI2(x, t))dx,

[21, p. 94], then clearly the L2 setting is physically meaningful. On the other

hand, if we want to control the total charge Q = CV and magnetic flux φ = LI,

then the natural state space for the problem is L1.

Example 1.2. Shallow water waves – Saint-Venant equations. This

is a system of nonlinear equations expressing the conservation of mass and

momentum of a two-dimensional water flow in a horizontal channel of constant

width. The system, derived in full generality in e.g. [25, Appendix A], can be
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written as

∂th + ∂x(uh) = 0,

∂t(uh) + ∂x

(
u2h +

g

2
h2
)

= 0,
(1.2)

where h is the depth of water and u its velocity at position x and time t. The

total mass M and the total momentum P of the water in a channel of length L

at a time t are given by M(t) = ρl
∫ L

0
h(s, t)ds and P (t) = ρl

L∫
0

h(s, t)u(s, t)ds,

and thus (1.2) expresses the conservation of mass and momentum. It is more

common in the literature to use h and u as the primary variables. Then, carrying

out differentiations in brackets in (1.2) and simplifying, we get

∂th + h∂xu + u∂xh = 0,

∂tu + u∂xu + g∂xh = 0.
(1.3)

In many applications the Saint-Venant equations are linearized, typically at the

stationary state given, in this case, by a constant depth H and velocity V (and

thus constant momentum P = HV ). Considering small deviations from the

equilibrium, u = u − V, h = h −H and p = uh − P , and ignoring higher order

terms, we get

∂th + H∂xu + V ∂xh = 0,

∂tu + V ∂xu + g∂xh = 0.
(1.4)

The eigenvalues determining the directions of the flows are given by

λ± = V ±
√
gH. (1.5)

The system is hyperbolic provided gH 6= V 2; both eigenvalues are positive if

the Froude number Fr := V/
√
gH > 1 and are of opposite sign if Fr < 1. In

the latter case the flow is called subcritical, see [10, Section 1.4].

We observe that the linearized momentum p = uh − P = (H + h)(V + u) −
HV ≈ Hu+V h, up to higher order terms in h. Thus the finite L1(0, L)×L1(0, L)

norm of the solution describes the flow with finite mass and momentum and thus

L1(0, L) × L1(0, L) is a natural state space for (1.4).
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Example 1.3. The system of equations describing a one-dimensional correlated

random walk, [8, Section 1.3.4] or [31, Section 1.2], takes the form

∂tu = −γ∂xu− λu + λw,

∂tw = γ∂xw + λu − λw,
(1.6)

where u and w are the (probability) densities of particles moving, respectively,

to the right and left, and λ is the rate of the direction reversal. This system is

often written in terms of functions

p(t, x) = u(t, x) + w(t, x), q(t, x) = u(t, x) − w(t, x), (1.7)

which are the density and the net current of the particles. Adding and sub-

tracting the equations in (1.6) we obtain the telegrapher’s system:

∂tp + γ∂xq = 0,

∂tq + γ∂xp + 2λq = 0.
(1.8)

Due to the probabilistic origins of the model, it is clear that the natural state

space is the space of densities, a subset of L1(I) × L1(I), where I ⊂ R.

The presented examples show that it is important to define boundary con-

ditions for hyperbolic network problems without relying on a particular state

space and relate them with general boundary conditions of port-Hamiltonians

and this is the aim of this paper and the companion paper, [5]. Here, we define

general Kirchhoff’s type conditions at a vertex and provide conditions under

which they determine all outgoing data from this vertex through the incoming

ones, as required in [10], and also that they satisfy the solvability assumptions

of [20]. We note that this contrasts with the approach of [18], where there

is no a priori separation into the incoming and outgoing data in the bound-

ary conditions at the cost of being confined to dissipative cases in the Hilbert

space setting, not covering some standard cases and having not fully explicit

representation, see Example 5.13. We show that our definition covers bound-

ary conditions discussed in [28, 18] and can describe more general situations.
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Next we provide an alternative, purely semigroup-theoretic, proof of the well-

posedness of the problem. We start with the generation theorem in the L1

setting, which is a straightforward adaptation of the approach in [9, 7]. To ex-

tend the result to other Lp spaces, 1 < p < ∞, we use an explicit representation

of the constructed L1 semigroup, valid for small times, and Lp ⊂ L1, to show

that the semigroup leaves Lp invariant. In the paper [5] we address the question

when port-Hamiltonian systems originate from hyperbolic network problems.

2 Notation and definitions

In this paper we shall be mainly concerned with real spaces. Let us take ar-

bitrary N ∈ N. We consider RN with standard coordinate-wise partial or-

der, x = (x1, . . . , xN ) ≥ y = (y1, . . . , yN) if xi ≥ yi, i = 1, . . . , N. We write

x > y if x ≥ y and xi > yi for at least one i and x ≫ y if xi > yi for any

i = 1, . . . , N . For any x ∈ RN we denote |x| = (|x1|, . . . , |xN |) and, similarly, if

B = (bij)1≤i≤N,1≤j≤M is an N ×M matrix, we write |B| = (|bij |)1≤i≤N,1≤j≤M .

We consider a network represented by a finite, connected and simple metric

graph Γ with n vertices {vj}1≤j≤n =: Υ and m edges {ej}1≤j≤m. We denote

by Ev the set of edges incident to v, let Jv := {j; ej ∈ Ev} and |Ev| =

|Jv| be the valency of v. We identify the edges with unit intervals through

sufficiently smooth invertible functions lj : ej 7→ [0, 1]. In particular, we call v

with lj(v) = 0 the tail of ej and the head if lj(v) = 1. On each edge ej we

define pj = (pj1, p
j
2)T and consider a hyperbolic system

∂tp
j + Mj∂xp

j + Njpj = 0, t > 0, 0 < x < 1, 1 ≤ j ≤ m, (2.1)

where Mj = (M j
lk)1≤k,l≤2 and Nj = (N j

lk)1≤k,l≤2 are real matrix functions

defined on [0, 1], with Mj being strictly hyperbolic. More precisely, we assume

that for each x ∈ [0, 1],

∆j =
(
trMj

)2 − 4detMj > 0
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so that the eigenvalues, given by

λj
± =

trMj ±
√

(trMj)
2 − 4detMj

2
,

are real, different and nonzero, with λj
− < λj

+. We denote by f j
± = (f j

±,1, f
j
±,2)

T

the eigenvectors belonging to, respectively, λj
±. We observe that the eigenvalues

can be of the same or of different signs. In the latter case, we have λj
− < 0 < λj

+.

We introduce

Fj =


 f j

+,1 f j
−,1

f j
+,2 f j

−,2


 , (Fj)−1 =

1

detFj


 f j

−,2 −f j
−,1

−f j
+,2 f j

+,1




and the Riemann invariants uj = (uj
1, u

j
2)T , 1 ≤ j ≤ m, by

uj = (Fj)−1pj and pj =

(
f j
+,1u

j
1 + f j

−,1u
j
2

f j
+,2u

j
1 + f j

−,2u
j
2

)
. (2.2)

Then we diagonalize (2.1) as

∂tu
j = ∂t

(
(Fj)−1pj

)
= −(Fj)−1

(
Mj∂xp

j + Njpj
)

=


 −λj

+ 0

0 −λj
−


 ∂xu

j − (Fj)−1Mj(∂xF
j)uj − (Fj)−1NjFjuj ,

for each 1 ≤ j ≤ m, or, in a compact form,

∂tu
j + Lj∂xu

j + Njuj = 0, t > 0, 0 < x < 1. (2.3)

Our assumptions ensure that uj 7→ Njuj induces a bounded perturbation, hence

all further considerations will be carried out for the case Nj = 0.

