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Abstract: The emergence of the spectral variation hypothesis (SVH) has gained widespread attention
in the remote sensing community as a method for deriving biodiversity information from remotely
sensed data. SVH states that spectral heterogeneity on remotely sensed imagery reflects environmental
heterogeneity, which in turn is associated with high species diversity and, therefore, could be useful for
characterizing landscape biodiversity. However, the effect of phenology has received relatively less
attention despite being an important variable influencing plant species spectral responses. The study
investigated (i) the effect of phenology on the relationship between spectral heterogeneity and plant
species diversity and (ii) explored spectral angle mapper (SAM), the coefficient of variation (CV)
and their interaction effect in estimating species diversity. Stratified random sampling was adopted
to survey all tree species with a diameter at breast height of >10 cm in 90 × 90 m plots distributed
throughout the study site. Tree species diversity was quantified by the Shannon diversity index
(H′), Simpson index of diversity (D2) and species richness (S). SAM and CV were employed on
Landsat-8 data to compute spectral heterogeneity. The study applied linear regression models to
investigate the relationship between spectral heterogeneity metrics and species diversity indices
across four phenological stages. The results showed that the end of the growing season was the most
ideal phenological stage for estimating species diversity, following the SVH concept. During this
period, SAM and species diversity indices (S, H′, D2) had an r2 of 0.14, 0.24, and 0.20, respectively,
while CV had an r2 of 0.22, 0.22, and 0.25, respectively. The interaction of SAM and CV improved
the relationship between the spectral data and H′ and D2 (from r2 of 0.24 and 0.25 to r2 of 0.32
and 0.28, respectively) at the end of the growing season. The two spectral heterogeneity metrics
showed differential sensitivity to components of plant diversity. SAM had a high relationship with
H′ followed by D2 and then a lower relationship with S throughout the different phenological
stages. Meanwhile, CV had a higher relationship with D2 than other plant diversity indices and
its relationship with S and H′ remained similar. Although the coefficient of determination was
comparatively low, the relationship between spectral heterogeneity metrics and species diversity
indices was statistically significant (p < 0.05) and this supports the assertion that SVH could be
implemented to characterize plant species diversity. Importantly, the application of SVH should
consider (i) the choice of spectral heterogeneity metric in line with the purpose of the SVH application
since these metrics relate to components of species diversity differently and (ii) vegetation phenology,
which affects the relationship that spectral heterogeneity has with plant species diversity.
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1. Introduction

Remote sensing application in biodiversity research has long been a topical subject.
The subject focused mostly on the utility of remotely sensed data for identifying biodi-
versity hotspots, assessing species richness and distributions and modeling biodiversity
responses to changing environmental conditions [1] (Turner et al., 2003). The interest in
remote sensing originated from the realization that efforts toward successful biodiversity
conservation necessitate frequent and detailed spatial information on species richness and
distribution and their habitat conditions [1,2] (Turner et al., 2003; Kerr and Ostrovsky, 2003).
Remote sensing satellites repeatedly collect data over large geographic areas at varying
levels of spatial resolutions. Therefore, remote sensing satellites have two advantages
over traditional field surveys: (i) the repeated collection allows for regular assessments
of temporal changes in biodiversity and (ii) the availability of data in different spatial
resolutions facilitates the multi-scale assessment of biodiversity [3,4]. These features of
satellite remote sensing make it an attractive source of data for biodiversity studies.

One particular study characterized two approaches often adopted when applying
remote sensing in biodiversity studies [1] (Turner et al., 2003). The first approach is the
direct remote sensing of species and species assemblages and the second approach is the
indirect estimation of species diversity by using remotely sensed environmental parameters.
The former involves primarily the classification of a remotely sensed image into species
classes, which has been criticized for degrading continuous, measurable information into
isolated classes [5] (Palmer et al., 2002). Meanwhile, indirect remote sensing approaches
entails using surrogate variables, such as the normalized difference vegetation index
(NDVI) and its derivatives, for estimating biodiversity [6–10] (Fairbanks and McGwire,
2004; Gould, 2000; He et al., 2009; Oindo and Skidmore, 2002; Parviainen et al., 2010).
The basis of indirect application emanates from ecological theories explaining biodiversity.
For instance, the use of NDVI emanates from the observation that it is related to ecosystem
primary productivity, which explains the spatial variation in species diversity [10,11]
(Parviainen et al., 2010; Witman et al., 2008). This NDVI-primary productivity nexus
saw NDVI being used for estimating species diversity in various ecosystems [9,10,12,13]
(Oindo and Skidmore, 2002; Parviainen et al., 2010; Pau et al., 2012; Madonsela et al., 2018).

Consistent with the aforementioned second approach, Palmer et al., (2002) [5] pro-
posed a spectral variation hypothesis (SVH) as a method for deriving biodiversity in-
formation from remotely sensed data. The SVH follows the ecological argument that
environmental heterogeneity supports high species diversity in that greater environmental
gradient, resource, and structural complexity increase the number of available niches and
thus, allow more species to coexist [14] (Stein et al., 2014). In this regard, SVH states
that spectral heterogeneity on remotely sensed image reflects the spatial variation in the
environment, which in turn is associated with species richness [5] (Palmer et al., 2002).
Subsequently, spectral heterogeneity on a remotely sensed image was put forward as a
spectral indicator of plant species diversity [5,15,16] (Palmer et al., 2002; Rocchini et al.,
2010; Féret and Asner, 2014).

As such, studies have tested SVH in several ecosystems, using various spectral het-
erogeneity metrics, and observed varying levels of relationships between spectral het-
erogeneity and species diversity (see compilation listed in Schmidtlein and Fassnacht
(2017)) [17]. A large proportion of these studies achieved correlation or a coefficient of
determination of 30–85%, while others achieved less than 20%. Despite this variation in
the relationship between spectral heterogeneity and species diversity, there is a growing
consensus that spectral heterogeneity on a remotely sensed image can provide a sensible
assessment of plant species diversity [3,4,18] (Warren et al., 2014; Rocchini et al., 2016;
Schweiger et al., 2018). However, Schmidtlein and Fassnacht (2017) [17] questioned the
general applicability of SVH following the observation that high spectral heterogeneity
does not always correspond to high species richness and vice versa. Schmidtlein and
Fassnacht (2017) [17] noted that unevenness within the floristic mapping units creates a
robust gradient in spectral heterogeneity and this gradient does not always relate to the
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species richness gradient. In fact, their study concluded that SVH is ecosystem dependent,
following their observation of the inconsistent association between spectral heterogeneity
and species diversity in southern Germany.

