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Abstract: In the interest of developing more effective and safer anti-tuberculosis drugs, we used a
GCxGC-TOF-MS metabolomics research approach to investigate and compare the metabolic profiles
of Mtb in the presence and absence of ciprofloxacin. The metabolites that best describe the differences
between the compared groups were identified as markers characterizing the changes induced by
ciprofloxacin. Malic acid was ranked as the most significantly altered metabolite marker induced
by ciprofloxacin, indicative of an inhibition of the tricarboxylic acid (TCA) and glyoxylate cycle
of Mtb. The altered fatty acid, myo-inositol, and triacylglycerol metabolism seen in this group
supports previous observations of ciprofloxacin action on the Mtb cell wall. Furthermore, the altered
pentose phosphate intermediates, glycerol metabolism markers, glucose accumulation, as well as
the reduction in the glucogenic amino acids specifically, indicate a flux toward DNA (as well as cell
wall) repair, also supporting previous findings of DNA damage caused by ciprofloxacin. This study
further provides insights useful for designing network whole-system strategies for the identification
of possible modes of action of various drugs and possibly adaptations by Mtb resulting in resistance.

Keywords: fluoroquinolones; ciprofloxacin; untargeted metabolomics; Mycobacterium tuberculosis;
tuberculosis; GCxGC-TOFMS

1. Introduction

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains one of the
leading causes of death globally from a single infectious agent [1], resulting in a mortality
rate of 1.5 million and an infection rate of about 10 million annually [2]. Furthermore,
the prevalence of drug resistant TB is also increasing, primarily due to poor adherence
to the drug regimen in patients [3], as a result of the many side effects experienced by
patients being treated with first-line anti TB medication, accompanied by the long treatment
duration required [4,5]. Further contributing factors to developing drug resistant TB
include inaccurate diagnosis, unsupervised treatment, poor economic status [6], and a
further exacerbation in 2020 by the COVID-19 pandemic [2,7]. Currently, the WHO’s
approved first-line therapy for patients with active TB is a 6-month “directly observed
treatment short-course” (DOTS) regimen consisting of isoniazid (INH), ethambutol (EMB),
pyrazinamide (PZA), and rifampicin (RIF) [8,9]. Infection with multi-drug resistant (MDR)-
TB and extensively drug resistant (XDR)-TB requires treatment using various second-
line antibiotics that are expensive, have far more side effects due to their higher toxicity,
and need to be consumed for even a longer duration [2,10]. The only newly approved
drugs for TB over the past 50 years are the second-line drugs for treating MDR-TB—
linezolid, bedaquiline and delamanid—but not long after, resistance followed [9,11,12].
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Considering this, there is an urgent need for well-tolerated and effective treatments for TB
using drugs with novel modes of action against the infectious organism.

A suggested approach for avoiding the long drug trial phases usually required for ap-
proving new drug candidates is further investigation of already existing drugs, repurposed
for use in treating TB/MDR-TB, [13,14]. In order for a drug to be selected for possible
repurposing applications, it should preferably be affordable, easily available, and show
good pharmacokinetic/pharmacodynamic properties. For these reasons, several fluoro-
quinolones (FQs) are being intensively investigated for use as anti-TB therapy [15]. FQs,
originally used to treat urinary tract infection [16], were first shown to be effective against
Mtb in 1984, and have since gained continuous interest for such applications [17–19]. Cur-
rently, they are among the most frequently prescribed drugs [20] and are considered the
backbone of MDR-TB treatment [10,21]. FQs target two Mtb topoisomerase deoxyribonu-
cleic acid (DNA) enzymes, DNA gyrase and topoisomerase IV [22]. The first introduces
negative super helical twists in the bacterial DNA double helix and catalyzes the separation
of daughter chromosomes [23], whereas the latter is responsible for the segregation into
two daughter cells at the end of DNA replication [24]. Earlier generations, ciprofloxacin
and levofloxacin, exhibit greater activity against Gram-negative bacteria (and some Gram-
positive bacteria) and target mainly DNA gyrase [25–27]. FQs inhibit DNA gyrase by
binding to the enzyme and DNA, which leads to double-stranded DNA breaks [28–32].

The innate resistance mechanism of Mtb to many anti-TB drugs can be attributed to
its complex cell wall [33]; however, the specific, highly lipophilic characteristics of FQs [34]
provide great permeability over this [35]. These antibiotics chelate with Mg2+ cations
and electrostatically interact with membrane phosphodiesters, subsequently traversing
the Mtb cell wall [36]. FQs are not exempt from resistance, however, of which the best
described are mutations in genes gyrA and gyrB, encoding subunit GyrA and GyrB of DNA
gyrase [37–39]. Furthermore, several resistance-forming proteins have also been identified,
including the efflux pumps, LfrA [40,41], and MmpL (mycobacterial membrane protein
large) [42], the target protection proteins, MfpA and MfpB (Mycobacterium fluoroquinolone
resistance proteins A and B) [43,44], and the cell-survival promotor, HtrA2 (high tempera-
ture requirement A) [45]. DNA repair and mutations by the SOS regulon have also been
described [18].