3 The boundary conditions

Following the paradigm introduced in [10, Section 1.1.5.1], we require that at

each point of the boundary all outgoing data must be determined by the in-

coming data. Since in a graph the boundary is represented by its vertices, the

boundary conditions must represent some balance between the incoming and
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outgoing data at each vertex. However, for a general system (2.1), it is not

always obvious which data are outgoing and which are incoming. For instance,

for the random walk model introduced in Example 1.3, it is easy to determine

the outgoing and incoming data if the system is written in the form (1.6) but it

is not so clear for (1.8) as p is just the total density of particles and do not have

any direction of the flow. This can be resolved by using the Riemann invariants

u = F−1p,

where p = ((pj)1≤j≤m)T , u = ((uj)1≤j≤m)T and F = diag{Fj}1≤j≤m. If we

disregard the lower order terms in (2.3), equations for u1 = (u1
1, . . . , u

m
1 )T and

u2 = (u1
2, . . . , u

m
2 )T are decoupled and, on [0, 1], the flow described by uj

1 (re-

spectively uj
2) occurs in the direction determined by the sign of λj

+ (respectively

λj
−); that is, from 0 to 1 if the corresponding eigenvalue is positive, and from

1 to 0 otherwise. Let p ∈ (W 1
1 (0, 1))2m. Then, under the adopted assump-

tions on Mj, 1 ≤ j ≤ m, also u ∈ (W 1
1 (0, 1))2m and we can define the traces

γvp
j and γvu

j whenever ej ∈ Ev . With some abuse of notation, we write

(γvp
j)j∈Jv

= p(v) for each v ∈ Υ and we use the same convention for u(v).

We further allow v to be replaced by lj(v) appropriate for ej , j ∈ Jv. Since

p(v) = F(v)u(v),

and F(v) is invertible for any v, determining the boundary values u(v) is equiv-

alent to that for p(v) and thus we will mostly work with the former.

Definition 3.4. Let v ∈ Υ. The outgoing values uj
k(v), j ∈ Jv, k = 1, 2, are

If λj
+ > λj

− > 0 λj
+ > 0 > λj

− 0 > λj
+ > λj

−

lj(v) = 0 uj
1(v), uj

2(v) uj
1(v) none

lj(v) = 1 none uj
2(v) uj

1(v), uj
2(v)

.

Denote by αj the number of positive eigenvalues on ej . Then we see that

for a given vertex v with valence |Jv| the number of outgoing values is given by

kv :=
∑

j∈Jv

(2(1 − αj)lj(v) + αj). (3.1)
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Definition 3.5. We say that v is a sink, and write v ∈ Υz, if either αj = 2

and lj(v) = 1 or αj = 0 and lj(v) = 0 for all j ∈ Jv. We say that v is a source,

and write v ∈ Υs, if either αj = 0 and lj(v) = 1 or αj = 2 and lj(v) = 0 for all

j ∈ Jv. If v is neither a source nor a sink, then we say that v is a transient (or

internal) vertex and write v ∈ Υt.

We observe that if v ∈ Υz, then kv = 0, while if v ∈ Υs, then kv = 2|Jv|.
Let us introduce the partition

{1, . . . ,m} =: J1 ∪ J2 ∪ J0, (3.2)

where j ∈ J1 if αj = 1, j ∈ J2 if αj = 2 and j ∈ J0 if αj = 0. This partition

induces the corresponding partition of each Jv as

Jv := Jv,1 ∪ Jv,2 ∪ Jv,0.

We also consider another partition Jv = J0
v
∪ J1

v
, where j ∈ J0

v
if lj(v) = 0 and

j ∈ J1
v if lj(v) = 1. Then we can give an alternative expression for kv as

kv =
∑

j∈J0
v

αj +
∑

j∈J1
v

(2 − αj) = |Jv,1| + 2(|J0
v ∩ Jv,2| + |J1

v ∩ Jv,0|). (3.3)

The conditions of Definition 3.4 can be alternatively expressed as follows.

Lemma 3.6. Let v ∈ Υ \ Υz. The outgoing boundary values of Definition 3.4

are determined as follows

(i) uj
1(0) is outgoing if and only if j ∈ (Jv,1 ∪ Jv,2) ∩ J0

v ,

(ii) uj
2(0) is outgoing if and only if j ∈ Jv,2 ∩ J0

v ,

(iii) uj
1(1) is outgoing if and only if j ∈ Jv,0 ∩ J1

v
,

(iv) uj
2(1) is outgoing if and only if j ∈ (Jv,1 ∪ Jv,0) ∩ J1

v
.

Hence, in particular,

|(Jv,1 ∪ Jv,2) ∩ J0
v
| + |Jv,2 ∩ J0

v
| + |(Jv,1 ∪ Jv,0) ∩ J1

v
| + |Jv,0 ∩ J1

v
| = kv . (3.4)
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Proof. By Definition 3.4, uj
1(0) is outgoing at v if and only if lj(v) = 0 and

either λj
+ > λj

− > 0 or λj
+ > 0 > λj

− which occurs if and only if j ∈ J0
v

and

either j ∈ Jv,2 or j ∈ Jv,1 which is exactly (i). The statements (ii)–(iv) follow

in the same way. Eq. (3.4) follows from the one-to-one correspondence proved

above.

3.1 General Kirchhoff’s conditions

A typical example of the balance of incoming and outgoing data is Kirchhoff’s

law. It has different interpretations, depending on the context. For an electrical

circuit, it requires that the algebraic sum of currents at any node (vertex) must

be zero, and thus expresses the charge conservation. On the other hand, for a

flow in a channel network it states that the rate of the fluid’s inflow into any

node must equal the rate of its outflow and thus it is the mass conservation law.

Since Kirchhoff’s law provides only one relation for the functions defined on

the edges incident to v, typically it is not sufficient to specify all kv outgoing

values at v, which intuitively would lead to a well-posed initial boundary value

problem for (2.1). Accordingly, for each v ∈ Υ \ Υz we consider kv vectors of

dimension 2|Jv| that, for a notational convenience, we write as

Φv,r = (Φj
v,r)j∈Jv

= ((φj
v,r, ϕ

j
v,r))j∈Jv

, r = 1, . . . , kv.

We also introduce the matrix

Φv :=




− Φv,1 −
...

...
...

− Φv,kv
−


 =




φj1
v,1 ϕj1

v,1 . . . φ
j|Jv |

v,1 ϕ
j|Jv |

v,1

...
...

...
...

...

φj1
v,kv

ϕj1
v,kv

. . . φ
j|Jv |

v,kv

ϕ
j|Jv |

v,kv


 , (3.5)

where Jv = {j1, . . . , j|Jv|}.

Definition 3.7. We say that p satisfies a generalized Kirchhoff conditions at

v ∈ Υ \ Υz if

∑

j∈Jv

(φj
v,rp

j
1(v) + ϕj

v,rp
j
2(v)) = 0, r = 1, . . . , kv, (3.6)
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or, in short,

Φvp(v) = 0. (3.7)

Equivalently,

Ψvu(v) := ΦvF(v)u(v) = 0, v ∈ Υ \ Υz. (3.8)

3.1.1 Resolution at a vertex

To ensure that (3.8) satisfies the paradigm of [10, Section 1.1.5.1] at each vertex,

it must uniquely determine the outgoing values of u(v) through the incoming

values of u at v. Lemma 3.6 allows for an explicit formulation of the required

assumptions. We introduce the block diagonal matrix

F̃out(v) = diag{F̃j
out(v)}j∈Jv

, (3.9)

where

F̃
j
out(v) =






 0 0

0 0


 if j ∈ (Jv,0 ∩ J0

v) ∪ (Jv,2 ∩ J1
v),


 f j

+,1(lj(v)) f j
−,1(lj(v))

f j
+,2(lj(v)) f j

−,2(lj(v))


 if j ∈ (Jv,0 ∩ J1

v) ∪ (Jv,2 ∩ J0
v),


 f j

+,1(0) 0

f j
+,2(0) 0


 if j ∈ Jv,1 ∩ J0

v ,


 0 f j

−,1(1)

0 f j
−,2(1)


 if j ∈ Jv,1 ∩ J1

v
.