Moreover, Oldeland et al. (2010) [19] also observed high spectral heterogeneity not
related to species diversity in one sample collected in the commercial game farming site,
due to the heterogeneity of the savannah landscape. Savannahs, in general, are character-
ized by the co-occurrence of a continuous layer of grass and patchy woody vegetation with
pockets of bare areas [20] (Scholes and Archer, 1997), and this heterogeneity in the savannah
landscape had a negative influence on the pooled regression analysis performed by Olde-
land et al. (2010) [19]. However, increasing the window of analysis improved model fitting in
Oldeland et al. (2010) [19] and this trend further stressed the assertion in the literature that the
relationship between spectral heterogeneity and species diversity is scale-dependent [5,21,22]
(Palmer et al., 2002; Rocchini et al., 2004; González-Megías et al., 2007).

While the emergence of SVH has gained widespread attention in the remote sensing
community as a method for deriving biodiversity information from remotely sensed
data [3,15,18,19,21–23] (Oldeland et al., 2010; González-Megías et al., 2007; Rocchini et al.,
2004; Rocchini, 2007; Rocchini et al., 2010; Schweiger et al., 2018; Warren et al., 2014),
the effect of phenology has received relatively less attention with few studies considering
it [17] (Schmidtlein and Fassnacht, 2017) despite being an essential variable influencing
plant species’ spectral behavior. Compared to the scale issue, which has shown that
its increase could impact positively or negatively on SVH [17,19,21] (Schmidtlein and
Fassnacht, 2017; Oldeland et al., 2010; Rocchini et al., 2004), little is known about the impact
of phenology on the relationship between spectral heterogeneity and species diversity,
especially in the savannah ecosystem. In an experiment in prairie grasslands, Gholizadeh
et al. (2020) [24] observed that a shift in phenology affected the relationship between
spectral heterogeneity metrics and species richness and that the relationship between
spectral heterogeneity metrics and species richness may change between years, regardless
of the phenology. However, it must be noted that the experiment was conducted in an
ecosystem where (i) a shift in phenology was accompanied by a change in species richness
and (ii) there was prescribed burning, which might have affected the spectral reflectance,
as it alters the percentage cover of individual species and the background characteristics of
the landscape [24,25] (Flanagan et al., 2015; Gholizadeh et al., 2020). In an alpine coniferous
forest, Torresani et al. (2019) observed that the relationship between spectral heterogeneity
and tree species diversity was highest during the summer period when the NDVI reached
its peak and lowest during the winter period. This observation contradicts that of Hill
et al. (2010) [26], who observed that the optimal period for mapping forest classes is at the
beginning or the end of the growing season when plants are at different phenological stages,
rather than mid-summer in a temperate forest. Meanwhile, Lopes et al. (2017) [27] observed
that multi-temporal data do not enhance the relationship between spectral heterogeneity
and the Shannon diversity index in a grassland experimental site, southwest of France.
This observation was attributed to management decisions, such as mowing, grazing and
fertilizing, which may have impacted the grasslands phenological and spectral behavior.

Conceptually, phenological variations between plant species should enhance their
spectral differences, thus increasing the spectral heterogeneity in the image. This takes
place when plant species are at different phenological stages in one image as a result of
differential phenological changes between plant species [26,28,29] (Gilmore et al., 2008;
Hill et al., 2010; Madonsela et al., 2017). With this understanding, it is reasonable to assume
that at an optimal phenological stage when plant species are at their different phenological
stages, the relationship between spectral heterogeneity and species diversity could be
enhanced. This assumption has not been tested in the savannah ecosystem and the present
study examines the relationship between tree species diversity and Landsat-8 spectral
heterogeneity across multiple phenological stages in the savannah woodland in order to
define the most ideal phenological stage for estimating species diversity, using remotely
sensed data. This study builds on the work of Oldeland et al. (2010) [19], who tested
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the SVH in the African savannah and observed promising results between the Shannon
diversity index and spectral heterogeneity. Other studies [17,24,30,31] (Schmidtlein and
Fassnacht, 2017; Wang et al., 2018; Torresani et al., 2019; Gholizadeh et al., 2020), however,
were conducted in different ecosystems.

In testing the SVH theory, studies experimented with different spectral heterogeneity
metrics and different measures of plant diversity, which affected the conclusions drawn in
these studies regarding SVH. For instance, Oldeland et al. (2010) [19] and Wang et al. (2018)
applied the mean of the Euclidean distances from the centroid and coefficient of variation
(CV), respectively, and concluded that abundance-based measures of plant diversity related
better with the spectral data than species richness. Meanwhile, Torresani et al. (2019) [30]
applied the Rao’s Q index and CV against the Shannon diversity index and concluded that
Rao’s Q index was more suited to characterize plant diversity than CV. These conclusions
are partial, given that, in the case of Oldeland et al. (2010) [19] and Wang et al. (2018) [31],
only one spectral heterogeneity metric was applied, while in the case of Torresani et al.
(2019) [30], the two spectral heterogeneity metrics were tested against the Shannon diversity
index only. It is important to notice that (i) spectral heterogeneity metrics characterize
spectral heterogeneity differently [32] (Gholizadeh et al., 2018) and (ii) the measures of plant
diversity also consider different properties of plant communities in varying ways when
quantifying species diversity [33,34] (Morris et al., 2014; Nagendra et al., 2002). Therefore,
there is a need for further inquiry into the relationship between spectral heterogeneity and
species diversity while exploring the temporal behavior of spectral heterogeneity metrics
in relation to the components of the plant communities considered, i.e., richness and
abundance. Incorporating phenology could shed some light in understanding the spectral
heterogeneity described by spectral heterogeneity metrics. This study contributes to the
advancement of the SVH, as it (i) investigates the effect of phenology on the relationship
between spectral heterogeneity and species diversity, (ii) explores Spectral Angle Mapper
(SAM), CV and their interaction effect in estimating species diversity and (iii) describes the
sensitivity of spectral heterogeneity metrics to components of plant communities.

