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ABSTRACT SAR324 is a ubiquitous and phylogenetically distinct clade of Deltapro-
teobacteria in marine environments. Here, we present three single-cell amplified ge-
nome sequences from the SAR324 lineage, obtained from the abyssopelagic zone of
the Indian sector of the Southern Ocean.

Members of SAR324 mediate important biogeochemical processes in the oceans
(1–6). However, the lack of sequence representatives of this clade limits efforts to

gain a mechanistic understanding of their precise functional roles (2, 3). Members of
SAR324 have been found throughout the water column (4, 5) and are metabolically
versatile (2, 6). Current physiological insights regarding this clade are derived primarily
from environmental samples, based on 16S rRNA gene surveys (5), metagenomics and
metatranscriptomics (2, 3, 7–9), and single-cell genomics (6, 10). Here, we present three
SAR324 genome sequences, obtained from the abyssopelagic zone of the Southern
Ocean using single-cell genomics.

A water sample was collected at a depth of 4,154 m in the Indian sector of the Southern
Ocean (47.994°S, 37.034°E) and preserved as detailed previously (11). Fluorescence-activated
cell sorting and multiple displacement amplification were performed at Bigelow Laboratory
for Ocean Sciences (ME, USA), as previously described (11). Single-cell amplified genomes
(SAGs; n = 41) were selected for library preparation using the Nextera XT DNA kit, according
to the manufacturer’s instructions. The libraries were sequenced at Admera Health, LLC (NJ,
USA) using an Illumina HiSeq X sequencer (150-bp paired-end reads). Bioinformatics analy-
sis was conducted using KBase (12). The raw reads were processed using Trimmomatic
v0.36 (13) and assembled using SPAdes v3.13.0 (14), with “single-cell” entered as the DNA
source. The assemblies were evaluated using QUAST (15), while the SAG completeness and
contamination were estimated using CheckM v1.018 (16). The assembly quality was deter-
mined using minimum information about a single amplified genome (MISAG) standards
(17). The genomic coverage was calculated using BBTools (18). The genome statistics are
provided in Table 1. Genome Taxonomy Database Toolkit (GTDB-Tk) v1.1.0 release 89 (19)
was used to assign taxonomy, and protein-encoding regions were identified using Prokka
v1.14.5 (20). Average nucleotide identities (ANI) of reciprocal hits were calculated between
our three SAR324 SAGs and against two SAR324 draft genome sequences: SAR324 bacte-
rium lautmerah1 (3) and SAR324 Arctic96AD-7 (genome 046) (9) (http://enve-omics.ce
.gatech.edu/ani/). Finally, we compared the 16S rRNA gene of each SAG to all 16S rRNA
gene sequences available in the NCBI nonredundant (nr) database. Default parameters
were used for all software unless otherwise noted.

Based on current standards (17), our three SAR324 genome sequences were classi-
fied as medium-quality draft genome sequences and were taxonomically assigned as
deltaproteobacterial group SAR324 (strain Arctic96AD-7). SAR324_K2 and SAR324_N8
had the highest genome similarity, with 96.75% ANI. Both genomes were distinct from
SAR324_I22 (ca. 81.9% ANI), suggesting that they may have different identities at the
species or genus level, within the same family. ANI percentages between our three
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SAR324 SAGs and two SAR324 reference genomes (3, 9) and comparisons of the 16S
rRNA gene sequences available in the NCBI (Table 1) revealed substantial differences
within this versatile group. Metabolic pathway reconstructions showed evidence for
carbon fixation (phosphoribulokinase; prk) in SAR324_N8. Indicator genes for sulfur oxi-
dation (soxAB) were found in both SAR324_I22 and SAR324_K2 (3 copies of soxB) but
not in SAR324_N8.

Data availability. The genome assemblies for the three SAGs have been deposited
at the ENA under accession number PRJEB47084, and the accession numbers are given
in Table 1.
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