Further, by Fout(v) we denote the contraction of F̃out(v); that is, the 2|Jv|×kv

matrix obtained from F̃out(v) by deleting 2|Jv| − kv zero columns, and then

define Fin(v) as the analogous contraction of F(v) − F̃out(v).

In a similar way, we extract from u(v) the outgoing boundary values ũout(v) =

(ũj
out(v))j∈Jv

, where

ũ
j
out(v) =





(0, 0)T if j ∈ (Jv,0 ∩ J0
v

) ∪ (Jv,2 ∩ J1
v
),

(uj
1(lj(v)), uj

2(lj(v)))T if j ∈ (Jv,0 ∩ J1
v) ∪ (Jv,2 ∩ J0

v),

(uj
1(0), 0)T if j ∈ Jv,1 ∩ J0

v ,

(0, uj
2(1))T if j ∈ Jv,1 ∩ J1

v
,
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and ũin(v) = u(v) − ũout(v). As above, we define uout(v) to be the vector in

Rkv obtained by discarding the zero entries in ũout(v) and, similarly, uin(v) is

the vector in R2|Jv|−kv obtained from ũin(v).

Proposition 3.8. Boundary system (3.8) at v ∈ Υ \ Υz is equivalent to

ΦvFout(v)uout(v) + ΦvFin(v)uin(v) = 0 (3.10)

and hence it uniquely determines the outgoing values of u(v) at v as defined by

Definition 3.4 if and only if

ΦvFout(v) is nonsingular. (3.11)

Then

uout(v) = −(ΦvFout(v))−1ΦvFin(v)uin(v). (3.12)

Proof. From (3.9) and the definition of ũout(v) we see that

F̃out(v)ũin(v) = 0, (F(v) − F̃out(v))ũout(v) = 0. (3.13)

Hence

F̃out(v)u(v) = Fout(v)uout(v), (F(v) − F̃out(v))u(v) = Fin(v)uin(v),

and (3.8) can be written as

0 = ΦvF(v)u(v) = Φv(F̃out(v) + (F(v) − F̃out(v))(ũout(v) + ũin(v))

= ΦvFout(v)uout(v) + ΦvFin(v)uin(v).

3.2 Graph independent boundary conditions

Assuming that vertices in Υ are ordered as {v1, . . . ,vn}, we can define Ψ′ =

diag{Ψv}v∈Υ\Υz
, γu = ((u(v))v∈Υ\Υz

)T and write (3.8) in the global form

Ψ′γu = 0. (3.14)
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By the hand shake lemma we have

2
∑

v∈Υ

|Jv| = 4m (3.15)

and, by (3.3) and kv = 0 for v ∈ Υz,

∑

v∈Υ\Υz

kv =
∑

v∈Υ

kv =
∑

v∈Υ

|Jv,1| + 2

(
∑

v∈Υ

|J0
v
∩ Jv,2| +

∑

v∈Υ

|J1
v
∩ Jv,0|

)

=
∑

v∈Υ

|Jv,1| +
∑

v∈Υ

|Jv,2| +
∑

v∈Υ

|Jv,0| = 2m,

where we used the fact that, when v ∈ Υ and j ∈ J0
v
∩Jv,2 (so that v is the tail

of ej), there is exactly one v′ ∈ Υ (the head of ej) such that j ∈ J1
v′ ∩ Jv′,2, so

that

2
∑

v∈Υ

|J0
v
∩ Jv,2| =

∑

v∈Υ

|J0
v
∩ Jv,2| +

∑

v∈Υ

|J1
v
∩ Jv,2| =

∑

v∈Υ

|Jv,2|;

the same argument is valid for the second summand. Since (3.15) contains

sinks, it contains 2
∑

v∈Υz

|Jv| irrelevant entries corresponding to the function

values that are incoming at v ∈ Υz and do not influence any outgoing data. To

keep, however, track of all vertex values, we augment Ψ′ to Ψ by adding zero

columns corresponding to edges coming to sinks so Ψ is a 2m× 4m matrix. In

the same way, we can provide a global form of (3.10), splitting (3.14) as

Ψoutγuout + Ψinγuin = 0, (3.16)

where Ψout and Ψin are diag{ΦvFout(v)}v∈Υ\Υz
and diag{ΦvFin(v)}v∈Υ\Υz

,

augmented by zero columns corresponding to the incoming functions at the

sinks, γuout = ((uout(v))v∈Υ\Υz
)T , and γuin is ((uin(v))v∈Υ\Υz

)T augmented

by incoming values at sinks.

To give (3.16) a vertex independent interpretation, we focus on (2.3) with

Nj = 0, and discuss general linear boundary conditions for u = ((uj
1, u

j
2)1≤j≤m)T .

Using the adopted parametrization, the flow described by uj
1 occurs along ej

from the tail at x = 0 to the head at x = 1 if the corresponding eigenvalue, here

λj
+, is positive. Hence, using (3.2), if j ∈ J1, then we need to prescribe the value

14



of uj
1 at the tail, while uj

2 there will be counted as incoming and the roles will

be reversed at the head. Next, if j ∈ J2, then both uj
1 and uj

2 flow from the tail

to the head and both must be determined at the tail of the edge and provide

the incoming information at its head; the picture will be reversed if j ∈ J0.

This shows that we only need to distinguish functions describing the flow

from 0 to 1 and from 1 to 0. Accordingly, we split u into parts corresponding

to positive and negative eigenvalues:

υ :=
(

(uj
1)j∈J1∪J2 , (u

j
2)j∈J2

)
= (υj)j∈J+ ,

̟ :=
(

(uj
1)j∈J0 , (u

j
2)j∈J1∪J0

)
= (̟j)j∈J− ,

(3.17)

where, with some abuse of notation, J+ := {J1∪J2, J2} and J− := {J0, J1∪J0}
are the sets of indices j with, respectively, at least 1 positive eigenvalue, and at

least 1 negative eigenvalue of Mj. In J+, respectively, J− the indices from J2

(respectively J0) appear twice so that we renumber them in some consistent way

to avoid confusion. For instance, we can take J+ = {1, . . . ,mu,mu+1, . . . ,m+}
and J− = {m+ + 1, . . . ,mu,mu + 1, . . . , 2m} and there are bijections between,

respectively, J1 ∪ J2 and {1, . . . ,mu}, J2 and {mu + 1, . . . ,m+}, J0 and {m+ +

1, . . . ,mu}, and J1 ∪ J0 and {mu + 1, . . . , 2m}.
We emphasize that different ways of indexing would result in just re-labelling

of the equations of (2.3) without changing its structure.