2. Study Site

The study site extends over the savannah woodland, covering three provinces,
i.e., Mpumalanga, Limpopo and KwaZulu-Natal (KZN) of South Africa (Figure 1). Our study
site is managed differently across space with one part sitting in protected landscapes in
Kruger National Park (KNP) and Hluhluwe-Imfolozi Park and the other part sitting in
communal areas under traditional authority. Consistent with savannah settings, the study
area is characterized by the continuous grassy vegetation interspersed with sparsely dis-
tributed tree layers [20,35] (Scholes and Archer, 1997; Sankaran et al., 2005). These two
lifeforms often remain in a balanced distributional pattern in the presence of fires, rainfall
and herbivory, which are the primary controlling variables [35,36] (Sankaran et al., 2005;
Bond et al., 2003).

In terms of physical structure, granite geological formations occur dominantly in
the western part, while the eastern part is occupied by gabbro substrate. Dark clay soils
characterize the gabbro substrate, which supports nutritious grasses with few dispersed
trees, typically Acacia spp. [37] (Scogings, 2004). Meanwhile, the granite substrate is char-
acterized by deep sand soils with poor nutrient content, which supports deciduous tree
species. Moreover, high species diversity were observed on the granite substrates [37,38]
(Scogings, 2004; Eckhardt et al., 2000). The study site is also occupied largely by Colophos-
permum mopane in the northern part [38,39] (Eckhardt et al., 2000; Makhado et al., 2014).
The average annual rainfall ranges from 440 mm in the northern part of Kruger National
Park to 750 mm in the south with noticeable deviations around the average over time [38,39]
(Makhado et al., 2014; Eckhardt et al., 2000).
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Figure 1. Area under study extending over the savannah ecosystem of South Africa with Landsat-8
image. The dots denote the field plots.

3. Materials and Methods
3.1. Remotely Sensed Data

The study used four images collected by Landsat-8 Operational Land Imager (OLI)
and these images were acquired freely from the USGS download portal. Landsat-8 sensor
has eight spectral bands covering the visible, near-infrared (NIR) and shortwave infrared
(SWIR) regions. The sensor collects data at a coarse spatial resolution of 30 m and has
a temporal resolution of 16 days. The enhanced signal-to-noise ratio of the Landsat-8
sensor, together with its 12-bit quantization of data, makes it more useful for land cover
mapping [40] (Pervaiz et al., 2016). The four images were acquired in 2016 (28 March,
29 April, 31 May, and 24 July), covering four phenological stages. These dates correspond
to the end of the growing season [41] (Grant and Scholes, 2006), the transition to senes-
cence [29] (Madonsela et al., 2017), the advanced senescence stage when most trees start to
defoliate [42,43] (Scholes and Eckhardt, 2003; Cho et al., 2010) and the dry season in the
southern African savannah [37,44] (Scogings, 2004; Kaszta et al., 2016), respectively.

The images were corrected for atmospheric distortions, using ATCOR software.
ATCOR-2 was applied to images covering Mpumalanga and Limpopo for processing
atmospheric distortions. Meanwhile, the KZN images were corrected atmospherically,
using ATCOR-3 since the area is mountainous [45] (Ritcher and Schläpfer, 2005). In addi-
tion, WorldView-2 scene—collected over a tiny portion of the study site—was acquired
on the 7 March 2013 within the savannah woodland (for more details see [29] Madonsela
et al., 2017). The WV-2 image was only used in the design of sampling plots.

3.2. Field Campaign and Data Collection

The study launched two field excursions in November 2015 and March 2016 in KwaZulu-
Natal and across KNP extending between Mpumalanga and Limpopo. Initially, the study
defined the size of field plots, using semi-variogram analysis in ENVI 4.8 software. A semi-
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variogram computes the diversity of the natural phenomenon that occurs over space [46,47].
A semi-variogram is calculated as follows:

y(h) =
1

2N(h)

N(h)

∑
i=1

[z(xi)− z(xi + h)]2 (1)

where y(h) represents the semi-variance at a given distance h; z(xi) is the value of the
variable Z at location xi; h is the lag distance; and N (h) is the number of pairs of sample
points separated by h.

Semi-variance steadily upsurges as the distance from one point to subsequent point
widens until it gets to the range where it begins to flatten out [46,48] (Jongman and
Jongman, 1995; Grignaten and Deutsch, 2001). In this study, the semi-variogram technique
was applied to a 10 m resolution NDVI layer in order to establish the ideal scale at which
to capture spatial variation in tree species diversity. This process was done in the ENVI
software v4.8.

The WV-2 scene was resampled to 10 m spatial resolution to match the mean size
of tree canopies in the savannah [49]. Subsequently, an NDVI layer was computed from
the resampled WV-2 image. The use of NDVI emanated from the observation that NDVI
variation is related to species diversity [7,10] (Gould, 2000; Parviainen et al., 2010). Semi-
variogram analysis was applied to an NDVI layer to calculate the squared difference
between neighboring pixels and to quantify diversity. The result of the analysis was used
to define the ideal scale at which to record the variation in tree species in the savannah
(Figure 2). Even though semi-variance was cumulative beyond the range, the surge was
inconsistent, and the range of 90 m produced workable plot sizes. Moreover, plot sizes of
90 × 90 m are more compatible with the spatial resolution of Landsat-8 data.
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The choice for the 90 × 90 m plot size was made to record tree species diversity
over space. The placement of the field plots was guided by stratified random sampling.
Four dominant geological substrates (granite, siliciclastic, gabbro, and granulite) with a
notable effect on plant distribution patterns in the study area were used for stratification of
the sampling plots [37] (Scogings, 2004). Plots of 90 × 90 m were set up to ensure that the
footprints of each plot matched with the Landsat-8 pixels. The sampling ensured that trees
with a diameter at breast height (DBH) above 10 cm were documented and identified at
species level. The field excursions collected tree species data in 50 plots throughout the
study area. An addition of 26 field plots assembled under comparable conditions in the
previous study [50] (Naidoo et al., 2015) was made. However, eight of these plots were not
used because of clouds. In the end, 68 plots were considered useful in this study.
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3.3. Spectral Heterogeneity Metrics