Although interactions between DNA gyrase and FQs have been thoroughly investi-
gated [22,38,46], little is known about their biochemical mechanisms of action against Mtb
specifically, or Mtb drug resistance to these [10,19]. The results published thus far are some-
what contradictory. In a study by Verma et al. [47], the macromolecular composition of the
M. smegmatis cell wall after sub-MIC ciprofloxacin treatment indicated a significant decrease
in the total lipids, phospholipids, and sugars, suggesting ciprofloxacin-induced alterations
of the cell wall. In contrast, Halouska et al. [48] indicated ciprofloxacin-induced inhibition of
transcription, translation, and DNA supercoiling, without changes to the cell wall.3 While
most data suggest cell death due to the inhibition of DNA replication [49], altered DNA
biosynthesis could set in motion secondary events contributing to ciprofloxacin’s bacterio-
static or bactericidal effects. Furthermore, it is important to remember that stronger target
activity does not predict better antimycobacterial activity. This is perfectly demonstrated by
ciprofloxacin dimers, which show enhanced DNA gyrase inhibition, while less effectively
killing Mtb [50]. This is thought to be due to a stronger cleavage of FQ to the DNA-enzyme
complex, which results in less single-strand DNA fragments, and subsequently prevents
RecA from recognizing damaged DNA and inducing the SOS regulon [32]. The SOS re-
sponse assists in killing by releasing ROS [51,52], yet simultaneously activates DNA repair
and creates a dormancy state, ultimately leading to resistance. Before this SOS response can
be used to advantage as a possible mode of action against Mtb, this phenomenon, and how
it connects to the mechanism of ciprofloxacin, still needs to be elucidated.

The selection of ciprofloxacin as our investigational compound was predominantly
based on its safety profile. Although less potent than moxifloxacin (MIC 0.12–0.5 µg/mL),
and levofloxacin (MIC 1 µg/mL), ciprofloxacin (MIC 0.5–4.0 µg/mL) [53] has the lowest
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risk for causing serious ventricular arrhythmia, cardiovascular mortality, and hepatotox-
icity [54,55]. Furthermore, ciprofloxacin demonstrates the highest clearance rate of all
FQs [56] and is thus the preferred option for the treatment of renally impaired patients [17].
The levels of ciprofloxacin in cerebrospinal fluid can be as high as 40–90% compared to that
in plasma [53], which offers further advantages for its use in the treatment of tuberculous
meningitis. Adverse drug reactions (ADRs) are usually minimal (5% or less), and the
most common ADRs are usually gastrointestinal in nature (nausea, vomiting, diarrhea,
and abdominal pain) [57,58]. Previous studies demonstrated that mitochondrial topoi-
somerases bear less than 30% homology to their prokaryotic counterparts and are not
inhibited [23,59], but it has been reported that ciprofloxacin does affect mitochondrial DNA
synthesis [60]. The pharmacological advantages of ciprofloxacin have not gone unnoticed,
as stated by the World Health Organization [61], which has included ciprofloxacin as a
critically important antibiotic.

Most of the evidence brought to light thus far has been generated using genomics,
transcriptomics, or proteomics [62]. Metabolomics, the latest addition to “omics” technolo-
gies, identifies the down-stream metabolites of altered pathways and therefor presents
a more sensitive level of organization, from which up-stream deductions can be made [8,63].
We identified the metabolite markers best differentiating Mtb with and without ciprofloxacin,
using a two-dimensional gas chromatography coupled with time-of-flight mass spectrom-
etry (GCxGC-TOF-MS) metabolomics approach, combined with universally connected
metabolic libraries and advanced statistical analysis, in order to better elucidate its mecha-
nism of action.