Note that in this way we converted the 2 × 2 hyperbolic problem (2.3) on Γ

into a first order transport problem on a multi digraph Γ with the same vertices

Υ and where each edge of Γ was converted into two edges parametrized by

x ∈ [0, 1], where x = 0 and x = 1 on both edges correspond to the same vertices

in Γ. Conversely, if we have a multigraph Γ, where all edges appear in pairs and

each two edges joining the same vertices are parametrized concurrently, then we

can collapse Γ to a graph Γ. Then (3.16) can be written as

Ξ(υ(0),υ(1),̟(0),̟(1))T = Ξout(υ(0),̟(1))T + Ξin(υ(1),̟(0))T = 0,

where Ξ is a 2m×4m matrix, and Ξout and Ξin are 2m×2m matrices, obtained

as an appropriate permutation of columns of Ψ and Ψout and Ψin, respectively.
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We observe, however, that the above formulation does not depend on the fact

that Ξ has a special form coming from local Kirchhoff’s boundary conditions

but, in principle, it can be an arbitrary 2m× 4m matrix. Thus, we can consider

∂tυ(x, t) = −cj(x)∂xυ(x, t), t > 0, 0 < x < 1, (3.18a)

∂t̟(x, t) = cj(x)∂x̟(x, t), t > 0, 0 < x < 1, (3.18b)

υ(x, 0) = υ̊(x), 0 < x < 1,

̟(x, 0) = ˚̟(x), 0 < x < 1,
(3.18c)

Ξ(υ(0),υ(1),̟(0),̟(1))T = 0, t > 0, (3.18d)

where υ(x, t) = (υj(x, t))j∈J+ , ̟(x, t) = (̟j(x, t))j∈J− and the positive func-

tions cj , j ∈ J+∪J−, equal the absolute values of the corresponding eigenvalues.

4 The generation theorem

We observe that our network problem has become a first order problem and,

in fact, a special case of the so-called port-Hamiltonian systems, see e.g. [21].

Though the definition in [21] concerns the Hilbert space case, it follows from [20]

that the Hilbert space structure is needed to reduce a general port-Hamiltonian

to the diagonal case (3.18a), (3.18b), while the well-posedness theory of the

latter, developed in [32, 20, 15], applies in any Lp space, 1 ≤ p < ∞. This theory,

however, is based on control theory results developed in [29]. Here we present an

alternative, semigroup theoretic proof, by placing (3.18) in the framework of [7]

that immediately leads to the well-posedness of (3.18) in the L1 setting. Then

the Lp theory follows by direct estimates of the L1 solutions with Lp data. We

observe that by further re-parametrizing of the arcs of Γ with j ∈ J− we could

transform (3.18a), (3.18b) to the case with positive transport speeds, making

thus the calculations of [7] directly available. We decided, however, to leave

the problem in the form with the separated directions of transport due to its

natural connection with the original second order problem, and also since this

is the form studied in [10, 32, 20].
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Hence, we consider an arbitrary 2m× 4m real matrix Ξ in (3.18d) and split

it into 2m× 2m matrices as Ξ = (Ξout,Ξin), so that (3.18d) takes the form

Ξout(υ(0, t),̟(1, t)) = −Ξin(υ(1, t),̟(0, t)). (4.1)

By combining [20, Theorem 1.5] with [32, Theorem 3.3], we see that proving

the well-posedness of (3.18), there is no loss of generality assuming that

Ξout is invertible (4.2)

as the existence of Ξ−1
out is necessary for the semigroup generation.

Remark 4.9. Clearly, if (3.11) satisfied, then Ξ−1
out exists. However, as noticed

in [18, Theorem 3.7] (for dissipative boundary conditions in a Hilbert space

setting), the solvability of Ψout
v := ΦvFout(v) at each v ∈ Υ\Υz is not necessary

as long as there is some global solvability and (4.2) renders such a condition.

Let us denote

C(x) := diag
{

(−cj(x))j∈J+ , (cj(x))j∈J−

}
= diag{−C+(x),C−(x)}

and, for an arbitrary 2m× 4m real matrix Ξ satisfying (4.2), let B := Ξ−1
outΞin.

Let B =
(
Bkl
)
k,l=1,2

, where Bkl :=
(
bklij
)
i,j

with i ∈ J+ if k = 1 and i ∈ J−

if k = 2 and j ∈ J+ if l = 1 and j ∈ J− if l = 2. Now consider the spaces

Xp := (Lp(0, 1))2m and Y p = (W p
1 (0, 1))2m for 1 ≤ p < ∞, and define an

operator (AB, Dp(AB)) in Xp as A|Dp(AB), where

A := Cdiag{∂x, . . . , ∂x︸ ︷︷ ︸
2m times

}, (4.3a)

Dp(AB) :=

{(
υ

̟

)
∈ Y p;

(
υ(0)

̟(1)

)
=B

(
υ(1)

̟(0)

)}
. (4.3b)

Then we have the following theorem, whose proof closely follows that of [6,

Theorem 3.1] and thus will be only sketched.

Theorem 4.10. Let B be an arbitrary matrix. The operator (AB , D1(AB))

generates a C0-semigroup on X1.
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Proof. Since (C∞
0 (0, 1))2m ⊂ D1(AB), D1(AB) is dense in X1.

Let f ∈ X1. The resolvent equation for AB takes the form

λυj(x) + cj(x)∂xυj(x) = fj(x), j ∈ J+ (4.4a)

λ̟j(x) − cj(x)∂x̟j(x) = fj(x), j ∈ J−. (4.4b)

Let us denote

eλ(a, b) := e
−λ

b∫

a

1
cj(z)

dz
,

and E+
λ (a, b) := diag

{
eλ(a, b)

}
j∈J+

, E−
λ (a, b) := diag

{
eλ(a, b)

}
j∈J−

. For ξ =

(ξ1, . . . , ξ2m), we set (ξj)j∈J+ = ξ+ and (ξj)j∈J− = ξ−. Then, integrating (4.4a)

from 0 to x and (4.4b) from x to 1, the solution to (4.4) can be written as

 υ+(x)

̟−(x)


 = diag{E+

λ (0, x),E−
λ (x, 1)}


 υ0

̟0




+




x∫
0

E+
λ (s, x)C−1

+ (s)f+(s) ds

1∫
x

E−
λ (x, s)C−1

− (s)f−(s) ds


 ,

(4.5)

for an arbitrary vector (υ0,̟0)T . Using the boundary condition in D1(AB) to

determine υ0,̟0, we have

(I − BEλ(0, 1))


 υ0

̟0


 = B




1∫
0

E+
λ (s, 1)C−1

+ (s)f+(s) ds

1∫
0

E−
λ (0, s)C−1

− (s)f−(s) ds


 , (4.6)

where I is the 2m×2m identity matrix and Eλ(0, 1) := diag
{
E+
λ (0, 1),E−

λ (0, 1)
}
.

If M := min
j∈J+∪J−

(∥∥c−1
j

∥∥
L1(0,1)

)
, then ‖BEλ(0, 1)‖ < 1 for any λ > ln‖B‖

M , hence


 υ0

̟0


 =

∞∑

n=0

(BEλ(0, 1))
n
B




1∫
0

E+
λ (s, 1)C−1

+ (s)f+(s) ds

1∫
0

E−
λ (0, s)C−1

− (s)f−(s) ds


 , (4.7)

so the resolvent R(λ,AB) is fully determined by (4.5) and (4.7).

Let us define a modified operator A|B| as in (4.3) but with B replaced by

|B|. Then, by (4.5) and (4.7), R(λ,A|B|) is a positive operator such that

|R(λ,AB)f | ≤ R(λ,A|B|) |f | .
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Iterating this inequality and using the lattice property of the norm, we have

‖R(λ,AB)nf‖ ≤
∥∥R(λ,A|B|)

n
∥∥ ‖f‖ , n ≥ 1. (4.8)

Hence if A|B| generates a semigroup, so does AB and so, from now on, we shall

consider operators AB with B ≥ 0 so that R(λ,AB) is positive and thus we can

use f ≥ 0 for the norm estimates.