The study applied two spectral heterogeneity metrics that quantify spectral hetero-
geneity differently: spectral angle mapper (SAM) and coefficient of variation (CV). SAM is
a mathematical algorithm that is used to select spectral bands that increase the spectral
angle between target species [43,51] (Keshava, 2004; Cho et al., 2010). The spectral angle is
defined as the angle (θ) between two spectra:si = si1, . . . , siL and sj = sj1, . . . , sjL

SAM
(
si, sj

)
= θ

(
si, sj

)
= cos−1


L
∑

l=1
silsjl[

L
∑

l=1
s2

il

]1/2[ L
∑

l=1
s2

jl

]1/2

 (2)

where L is the number of bands.
SAM computes pairwise pixel spectral angle, using Equation (2); a larger spectral an-

gle denotes high spectral variability between two spectra [43,51] (Keshava, 2004; Cho et al.,
2010). SAM is independent of illumination variations, as it uses the angle between pixel
reflectance [32] (Gholizadeh et al., 2018). Using Equation (2), SAM was applied on the
Landsat-8 image in a 3 × 3 moving window to compute the inter-pixel spectral heterogene-
ity. Each time the 3 × 3 window moved, the average spectral angle was assigned to the
center pixel. Eventually, the SAM-derived image was generated and the average spectral
angle within nine pixels corresponding to the 90 × 90m field plots was extracted. SAM was
calculated on each Landsat-8 image and the Landsat-derived SAM images were referred to
as SAMMarch, SAMApril, SAMMay, and SAMJuly, respectively, which corresponded to each
phenological date.

CV is another common spectral heterogeneity metric [30–32] (Torresani et al. 2019;
Wang et al., 2018; Gholizadeh et al., 2018) and was computed as the mean CV for each
wavelength from 442 to 2200 nm (7 bands in total).

CV =
∑2200

λ=442

(
σ(ρλ)
µ(ρλ)

)
number of bands

(3)

where ρλ represents the reflectance at wavelength λ and σ(ρλ) and µ(ρλ) denote the
standard deviation and average value of reflectance at wavelength λ across all the pixels in
a plot, respectively.

CV was calculated using nine pixel reflectance values in each plot across all four dates
studied, and these were referred to as CVMarch, CVApril, CVMay, and CVJuly, respectively.
With both spectral heterogeneity metrics, higher values indicate high spectral heterogeneity,
which in turn is linked to high tree species diversity.

3.4. Data Analysis

The Shannon diversity index (H′), Simpson index of diversity (D2) and species richness
(S) are common measures of local diversity in the literature [33,52,53] (Lande, 1996; Colwell,
2009; Morris et al., 2014). These indices were used in this study to compute α-diversity
within each plot (Table 1). Species richness is the measure of diversity that provides baseline
information about the number of species in an ecosystem. Meanwhile, H′ and D2 take into
account both species abundance (i.e., individual counts of trees within species) and richness
(i.e., number of different tree species) when calculating species diversity [33] (Morris et al.,
2014). However, there are slight differences between these two indices, with H′ containing
a log function showing sensitivity to rare species, while D2 with its exponential function
shows sensitivity to abundant species [34] (Nagendra, 2002).
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The study proceeded to establish 1000 random replicates of the original data set, which
was divided into two-thirds for calibrating the models and one-third for validating the
performance of the models. The study applied a linear regression model to investigate
the relationship between the spectral heterogeneity metrics, i.e., SAM and CV, and tree
species diversity as computed by the Shannon diversity index, Simpson index of diversity
and species richness. r2 and p-value statistics were used to quantify the strength of the
relationship statistically. Meanwhile, the accuracy of the model for prediction was assessed
with the root mean square error (RMSE).

Table 1. Alpha diversity indices used in the study and their equations.

Species Diversity Index Equation Reference

Species richness S = N [33] Morris et al., (2014)

Shannon diversity index H′ = −
s
∑

i=1
piIn(pi)

[33,54] Shannon, (1948); Morris et al.,
(2014)

Simpson index of diversity D2 = 1/
s
∑

i=1
p2

i

[33,55] Simpson, (1949); Morris et al.,
(2014)

where N is the total number of tree species in a sample; pi is the proportional abundance of species i relative to
the total abundance of all species S in a plot; and In(pi) is the natural logarithm of this proportion.

4. Results
Relationship between Tree Species Diversity and Spectral Heterogeneity

The results of regression showed that the relationship between spectral heterogeneity
and tree species diversity is affected by (i) the index of species diversity used to quantify
plant diversity, (ii) the spectral heterogeneity metric used to quantify spectral heterogeneity,
and (iii) the phenological stage at which the image was acquired. The highest relationship
between spectral heterogeneity metrics and species diversity indices was observed at the
end of growing season (March) (Tables 2–7). During this phenological stage, SAM and
species diversity indices (S, H′, D2) had an r2 of 0.14, 0.24, 0.20, respectively, while CV
had an r2 of 0.22, 0.22, and 0.25 respectively. As the phenology of vegetation transitioned
toward senescence (April), advanced senescence (May) and full winter period (July),
these relationships declined steadily. The interaction of SAM and CV also followed a similar
phenological pattern with the end of the growing season producing higher relationship
to H′ and D2 than the other phenological stages (Tables 8–10). Notably, the interaction of
SAM and CV had a positive effect on the relationship between spectral heterogeneity and
abundance-based diversity indices by producing an r2 of 0.32 with H′ and an r2 of 0.28
with D2 at the end of the growing season. However, the subsequent phenological stages
saw the interaction of SAM and CV improving the relationship of the spectral data with H′

only. The species richness index did not benefit at all from the interaction of SAM and CV,
while D2 benefited at the end of the growing season only.

Table 2. Relationship between Landsat-8 spectral heterogeneity as computed by SAM and tree species
diversity as computed by species richness (S). Statistics were extracted from 1000 bootstrapped
iterations.