Let us denote

bklj :=
∑

i

bklij , k, l = 1, 2, (4.9)

where i runs through J+ if k = 1, and it runs through J− if k = 2. That is, bklj

is the sum of elements in the j-th column of the matrix Bkl. Adding separately

the equations with indices in J+ and J− in (4.6) and using (4.9), we have

∑

i∈J+

υ0
i =

∑

j∈J+

b11j eλ(0, 1)υ0
j +

∑

j∈J+

b11j

1∫

0

eλ(s, 1)

cj(s)
fj(s) ds

+
∑

j∈J−

b12j eλ(0, 1)̟0
j +

∑

j∈J−

b12j

1∫

0

eλ(0, s)

cj(s)
fj(s) ds

(4.10)

and

∑

i∈J−

̟0
i =

∑

j∈J+

b21j eλ(0, 1)υ0
j +

∑

j∈J+

b21j

1∫

0

eλ(s, 1)

cj(s)
fj(s) ds

+
∑

j∈J−

b22j eλ(0, 1)̟0
j +

∑

j∈J−

b22j

1∫

0

eλ(0, s)

cj(s)
fj(s) ds.

(4.11)

Now let us introduce a new, equivalent, norm in X1 by

‖(υ,̟)‖c :=
∑

j∈J+

∥∥υjc−1
j

∥∥
L1(0,1)

+
∑

j∈J−

∥∥̟jc
−1
j

∥∥
L1(0,1)

.
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With this new norm, for f ≥ 0, we have by (4.5),

‖R(λ,AB)f‖c =
∑

j∈J+

1∫

0

eλ(0, x)

cj(x)
υ0
j dx +

∑

j∈J+

1∫

0

x∫

0

eλ(s, x)

cj(x)

fj(s)

cj(s)
ds dx

+
∑

j∈J−

1∫

0

eλ(x, 1)

cj(x)
̟0

j dx +
∑

j∈J−

1∫

0

1∫

x

eλ(x, s)

cj(x)

fj(s)

cj(s)
ds dx

=
1

λ

∑

j∈J+


υ0

j − υ0
j eλ(0, 1) +

1∫

0

fj(s)

cj(s)
ds−

1∫

0

eλ(s, 1)

cj(s)
fj(s) ds




+
1

λ

∑

j∈J−


̟0

j −̟0
jeλ(0, 1) +

1∫

0

fj(s)

cj(s)
ds−

1∫

0

eλ(0, s)

cj(s)
fj(s) ds


 ,

where we changed the order of integration and used

d

dx
e
−λ

x∫

0

1
cj(z)

dz
= − λ

cj(x)
e
−λ

x∫

0

1
cj(z)

dz

to evaluate the resulting inner integrals. Now we make use of (4.10) and (4.11)

to obtain, after some algebra,

‖R(λ,AB)f‖c =
1

λ

∑

j∈J+

(
b11j + b21j − 1

)

υ0

j eλ(0, 1) +

1∫

0

eλ(s, 1)

cj(s)
fj(s) ds




+
1

λ

∑

j∈J−

(
b12j + b22j − 1

)

̟0

jeλ(0, 1) +

1∫

0

eλ(0, s)

cj(s)
fj(s) ds


+

1

λ
‖f‖c .

Observe that only the expressions involving bklj , k, l = 1, 2 can be negative. Thus

we consider three cases.

Case 1. b11j + b21j ≤ 1, b12j + b22j ≤ 1 for all j ∈ J+ ∪ J−. Then we have

‖R(λ,AB)f‖c ≤
1

λ
‖f‖c

and hence AB generates a positive semigroup of contractions in (X1, ‖·‖c) and,

by the equivalence of norms, a positive bounded semigroup in X1.

Case 2. b11j + b21j ≥ 1, b12j + b22j ≥ 1 for all j ∈ J+ ∪ J−. Then

‖R(λ,AB)f‖c ≥
1

λ
‖f‖c
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and, by [3, Theorem 2.5], AB generates a positive semigroup in (X1, ‖·‖c) , and

hence in X1.

Case 3. There exist subsets I ′ ⊂ J+ and I ′′ ⊂ J−, such that at least one is

nonempty, I ′ ∪ I ′′ 6= J+ ∪ J− and

b11j + b21j < 1, j ∈ I ′, b11j + b21j ≥ 1, j ∈ J+ \ I ′,

b12j + b22j < 1, j ∈ I ′′, b12j + b22j ≥ 1, j ∈ J− \ I ′′.
(4.12)

We introduce a new matrix B̃ by replacing the entries giving rise to b11j + b21j <

1, j ∈ I ′, and b12j +b22j < 1, j ∈ I ′′, by 1 and leaving the other entries unchanged.

Then B̃ satisfies the assumption of Case 2 and B ≤ B̃ as (4.12) implies that each

replaced entry of B was smaller than 1 (and positive). As before, we introduce

the operator AB̃ on D1(AB̃). Repeating the argument leading to (4.8), there

exists R(λ,AB̃) for sufficiently large λ and 0 ≤ R(λ,AB) ≤ R(λ,AB̃), hence

‖R(λ,AB)n‖ ≤
∥∥R(λ,AB̃)n

∥∥ , n ∈ N,

so also AB is the generator.

We have shown that for any nonnegative matrix B, the operator AB generates

a semigroup. Therefore, by (4.8), this is true for AB with arbitrary matrix B.

Next we show that we can use the above result to prove the generation in

any Xp with p ∈ [1,∞). Let (G1(t))t≥0 be the semigroup on X1 generated by

A1,B.

Theorem 4.11. The restriction (Gp(t))t≥0 = (G1(t)|Xp
)t≥0 is a strongly con-

tinuous semigroup on Xp whose generator is the part of A1,B in Xp.

Proof. If (υ̊, ˚̟ ) ∈ D(A1,B), then (υ(x, t),̟(x, t)) = [G1(t)(υ̊, ˚̟ )](x) is an

absolutely continuous solution to (3.18). Let us consider j ∈ J+ and denote

Xj(x, t) = L−1
j (Lj(x) − t), where

Lj(x) =

x∫

0

ds

cj(s)
. (4.13)

We have Lj : [0, 1] 7→ [0, Lj(1)] (where Lj(1) =: Tj is the time needed to traverse

the edge j with the speed cj(x) from the tail at x = 0 to the head at x = 1);
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it is a strictly increasing function and hence its inverse L−1
j : [0, Tj] 7→ [0, 1] is

well defined. Then, by the uniqueness of solutions to scalar first order partial

differential equations,

υj(x, t) = υ̊j(Xj(x, t)), 0 ≤ Lj(x) − t ≤ Tj.

In particular, υj(1, t) = υ̊j(Xj(1, t)) = υ̊j(L
−1
j (Tj − t)) is defined for 0 ≤ t ≤ Tj .

Similarly, for j ∈ J−

̟j(x, t) = ˚̟j(Xj(x,−t)), 0 ≤ Lj(x) + t ≤ Tj

and ̟j(0, t) = ˚̟j(Xj(0,−t)) = ˚̟j(L
−1
j (t)) is defined for 0 ≤ t ≤ Tj .