Explanatory Variable Response Variable R2 CI p-Value RMSE (NRMSE)

SAMMarch S 0.13 0.016 0.023 3.85 (44.3%)
SAMApril S 0.07 0.013 0.027 3.89 (45.1%)
SAMMay S 0.00 0.002 0.429 4.08 (46.4%)
SAMJuly S 0.00 0.003 0.465 4.08 (45.2%)
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Table 3. Relationship between Landsat-8 spectral heterogeneity as computed by CV and tree species
diversity as computed by species richness (S). Statistics were extracted from 1000 bootstrapped
iterations.

Explanatory Variable Response Variable R2 CI p-Value RMSE (NRMSE)

CVMarch S 0.22 0.016 0.003 3.645 (40.9%)
CVApril S 0.11 0.015 0.038 3.909 (44.5%)
CVMay S 0.03 0.014 0.170 4.036 (46.5%)
CVJuly S 0.00 0.002 0.627 4.091 (47.9%)

Table 4. Relationship between Landsat-8 spectral heterogeneity as computed by SAM and tree
species diversity as computed by Shannon diversity index (H′). Statistics were extracted from
1000 bootstrapped iterations.

Explanatory Variable Response Variable R2 CI p-Value RMSE (NRMSE)

SAMMarch H′ 0.24 0.016 0.001 0.531 (36.2%)
SAMApril H′ 0.15 0.017 0.014 0.564 (38.2%)
SAMMay H′ 0.08 0.01 0.051 0.573 (40.3%)
SAMJuly H′ 0.02 0.011 0.198 0.602 (41.3%)

Table 5. Relationship between Landsat-8 spectral heterogeneity as computed by CV and tree species
diversity as computed by Shannon diversity index (H′). Statistics were extracted from 1000 boot-
strapped iterations.

Explanatory Variable Response Variable R2 CI p-Value RMSE (NRMSE)

CVMarch H′ 0.22 0.014 0.002 0.545 (37.1%)
CVApril H′ 0.12 0.021 0.035 0.573 (39.8%)
CVMay H′ 0.07 0.015 0.061 0.574 (39.8%)
CVJuly H′ 0.00 0.002 0.658 0.605 (41.4%)

Table 6. Relationship between Landsat-8 spectral heterogeneity as computed by SAM and tree
species diversity as computed by Simpson index of diversity (D2). Statistics were extracted from
1000 bootstrapped iterations.

Explanatory Variable Response Variable R2 CI p-Value RMSE (NRMSE)

SAMMarch D2 0.20 0.019 0.005 1.975 (50.2%)
SAMApril D2 0.11 0.021 0.041 2.106 (54.7%)
SAMMay D2 0.03 0.015 0.136 2.169 (57.1%)
SAMJuly D2 0.01 0.009 0.323 2.190 (54.9%)

Table 7. Relationship between Landsat-8 spectral heterogeneity as computed by CV and tree species
diversity as computed by Simpson index of diversity (D2). Statistics were extracted from 1000 boot-
strapped iterations.

Explanatory Variable Response Variable R2 CI p-Value RMSE (NRMSE)

CVMarch D2 0.25 0.015 0.000 1.915 (48.5%)
CVApril D2 0.17 0.016 0.009 2.013 (50.8%)
CVMay D2 0.07 0.019 0.100 2.135 (55.8%)
CVJuly D2 0.00 0.001 0.628 2.195 (56.7%)
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Table 8. Relationship between SAM and CV interaction and tree species diversity as computed by
species richness (S). Statistics were extracted from 1000 bootstrapped iterations.

Explanatory Variable Response Variable R2 CI p-Value RMSE (NRMSE)

SAM*CVMarch S 0.22 0.017 0.004 3.639 (41.2%)
SAM*CVApril S 0.10 0.021 0.045 3.890 (44.5%)
SAM*CVMay S 0.01 0.007 0.282 4.089 (46.6%)
SAM*CVJuly S 0.00 0.002 0.496 4.083 (46.6%)

Table 9. Relationship between SAM and CV interaction and tree species diversity as computed by
species richness (H′). Statistics were extracted from 1000 bootstrapped iterations.

Explanatory Variable Response Variable R2 CI p-Value RMSE (NRMSE)

SAM*CVMarch H′ 0.32 0.015 0.000 0.505 (34.8%)
SAM*CVApril H′ 0.20 0.014 0.004 0.546 (37.7%)
SAM*CVMay H′ 0.09 0.018 0.041 0.579 (39.9%)
SAM*CVJuly H′ 0.02 0.011 0.270 0.602 (42.0%)

Table 10. Relationship between SAM and CV interaction and tree species diversity as computed by
species richness (D2). Statistics were extracted from 1000 bootstrapped iterations.

Explanatory Variable Response Variable R2 CI p-value RMSE (NRMSE)

SAM*CVMarch D2 0.29 0.02 0.000 1.870 (48.0%)
SAM*CVApril D2 0.17 0.019 0.010 2.023 (51.7%)
SAM*CVMay D2 0.06 0.018 0.069 2.138 (56.3%)
SAM*CVJuly D2 0.02 0.011 0.270 2.189 (56.5%)

The two spectral heterogeneity metrics showed a differential relationship to S, H′ and
D2. SAM had a high relationship to H′ followed by D2 and then a lower relationship to
S throughout the different phenological stages (Tables 2, 4 and 6). Meanwhile, CV had a
higher relationship to D2 than other plant diversity indices, and its relationship to S and H′

was approximately the same at the end of the growing season and during the transition to
senescence (Tables 3, 5 and 7). In addition, CV had a higher relationship to S than SAM
did. In general, the results indicate that both SAM and CV had higher relationships to
abundance-based indices of plant diversity than species richness. However, it was D2 that
was predicted with a higher RMSE across all dates. H′ was predicted with a lower RMSE
by both spectral heterogeneity metrics, and S had the second lowest RMSE across all dates.

Moreover, the relationship between spectral heterogeneity metrics and plant diversity
indices showed a changing pattern with changes in phenology (Figures 3–5). At the
end of the growing season (March), a positive relationship can be observed with scatter
points distributed evenly around the regression line. While the transition to senescence
still maintains a positive relationship, the scatter points start to disintegrate away from
the regression line and this disintegration gets worse as the phenology changes toward
advanced senescence and the full winter period.
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5. Discussion

The results highlighted the necessity to consider vegetation phenology, spectral hetero-
geneity metrics and species diversity indices in the application of SVH. The results showed
the declining strength of the relationships between spectral heterogeneity and plant species
diversity in the African savannah with a shift in season from wet to dry; this gives an
indication of the possibility of time sensitivity of the SVH. The shift from the wet to dry
season is accompanied by phenological changes in the deciduous vegetation of the African
savannah and this affects the spectral heterogeneity captured on the satellite data. The end
of the growing season is usually characterized by fully foliated canopies in the savannah
ecosystem [41] (Grant and Scholes, 2006) and therefore, tree canopies have a strong bearing
on the reflectance signal captured by the sensor. This means that the spectral heterogeneity
on the image acquired in the end of growing season reflects more the diversity of plant
species. Meanwhile, the changes in vegetation phenology, especially toward the winter
period, are associated with an increased background influence to the overall reflectance
spectra recorded by the remote sensing platform as plants drop leaves [43] (Cho et al.,
2010). As a result, the spectral heterogeneity on the image recorded during senescence
or the dry season incorporates more background reflectance, compared to the end of the
growing season. This explains the declining relationships between spectral heterogeneity
metrics and plant diversity indices with a shift from the wet to dry season.

The results of the study are consistent with those of Madonsela et al. (2018) [13] in
terms of the phenological effect on the modeling of tree species diversity, using remotely
sensed data, even though the two studies applied different techniques. Torresani et al.
(2019) [30] also observed that the relationship between spectral heterogeneity and species
diversity is affected by vegetation phenology with peak summer being the most optimal
phenological stage in an Italian alpine coniferous forest. Therefore, the conceptualization
of SVH application in biodiversity estimation would benefit from the consideration of
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vegetation phenology in the study area. Figures 3 and 4 showed that the phenological
stage at which the satellite data are collected may partly induce confusion on the practical
application of SVH. The SVH advances the argument that the spectral heterogeneity on
remotely sensed image reflects spatial variation in the environment, which in turn is
associated with species richness [5]. However, Schmidtlein and Fassnacht (2017) [17]
observed that high spectral heterogeneity does not always correspond to high species
diversity and also that low spectral heterogeneity does not always correspond to low
species diversity. The results of the present study showed that phenology may be the origin
of this inconsistency. At the end of growing season (Figures 3 and 4), the relationship
between Landsat-8 spectral heterogeneity and tree species diversity appears, to a larger
extent, to be consistent with SVH. As the phenology changes toward senescence and the dry
season, the relationship between Landsat-8 spectral heterogeneity and tree species diversity
starts to follow the observation of Schmidtlein and Fassnacht (2017) [17] in that the spectral
heterogeneity does not always correspond aptly to the observed species diversity.

Moreover, the two spectral heterogeneity metrics tested in this study, i.e., SAM and
CV, showed differential relationships to S, H′ and D2, and this reflects the different ways in
which the spectral heterogeneity is quantified by SAM and CV. As a result, the two metrics
relate to components of plant diversity, i.e., abundance and richness in differing ways.
For instance, CV had a higher relationship with S than SAM had with the same diversity
index at the end of the growing season (r2 of 0.22 vs 0.13) and during the transition to
senescence (r2 of 0.11 vs. 0.06). Given that S gives equal weight to rare and abundant
species [56] (Daly et al., 2018), the higher relationship that CV had with S compared to
SAM should be deemed to indicate its high sensitivity to rare species, while SAM can be
understood to have low sensitivity to rare species. In addition, CV had similar relationships
with S and H’, while SAM had higher relationships with H′ than S (Figures 3 and 4) and this
further illustrated the differential sensitivity to components of plant diversity. The higher
relationship that SAM had with H′ compared to S indicated that the spectral heterogeneity
quantified with SAM has high sensitivity to species abundance and low sensitivity to
species richness.

In general, the pattern of results followed the observation of Oldeland et al. (2010) [19]
and Madonsela et al. (2017) [57] regarding abundance-based indices and spectral data.
The two spectral heterogeneity metrics tended to have a higher relationship with abundance-
based indices of plant diversity than with S, though this occurred in the opposite manner.
SAM had a higher relationship to H′ compared to other plant diversity indices, while CV
had a higher relationship to D2 compared to other diversity indices. This reflects not
only the differential sensitivity of spectral heterogeneity metrics to components of plant
diversity, but also the variant nature in which these plant diversity components are quan-
tified and how these indices of plant diversity relate to metrics of spectral heterogeneity.
For instance, the behavior of CV seems contradictory in terms of its relationship to plant
diversity indices, while SAM consistently showed bias toward abundance-based indices.
CV had a higher relationship to D2 compared to other diversity indices and also a higher
relationship to S than SAM had with the same diversity index. D2 places more weight
on abundant species when quantifying species diversity [33] (Morris et al., 2014) while
S places equal weight on both abundant species and rare species [56] (Daly et al., 2018).
Therefore, if CV has high sensitivity to rare species and abundant species as the results
seem to suggest, one expects it to have an even higher relationship with H’, which has high
sensitivity to rare and abundant species. Yet, the relationship that CV had with H′ was no
better than that which it had with S.

Interestingly, the interaction of SAM and CV improved the relationship that spec-
tral data had with H′ and D2 at the end of the growing season (Figure 5) and further
improvement were noted with H′ in the transition to senescence and during the advanced
senescence period. In the meanwhile, the interaction of SAM and CV did not improve the
relationship between the spectral data and S. These observations imply that each spectral
heterogeneity metric has high sensitivity to a particular component of plant diversity
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and their interaction increased the relationship between the spectral data and abundance-
based indices, especially H’, which has high sensitivity to rare and abundant species [33]
(Morris et al., 2014).