Let us define Xk,j(x, t) = L−1
k (Lj(x) − t) and Yk,j(x, t) = L−1

k (t − Lj(x)),

T = minj∈J+∪J−{Tj}. We fix j ∈ J+. Thus, by the uniqueness of solutions, for

t ∈ [0, T ] and (υ̊, ˚̟ ) ∈ D(A1,B) we have

υj(x, t) =





υ̊j(Xj(x, t)), x ∈ (L−1
j (t), 1],

∑
k∈J+

bjkυ̊k(Xk,j(x, t− Tk))

+
∑

k∈J−

bjk ˚̟k(Yk,j(x, t)), x ∈ [0, L−1
j (t)),

(4.14)

and, similarly for j ∈ J−,

̟j(x, t)=





˚̟j(Xj(x,−t)), x ∈ [0, L−1
j (Tj − t)),

∑
k∈J+

bjkυ̊k(Yk,j(x, Tk + Tj − t)))

+
∑

k∈J−

bjk ˚̟k(Xk,j(x, Tj − t)), x ∈ (L−1
j (Tj − t), 1].

(4.15)

Let us denote by (υ̊, ˚̟ ) 7→ G(t)(υ̊, ˚̟ ), 0 ≤ t ≤ T, the operator defined by

(4.14) and (4.15). Since the functions Lj , j ∈ J+∪J−, are diffeomorphisms, the

compositions with functions (̊υ, ˚̟) ∈ Xp are measurable. Then, for (̊υ, ˚̟) ∈
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Xp, 0 ≤ t ≤ T and j ∈ J+, we have

1∫

0

|υj(x, t)|pdx ≤
1∫

L−1
j

(t)

|̊υj(Xj(x, t))|pdx

+ D
p/q
b



∑

k∈J+

L−1
j

(t)∫

0

|̊υk(Xk,j(x, t− Tk))|pdx +
∑

k∈J−

L−1
j

(t)∫

0

|˚̟k(Yk,j(x, t))|pdx




=

L−1
j

(Tj−t)∫

0

|̊υj(z)|p
cj(X

−1
j (z, t))

cj(z)
dz (4.16)

+ D
p/q
b



∑

k∈J+

1∫

L−1
k

(Tk−t)

|̊υk(z)|p cj(Xj,k(z, Tk − t))

ck(z)
dz

+
∑

k∈J−

L−1
k

(t)∫

0

|˚̟k(z)|p cj(Yj,k(z, t))

ck(z)
dz


 ≤ Dj‖(υ̊, ˚̟ )‖p

Xp
,

where D
p/q
b =

(
∑

k∈J+∪J−

(bjk)q

)p/q

and Dj is a constant depending on D
p/q
b

and maxk∈J+∪J−

{
maxx∈[0,1] cj(x)

minx∈[0,1] ck(x)

}
.

In the same way we obtain

1∫

0

|̟j(x, t)|pdx ≤ Dj‖(υ̊, ˚̟ )‖p
Xp

, j ∈ J−. (4.17)

Hence, combining the estimates for all j ∈ J+∪J−, we see that there is D such

that for all (υ̊, ˚̟ ) ∈ Xp and t ∈ [0, T ],

‖G(t)(υ̊, ˚̟ )‖Xp
≤ D‖(υ̊, ˚̟ )‖Xp

. (4.18)

Now, since Xp ⊂ X1 and G1(t)(υ̊, ˚̟ ) = G(t)(υ̊, ˚̟ ) for (υ̊, ˚̟ ) ∈ D(A1,B),

which is dense in both X1 and Xp, we have

G1(t)|Xp
= G(t)|Xp

, 0 ≤ t ≤ T,

and G1(T )(υ̊, ˚̟ ) = G(T )(υ̊, ˚̟ ). We can then repeat the above procedure for

t = s + T, 0 ≤ s ≤ T, getting

G(s)G(T )(υ̊, ˚̟ ) = G1(s)G1(T )(υ̊, ˚̟ ) = G1(t)(υ̊, ˚̟ ) ∈ Xp, t = s+T, 0 ≤ s ≤ T.
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Since (G1(t))t≥0 is an algebraic semigroup, we see that, by iteration, (Gp(t))t≥0 :=

(G1(t)|Xp
)t≥0 is an exponentially bounded (by (4.18)) semigroup of continuous

operators on Xp. We have to prove its strong continuity at 0. For small t > 0

we can use (4.14) and (4.15). Thus, for a given j ∈ J+,

‖υj(·, t) − υ̊j‖pLp(0,1)
=

1∫

L−1
j

(t)

|̊υj(Xj(x, t)) − υ̊j(x)|p dx

+

L−1
j

(t)∫

0

∣∣∣∣∣
∑

k∈J+

bjkυ̊k(Xk,j(x, t − Tk)) +
∑

k∈J−

bjk ˚̟k(Yk,j(x, t)) − υ̊j(x)

∣∣∣∣∣

p

dx

= I1(t) + I2(t).

Consider first υ̊j ∈ C∞
0 (0, 1). Then, by (4.13), υ̊j ◦ L−1

j is uniformly Lipschitz

on [0, Lj(1)] with a Lipschitz constant µj . Since for L−1
j (t) ≤ x ≤ 1 we have

0 ≤ Lj(x) − t ≤ Lj(1) − t ≤ Lj(1), we can write

I1(t) ≤
1∫

L−1
j (t)

∣∣̊υj(L−1
j (Lj(x) − t)) − υ̊(L−1

j (Lj(x)))
∣∣p dx ≤ µp

j

1∫

L−1
j (t)

tpdx ≤ µp
j t

p.

Then, as in (4.16),

I2(t) ≤ 2pD
p/q
b



∑

k∈J+

1∫

L−1
k

(Tk−t)

|̊υk(z)|p cj(Xj,k(z, Tk − t))

ck(z)
dz

+
∑

k∈J−

L−1
k

(t)∫

0

|˚̟k(z)|p cj(Yj,k(z, t))

ck(z)
dz


+ 2p

L−1
j

(t)∫

0

|̊υj(x)|pdx

≤ 2pDj



∑

k∈J+

1∫

L−1
k

(Tk−t)

|̊υk(z)|pdz +
∑

k∈J−

L−1
k

(t)∫

0

|˚̟k(z)|pdz


+ 2p

L−1
j

(t)∫

0

|̊υj(x)|pdx.

Since L−1
k (t) → 0 and L−1

k (Tk − t) → 1 as t → 0+, limt→0+ I2(t) = 0. The con-

vergence can be extended to an arbitrary υ̊j ∈ Lp(0, 1) by density and uniform

boundedness, (4.18). The convergence of ̟j , j ∈ J−, can be proved in the same

way. Thus, (̊υ, ˚̟) ∈ Xp,

lim
t→0+

Gp(t)(υ̊, ˚̟ ) = (υ̊, ˚̟ ), (4.19)
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in Xp and hence (Gp(t))t≥0 is a strongly continuous semigroup in Xp. Then

the application of [16, Proposition II.2.3] shows that the generator of (Gp(t))t≥0

is the part of A1,B in Xp.

5 Examples

We shall discuss the relation of (3.7) with the boundary conditions of [28, 18].

Example 5.12. Consider the model of [28]

∂tp
j
1 + Kj∂xp

j
2 = 0, ∂tp

j
2 + Lj∂xp

j
1 = 0, (5.1)

for t > 0, 0 < x < 1, 0 ≤ j ≤ m, where Kj > 0, Lj > 0 for all j. In this case

λj
± = ±

√
LjKj (5.2)

and we can set

Fj =


 Kj Kj

√
LjKj −

√
LjKj


 .

For a given vertex v, we introduce a function defined as νj(v) = −1 if lj(v) = 0

and νj(v) = 1 if lj(v) = 1 and define Tvp2(v) = (νj(v)pj2(v))j∈Jv
. In this case

αj = 1 for any j and thus for any vertex v we need |Jv| boundary conditions.