Overall, the study showed a glimpse that SVH could be implemented to charac-
terize tree species diversity in southern African savannahs, especially at the end of the
growing season. Even though the coefficient of determination was comparatively low,
the relationship between spectral heterogeneity and tree species diversity was statistically
significant (p < 0.05), except during the dry season. However, there are still challenges
to the accurate modeling of tree species diversity in the savannahs following the SVH
concept. Savannah vegetation is characterized by the co-occurrence of trees, grasses and
pockets of bare areas [20,58] (Scholes and Archer, 1997; Scalon et al., 2002). Trees and
grasses have been observed to follow different phenological pathways in the savannah [59]
(Archibald and Scholes, 2007) and differences in vegetation phenology tend to increase
spectral heterogeneity [26,28] (Gilmore et al., 2008; Hill et al., 2010). In such circumstances,
spectral heterogeneity may not only be the consequence of tree species diversity. Instead,
it may be a reflection of discrepancies in vegetation cover. For instance, Oldeland et al.
(2010) [19] observed that high spectral heterogeneity does not always correspond to high
plant diversity in the savannah, and that was due to the disparity in vegetation cover.

6. Conclusions

The study concludes that vegetation phenology affects the relationship between spec-
tral heterogeneity and plant species diversity. In this study, the end of the growing season
was the optimal phenological stage where the relationships between spectral heterogeneity
metrics and species diversity indices were high, and it declined steadily with changes in
phenology toward senescence. This observation gives an indication that SVH might be time
dependent and therefore, vegetation phenology ought to be considered in the application of
SVH for biodiversity estimation. Moreover, the choice of spectral heterogeneity metrics and
species diversity indices affects the success of SVH application. The two spectral hetero-
geneity metrics adopted in this study showed differential relationships to species diversity
indices, and this highlights the difference in the manner in which spectral heterogeneity is
computed between the two metrics as well as the difference in how components of species
diversity are quantified by different diversity indices. In general, the two metrics had high
relationships to H′ and D2, which are abundance-based indices of species diversity. In fact,
the interaction of these spectral heterogeneity metrics improved the relationship between
the spectral data and abundance-based indices, especially H’, which saw improvement at
different phenological stages. However, CV improved the relationship between spectral
data and S, and this is worth emphasizing, given that S provides baseline information on
biodiversity. All of these observations suggest that the choice of spectral heterogeneity
metric should be made in line with the purpose of SVH application since these metrics
relate to components of species diversity differently.

Author Contributions: Conceptualization, S.M. and M.A.C.; methodology, S.M.; validation, M.A.C.,
A.R. and O.M.; formal analysis, S.M.; investigation, S.M.; resources, M.A.C.; data curation, S.M.;
writing—original draft preparation, S.M.; writing—review and editing, S.M. and A.R.; visualization,
SM.; supervision, M.A.C., A.R. and O.M.; project administration, M.A.C.; funding acquisition, M.A.C.
All authors have read and agreed to the published version of the manuscript.

Funding: This study was funded by the National Research Foundation (NRF) through the NRF-
Professional Development Programme.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available as it is still used for further research in the
study area.



Remote Sens. 2021, 13, 2467 15 of 17

Acknowledgments: The authors are grateful to Cecilia Masemola, Sbu Gumede, Joseph Dlamini,
Martin Sarela and Patrick Ndlovu for their support during the collection of field data. The authors
are thankful to Laven Naidoo for editing our use of the English language.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Turner, W.; Spector, S.; Gardiner, N.; Fladeland, M.; Sterling, E.; Steininger, M. Remote sensing for biodiversity science and

conservation. Trends Ecol. Evol. 2003, 18, 306–314. [CrossRef]
2. Kerr, J.T.; Ostrovsky, M. From space to species: Ecological applications for remote sensing. Trends Ecol. Evol. 2003, 18, 299–305.

[CrossRef]
3. Warren, S.D.; Alt, M.; Olson, K.D.; Irl, S.D.; Steinbauer, M.J.; Jentsch, A. The relationship between the spectral diversity of satellite

imagery, habitat heterogeneity, and plant species richness. Ecol. Inform. 2014, 24, 160–168. [CrossRef]
4. Rocchini, D.; Boyd, D.; Féret, J.; Foody, G.; He, K.S.; Lausch, A.; Nagendra, H.; Wegmann, M.; Pettorelli, N. Satellite remote

sensing to monitor species diversity: Potential and pitfalls. Remote Sens. Ecol. Conserv. 2016, 2, 25–36. [CrossRef]
5. Palmer, M.W.; Earls, P.G.; Hoagland, B.W.; White, P.S.; Wohlgemuth, T. Quantitative tools for perfecting species lists. Environmetrics

2002, 13, 121–137. [CrossRef]
6. Fairbanks, D.H.K.; McGwire, K.C. Patterns of floristic richness in vegetation communities of California: Regional scale analysis

with multi-temporal NDVI. Glob. Ecol. Biogeogr. 2004, 13, 221–235. [CrossRef]
7. Gould, W. Remote sensing of vegetation, plant species richness, and regional biodiversity hotspots. Ecol. Appl. 2000, 10, 1861–1870.

[CrossRef]
8. He, K.S.; Zhang, J.; Zhang, Q. Linking variability in species composition and MODIS NDVI based on betadiversity measurements.

Acta Oecol. 2009, 35, 14–21. [CrossRef]
9. Oindo, B.O.; Skidmore, A.K. Interannual variability of NDVI and species richness in Kenya. Int. J. Remote Sens. 2002, 23, 285–298.

[CrossRef]
10. Parviainen, M.; Luoto, M.; Heikkinen, R.K. NDVI-based productivity and heterogeneity as indicators of plant-species richness in

boreal landscapes. Boreal Environ. Res. 2010, 15, 301–318.
11. Witman, J.D.; Cusson, M.; Archambault, P.; Pershing, A.J.; Mieszkowska, N. The relation between productivity and species

diversity in temperate–Arctic marine ecosystems. Ecology 2008, 89, S66–S80. [CrossRef]
12. Pau, S.; Gillespie, T.W.; Wolkovich, E.M. Dissecting NDVI-species richness relationships in Hawaiian dry forests. J. Biogeogr. 2012,

39, 1678–1686. [CrossRef]
13. Madonsela, S.; Cho, M.A.; Ramoelo, A.; Mutanga, O.; Naidoo, L. Estimating tree species diversity in the savannah using NDVI

and woody canopy cover. Int. J. Appl. Earth Obs. Geoinf. 2018, 66, 106–115. [CrossRef]
14. Stein, A.; Gerstner, K.; Kreft, H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and

spatial scales. Ecol. Lett. 2014, 17, 866–880. [CrossRef] [PubMed]
15. Rocchini, D.; Balkenhol, N.; Carter, G.A.; Foody, G.; Gillespie, T.W.; He, K.S.; Kark, S.; Levin, N.; Lucas, K.; Luoto, M.; et al.