The ones introduced in [28] can be expressed as follows. Let first v be a vertex

with |Ev | > 1. We split R|Jv| into Xv of dimension nv and its orthogonal

complement X⊥
v of dimension lv = |Jv| − nv. Then it is required that

p1(v) ∈ Xv, Tvp2(v) ∈ X⊥
v
,

that is, denoting I1 = {1, . . . , nv} and I2 = {nv + 1, . . . , |Jv|},

∑

j∈Jv

φj
rp

j
1(v) = 0, r ∈ I2,

∑

j∈Jv

ϕj
rν

j(v)pj2(v) = 0, r ∈ I1, (5.3)

where ((ϕj
r)j∈Jv

)r∈I1 is a base in Xv and ((φj
r)j∈Jv

)r∈I2 is a base in X⊥
v so that

(ϕj
r)j∈Jv

· (φj
s)j∈Jv

= 0 for any r ∈ I1 and s ∈ I2. In the notation of (3.5), we
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have Φj
v,r = (φj

r , 0) for r ∈ I2, and Φj
v,r = (0, νj(v)ϕj

r) for r ∈ I1. Thus

Φj
v,r · f j

± = φj
rf

j
±,1 = Kjφj

r, r ∈ I2,

Φj
v,r · f j

± = νj(v)ϕj
rf

j
±,2 = −

√
KjLjϕj

r, r ∈ I1.

Then (3.10) becomes

∑

j∈J0
v

φj
rK

juj
1(0) +

∑

j∈J1
v

φj
rK

juj
2(1) = Bin,r, r ∈ I2,

−
∑

j∈J0
v

ϕj
r

√
KjLjuj

1(0) −
∑

j∈J1
v

ϕj
r

√
KjLjuj

2(1) = Bin,r, r ∈ I1,
(5.4)

where Bin,r are the incoming components in (3.10). Vectors {(φj
rK

j)j∈Jv
}r∈I2

and {(−ϕj
r

√
KjLj)j∈Jv

}r∈I1 form bases in, respectively, X⊥
v and Xv. Indeed,

{(φj
r)j∈Jv

}r∈I2 forms a basis in X⊥
v

by assumption, thus the matrix (φj
r)j∈Jv ,r∈I2

has rank lv = |Jv|−nv, hence there is a minor such that det(φji
r )1≤i≤lv ,r∈I2 6= 0.

Then det(φji
r K

ji)1≤i≤lv ,r∈I2 = det(φji
r )1≤i≤lv ,r∈I2

lv∏
i=1

Kji 6= 0. The same argu-

ment is valid for {(−ϕj
r

√
KjLj)j∈Jv

}r∈I1 . Further, (φj
rK

j)j∈Jv
is orthogonal to

(−ϕj
s

√
KjLj)j∈Jv

for any r ∈ I2 and s ∈ I1 with respect to the scalar product

weighted with the vector ((Kj)−
3
2 (Lj)−

1
2 )j∈Jv

. Hence, the set

{{(φj
rK

j)j∈Jv
}r∈I2, {(−ϕj

r

√
KjLj)j∈Jv

}r∈I1}

forms a basis in R|Jv| and therefore (5.4) is uniquely solvable.

To complete the analysis, let us consider the vertices with |Ev | = 1, referred

to as exterior in [28]. The author splits arbitrarily the set of exterior vertices

into V Diss
ext and V Dir

ext , whereupon we require

pjv2 (v) = 0, v ∈ V Dir
ext , pjv1 (v, t) = ανjv (v)pjv2 (v), v ∈ V Diss

ext ,

where α ≥ 0. The first condition can be re-written as

f jv
+,2u

jv
1 (v) + f jv

−,2u
jv
2 (v) = 0.

This corresponds to Φjv
v

= (0, 1) and, since f jv
+,2 =

√
KjvLjv = −f jv

−,2 6= 0, the

equation above is solvable for either ujv
1 (0) or ujv

2 (1), whichever is necessary.
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The second condition can be re-written as

(Kjv − ανjv (v)
√
KjvLjv )ujv

1 (v) + (Kjv + ανjv (v)
√
KjvLjv )ujv

2 (v) = 0.

Thus, if ljv (v) = 0, then νjv (v) = −1 and (Kjv −ανjv (v)
√
KjvLjv ) 6= 0, yield-

ing the solvability of the equation with respect to ujv
1 (v). Similarly, if ljv (v) = 1,

then νjv (v) = 1 and the equation is solvable for ujv
2 (v).

To conclude this example, let us consider the approach introduced in [18],

where the boundary conditions are imposed after the matrix Mj has been trans-

formed to a Hermitian form via a Hermitian matrix Qj . For a given vertex v the

authors consider the block-diagonal matrix Tv := (QjMjιj(v))j∈Jv
, where ιj(v)

is the diagonal matrix diag{νj(v)}. Then the boundary conditions for a function

Θ = (θj)j∈Ev
, where θj is a vector of functions of dimension equal to the num-

ber of equations on ej , are formulated as the requirement that Θ(v) belongs to

the totally isotropic subspace associated with the quadratic form TvΘ(v) · Θ̄(v).

In the considered case a symmetrizing matrix Qj and the symmetrization are

given by, respectively,

Qj =


 Lj 0

0 Kj


 , QjMj =


 0 LjKj

LjKj 0


 .

Restricting our attention to real solutions and denoting θj = (pj1, p
j
2), the bound-

ary condition can be written as

−
∑

j∈J0
v

KjLjpj1(0)pj2(0) +
∑

j∈J1
v

KjLjpj1(1)pj2(1) = 0. (5.5)

If we consider an example of the boundary conditions discussed in [28, 18]

pj1 are continuous across v for j ∈ Jv and
∑

j∈Jv

νj(v)pj2(v) = 0, (5.6)

then we need pj1(v) = p for some p ∈ R and all j ∈ Jv as well as

−
∑

j∈J0
v

pj2(0) +
∑

j∈J1
v

pj2(1) = 0. (5.7)

On the other hand, after dividing by p, (5.5) requires

−
∑

j∈J0
v

KjLjpj2(0) +
∑

j∈J1
v

KjLjpj2(1) = 0. (5.8)
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Thus, the subspaces determined by (5.7) and (5.8) coincide only if KjLj = KL

for all j ∈ Jv, that is, the boundary conditions of [18] cover the Kirchhoff law

only when the speeds
√
LjKj, see (5.2), are the same on all edges.

Example 5.13. To further compare the approach of [18] and of this paper,

consider a simple one edge network case with the telegraph equation

∂tp1 = ∂xp2, ∂tp2 = ∂xp1 (5.9)

in (L2(0, 1))2. The edge e is identified with (0, 1). Let v1 be the endpoint

associated with 0, and v2 the endpoint associated with 1. Then

ℜ
∫ 1

0

(∂xp2, ∂xp1) · (p1, p2)dx = ℜ(p1(1)p̄2(1)) −ℜ(p1(0)p̄2(0))

=: qv2(p(v2)) + qv1(p(v1)),

(5.10)

where qvi
, i = 0, 1, are quadratic forms. The boundary conditions considered in

[18] are expressed as (p1(v), p2(v)) ∈ Yv ⊂ C2,v = v1,v2, where Yv is a linear

space on which qv vanishes, called a total isotropic subspace associated with qv.

Equivalently, the boundary conditions can be expressed as

w(v,i) · (p1(v), p2(v)) = 0, (5.11)

where {wv,i}1≤i≤dimY ⊥
v

is a fixed basis in Y ⊥
v ⊂ C2; it is possible that Y ⊥

v = {0}
in which case the above system does not impose any conditions at v. The basic

solvability condition of [18, Lemma 3.5], specified to this case, is

dimYv1 + dimYv2 = dim(Y ⊥
v1

+ Y ⊥
v2

) = 2, (5.12)

where the sum in the middle is the algebraic sum of the subspaces and both Y ⊥
v1

and Y ⊥
v2

are considered as subspaces of C2.

If we consider the boundary conditions p1(0) = p1(1) = 0 (with which (5.9)

reduces to the wave equation for p1 with the homogeneous Dirichlet boundary

conditions, see [4]), then Yvi
= Lin{(0, 1)}, i = 1, 2, (where Lin denotes the

linear span) and thus dimYv1
+ dimYv2

= 2. However, Y ⊥
v1

= Y ⊥
v2

= Lin{(1, 0)}
and dim(Y ⊥

v1
+ Y ⊥

v2
) = 1. On the other hand, if we consider the boundary
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conditions p1(0) = p2(1) = 0 (with which (5.9) reduces to the wave equation

for p1 with the Dirichlet boundary condition at x = 0 and the Neuman con-

dition at x = 1), then Yv1
= Lin{(0, 1)}, Yv2

= Lin{(1, 0)}, and thus again

dimYv1
+ dimYv2

= 2. However, Y ⊥
v1

= Lin{(1, 0)}, while Y ⊥
v2

= Lin{(0, 1)}
and dim(Y ⊥

v1
+ Y ⊥

v2
) = 2.

Due to (5.10), both boundary conditions lead to the problem being dissi-

pative but the first one does not satisfy the solvability condition (5.12). This

rather restrictive condition allows for checking m-dissipativity of the problem

by simply considering the resolvent equation with λ = 0,

∂xp2 = f1, ∂xp1 = f2. (5.13)

Indeed, since the resolvent set is open, if it contains λ = 0, then it also con-

tains some λ > 0 and thus the assumptions of the Lumer-Phillips theorem, [16,

Theorem II.3.15]. This significantly simplifies the analysis in the more general

network case. Indeed, here

p2(x) = K1 +

∫ x

0

f1(s)ds, p1(x) = K2 +

∫ x

0

f2(s)ds

and for p1(0) = p1(1) = 0, conditions (5.11) take the form of the system

(1, 0) · (p1(0), p2(0)) = (1, 0) · (K2,K1) = 0,

(1, 0) · (p1(1), p2(1)) = (1, 0) · (K2,K1) + (1, 0) ·
(∫ 1

0

f2(s)ds,

∫ 1

0

f1(s)ds

)
= 0,

not solvable for general (f1, f2) ∈ (L2(0, 1))2. If p1(0) = p2(1) = 0, we get

(1, 0) · (p1(0), p2(0)) = (1, 0) · (K2,K1) = 0,

(0, 1) · (p1(1), p2(1)) = (0, 1) · (K2,K1) + (0, 1) ·
(∫ 1

0

f2(s)ds,

∫ 1

0

f1(s)ds

)
= 0

which has a solution.

If we consider the full resolvent equation

λp1 − ∂xp2 = f1, λp2 − ∂xp1 = f2, (5.14)
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then, adding and subtracting the equations to diagonalize the system, we obtain

the general solution as

p1(x) =
A1eλx + A2e−λx

2

−
∫ x

0
(eλ(x−s) − e−λ(x−s))f1(s)ds +

∫ x

0
(eλ(x−s) + e−λ(x−s))f2(s))ds

2
,

p2(x) =
A1eλx −A2e−λx

2

−
∫ x

0 (eλ(x−s) + e−λ(x−s))f1(s)ds +
∫ x

0 (eλ(x−s) − e−λ(x−s))f2(s))ds

2
.

It is easy to see that if we impose p1(0) = p1(1) = 0, determining A1 and A2

requires invertibility of


 1 1

eλ e−λ


 . Clearly, λ = 0 is an eigenvalue (which

explains the failure of previous approach) but any λ ∈ R\{0} is in the resolvent

set and hence we have a generation of a group. Similarly, imposing p1(0) =

p2(1) = 0 requires invertibility of


 1 1

eλ −e−λ


 and in this case λ = 0 is not

an eigenvalue and the m-dissipativity can be determined from (5.13).

We observe that u1 = p1 + p2 and u2 = p1 − p2 are the Riemann invariants

of the system and satisfy

∂tu1 − ∂xu1 = 0, ∂tu2 + ∂xu2 = 0 (5.15)

on (0, 1). Clearly, u2 flows from 0 to 1 and u1 from 1 to 0. Hence, u2(0)

is outgoing at x = 0, while u1(1) is outgoing at x = 1 and the conditions

p1(0) = p1(1) = 0 in terms of matrices Ψv1
,Ψv2

can be written as

Ψv1

(
u1(0)

u2(0)

)
= (1, 1)

(
u1(0)

u2(0)

)
= 0, Ψv2

(
u1(1)

u2(1)

)
= (1, 1)

(
u1(1)

u2(1)

)
= 0

and assumptions of Proposition 3.8 are satisfied.

Example 5.14. Let us consider the linearized Saint-Venant system (1.4) (where

we replaced the original variables by (pj1, p
j
2)),

∂tp
j
1 = −V j∂xp

j
1 −Hj∂xp

j
2, ∂tp

j
2 = −g∂xp

j
1 − V j∂xp

j
2, (5.16)

and assume that on each edge we have Frj > 1; that is, λj
± = V j ±

√
gHj > 0.

If we consider the network shown on Fig. 1, we see that at v0 we need two
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1

1

Figure 1: Starlike network of channels

boundary conditions, no boundary conditions at vi, i = 2, . . . , N and 2N − 2

boundary conditions at v1. In this case we have

(
pj1
pj2

)
=

(
f j
+,1u

j
1 + f j

−,1u
j
2

f j
+,2u

j
1 + f j

−,2u
j
2

)
=

(
Hjuj

1 + Hjuj
2√

gHjuj
1 −

√
gHjuj

2

)
. (5.17)

Here Jv0
= Jv0,2 = J0

v0
= {1} and all other subsets of Jv0

are empty. Hence

(3.8) takes the form

 φ1

v0,1 ϕ1
v0,1

φ1
v0,2 ϕ1

v0,2




 f j

+,1 f j
−,1

f j
+,2 f j

−,2



(
u1
1(0)

u1
2(0)

)
=

(
0

0

)

and the equation is solvable if and only if Φ1
v0,1 and Φ1

v0,2 are linearly indepen-

dent, on account of the invertibility of F1. Similarly, for v1, (3.6) takes the

form

N∑

j=1

(φj
v1,rp

j
1(v1) + ϕj

v1,rp
j
2(v1)) = 0, r = 1, . . . , 2N − 2 (5.18)

and (3.11) is satisfied if and only if

Φ̃v1diag{Fj}2≤j≤N ,

where

Φ̃v1 : =




φ2
v1,1 ϕ2

v1,1 . . . φN
v1,1 ϕN

v1,1

...
...

...
...

...

φ2
v1,2N−2 ϕ2

v1,2N−2 . . . φN
v1,2N−2 ϕN

v1,2N−2


 ,
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is nonsingular; that is, if and only if Φ̃v1
is invertible. In the case of [18],

pj1(0) = p11(1), pj2(0) = p12(1), j = 2, . . . , N,

we have

Φv1,r = (−1, 0, 0, 0, . . . , 1, 0, 0, 0, . . . , 0, 0), r = 1, 3, . . . 2N − 3,

Φv1,r = (0,−1, 0, 0, . . . , 0, 1, 0, 0, . . . , 0, 0), r = 2, 4, . . . 2N − 2,

where in both cases 1 appears at the (r + 2)-th place. In this case Φ̃v1 = I and

thus the system of boundary conditions can be solved for (uj
1(0), uj

2(0))2≤j≤N .
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