Remotely sensed spectral heterogeneity as a proxy of species diversity: Recent advances and open challenges. Ecol. Inform. 2010,
5, 318–329. [CrossRef]

16. Féret, J.-B.; Asner, G.P. Mapping Tropical Forest Canopy Diversity Using High-fidelity Imaging Spectroscopy. Ecol. Appl. Publ.
Ecol. Soc. Am. 2014, 24, 1289–1296. [CrossRef] [PubMed]

17. Schmidtlein, S.; Fassnacht, F.E. The spectral heterogeneity hypothesis does not hold across landscapes. Remote Sens. Environ.
2017, 192, 114–125. [CrossRef]

18. Schweiger, A.K.; Cavender-Bares, J.; Townsend, P.A.; Hobbie, S.E.; Madritch, M.D.; Wang, R.; Tilman, D.; Gamon, J.A. Plant Spec-
tral Diversity Integrates Functional and Phylogenetic Components of Biodiversity and Predicts Ecosystem Function. Nat. Ecol. Evol.
2018, 2, 976–982. [CrossRef] [PubMed]

19. Oldeland, J.; Wesuls, D.; Rocchini, D.; Schmidt, M.; Jürgens, N. Does using species abundance data improve estimates of species
diversity from remotely sensed spectral heterogeneity? Ecol. Indic. 2010, 10, 390–396. [CrossRef]

20. Scholes, R.J.; Archer, S.R. Tree-Grass Interactions in Savannas. Annu. Rev. Ecol. Syst. 1997, 28, 517–544. [CrossRef]
21. Rocchini, D.; Chiarucci, A.; Loiselle, S. Testing the spectral variation hypothesis by using satellite multispectral images. Acta Oecol.

2004, 26, 117–120. [CrossRef]
22. González-Megías, A.; María Gómez, J.; Sánchez-Piñero, F. Diversity-habitat heterogeneity relationship at different spatial and

temporal scales. Ecography 2007, 30, 31–41. [CrossRef]
23. Rocchini, D. Effects of spatial and spectral resolution in estimating ecosystem α-diversity by satellite imagery. Remote Sens.

Environ. 2007, 111, 423–434. [CrossRef]
24. Gholizadeh, H.; Gamon, J.A.; Helzer, C.J.; Cavender-Bares, J. Multi-temporal assessment of grassland α-and β-diversity using

hyperspectral imaging. Ecol. Appl. 2020, 30, e02145. [CrossRef] [PubMed]
25. Flanagan, L.B.; Sharp, E.J.; Gamon, J.A. Application of the photosynthetic light-use efficiency model in a northern Great Plains

grassland. Remote Sens. Environ. 2015, 168, 239–251. [CrossRef]
26. Hill, R.A.; Wilson, A.; George, M.; Hinsley, S. Mapping tree species in temperate deciduous woodland using time-series

multi-spectral data. Appl. Veg. Sci. 2010, 13, 86–99. [CrossRef]

http://doi.org/10.1016/S0169-5347(03)00070-3
http://doi.org/10.1016/S0169-5347(03)00071-5
http://doi.org/10.1016/j.ecoinf.2014.08.006
http://doi.org/10.1002/rse2.9
http://doi.org/10.1002/env.516
http://doi.org/10.1111/j.1466-822X.2004.00092.x
http://doi.org/10.1890/1051-0761(2000)010[1861:RSOVPS]2.0.CO;2
http://doi.org/10.1016/j.actao.2008.07.006
http://doi.org/10.1080/01431160010014819
http://doi.org/10.1890/07-1201.1
http://doi.org/10.1111/j.1365-2699.2012.02731.x
http://doi.org/10.1016/j.jag.2017.11.005
http://doi.org/10.1111/ele.12277
http://www.ncbi.nlm.nih.gov/pubmed/24751205
http://doi.org/10.1016/j.ecoinf.2010.06.001
http://doi.org/10.1890/13-1824.1
http://www.ncbi.nlm.nih.gov/pubmed/29160652
http://doi.org/10.1016/j.rse.2017.01.036
http://doi.org/10.1038/s41559-018-0551-1
http://www.ncbi.nlm.nih.gov/pubmed/29760440
http://doi.org/10.1016/j.ecolind.2009.07.012
http://doi.org/10.1146/annurev.ecolsys.28.1.517
http://doi.org/10.1016/j.actao.2004.03.008
http://doi.org/10.1111/j.0906-7590.2007.04867.x
http://doi.org/10.1016/j.rse.2007.03.018
http://doi.org/10.1002/eap.2145
http://www.ncbi.nlm.nih.gov/pubmed/32338798
http://doi.org/10.1016/j.rse.2015.07.013
http://doi.org/10.1111/j.1654-109X.2009.01053.x


Remote Sens. 2021, 13, 2467 16 of 17

27. Lopes, M.; Fauvel, M.; Ouin, A.; Girard, S. Spectro-Temporal Heterogeneity Measures from Dense High Spatial Resolution
Satellite Image Time Series: Application to Grassland Species Diversity Estimation. Remote Sens. 2017, 9, 993. [CrossRef]

28. Gilmore, M.S.; Wilson, E.H.; Barrett, N.; Civco, D.L.; Prisloe, S.; Hurd, J.D.; Chadwick, C. Integrating multi-temporal spectral and
structural information to map wetland vegetation in a lower Connecticut River tidal marsh. Remote Sens. Environ. 2008, 112,
4048–4060. [CrossRef]

29. Madonsela, S.; Cho, M.A.; Mathieu, R.; Mutanga, O.; Ramoelo, A.; Kaszta, Ż; Van De Kerchove, R.; Wolff, E. Multi-phenology
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