2. Materials and Methods
2.1. Bacterial Culture

Antimycobacterial minimum inhibitory concentration (MIC) and sub-MIC (50% in-
hibitory concentrations (MIC50)) of ciprofloxacin were determined via the Alamar Blue
assay [64]. The cell cultures (5 individually cultured samples per group) were prepared
as previously described [65], in the presence and absence of ciprofloxacin. All reagents
were purchased from Sigma-Aldrich, St. Louis, MO, USA, unless otherwise stated. Briefly,
Mtb H37Rv ATCC 27294 (kindly obtained from the Medical Research Council, Pretoria,
Gauteng, South Africa) was cultured and maintained for 4 weeks on Lowenstein Jensen
(LJ) slants. The bacterial inoculum was prepared to a McFarland standard of 1 (approxi-
mately 3 × 108 colony-forming units/mL) in Middlebrook 7H9 broth supplemented with
10% OADC (oleic acid, albumin, dextrose, catalase) (Becton, Dickinson, UK) and 2%
PANTA (polymyxin B, amphotericin B, nalidixic acid, trimethoprim, and azlocillin) (Becton,
Dickinson, UK). PANTA was added for the prevention of contamination with negligible
impact on Mtb’s growth [66]. Ciprofloxacin was dissolved in DMSO (150 µM), added as a
vehicle control, and diluted into Middlebrook 7H9 broth to a final concentration of 0.3 µM
(0.12 µg/mL) (0.2% DMSO). One milliliter of the prepared inoculum was added to yield a
final assay volume of 5 mL, with a bacterial test concentration of 6 × 107 CFU per 1 mL
of ciprofloxacin. For the untreated Mtb control samples, 4 mL of Middlebrook 7H9 broth
(0.2% DMSO) was added to each replicate culture, followed by the addition of the bacterial
inoculum as described above. The DMSO solvent was kept constant throughout the assay.
After 5 days of incubation at 37 ◦C, the samples were centrifuged to pellet the bacteria at
4500 rpm for 15 min. The pellets were washed with 1 mL of PBS and pelleted again under
the same conditions. Finally, the PBS was aspirated from the samples and the pellets were
stored immediately at −80 ◦C until further testing.

2.2. Whole Metabolome Extraction Procedure and Derivatization

The metabolites were extracted from the samples and derivatized as previously de-
scribed by Beukes, et al. [67], with slight modifications. Briefly, 8 mg of each of the
individually cultured samples were weighed out into an Eppendorf tube, followed by the
addition of 50 µL 3-phenylbutyric acid (0.13 mg/ml H2O) (Sigma-Aldrich, Lot#536478V) as
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internal standard. One milliliter of a chloroform: methanol: water (1:3:1 ratio) solution was
added, after which the Eppendorf tubes were shaken in a vibration mill at 30 Hz for 5 min,
with a 3 mm carbide tungsten bead in each. The samples were centrifuged at 12,000 rpm for
5 min and the supernatant was transferred to a GC glass vial. The extracts were dried under
a nitrogen stream, followed by the addition of 50 µL methoxamine hydrochloride (Sigma-
Aldrich, Lot#BCBP2843V) in pyridine (Lot#S2BC335SV) at a concentration of 15 mg/mL.
The glass vials were heated at 50 ◦C for 90 min. Following, methoximation, 40 µL N,O-
bis(trimethylsilyl)trifluoroacetamide with 1% trimethylsilyl chloride (Lot#BCBW2670) was
added, and vials were heated again for 60 min at 50 ◦C. Each extract was then transferred
to a 0.1 mL vial insert in a GC sample vial and injected into GCxGC-TOF-MS.

2.3. GCxGC-TOFMS Analysis

A 4D Pegasus GCxGC-TOF-MS (LECO Africa (Pty) Ltd., Johannesburg, South Africa)
equipped with a Gerstel Multi-Purpose Sampler (Gerstel GmbH and Co. KG, Mülheim an
der Ruhr, Germany) and an Agilent 7890 gas chromatograph (Agilent, Atlanta, USA)
coupled to TOF-MS (LECO Africa) were used for the analysis. The samples were analyzed
in random sequence, with split-less injection. To monitor the analytical performance
throughout the entire analysis, a quality control (QC) sample was analyzed at regular
intervals. The processed samples were injected into Rxi-5Sil MS primary capillary column
(28.8 m × 0.25 mm internal diameter, 0.25 µm film thickness, Restec), and a Rxi-17 secondary
capillary column (1.2 m × 0.25 mm internal diameter, 0.25 µm film thickness), for GC
compound separation. The primary GC oven temperature was set at 70 ◦C for 2 min,
and then increased at a rate of 4 ◦C/min to a final temperature of 300 ◦C, at which it
was maintained for an additional 2 min. The secondary oven was set at 85 ◦C for 2 min,
increased at 4.5 ◦C/min, to a final temperature of 300 ◦C, at which it was maintained for
4.5 min. Helium, set to a column flow rate of 1 mL/min, was used as a carrier gas, and held
at a constant temperature of 270 ◦C. Mass spectrometric data acquisition was carried out
at −70 eV, with a solution delay of 350 sec, and a mass range of 50–800 m/z was scanned
with a rate of 200 spectra/sec.

2.4. Data Processing, Clean-Up, and Statistics

ChromaTof software (version 4.32) was used for mass spectral deconvolution (at a
signal to noise ratio of 20), peak alignment, and peak identification on the obtained mass
spectra. Metabolites were identified by comparing their mass fragment patterns to those
of compounds in commercially available databases containing previously injected stan-
dards. For normalization and assessment of data quality, the data were pretreated using
a standardized metabolomics data clean-up procedure [67]. Each detected compound
was normalized using MS total useful signal (TUS), which is based on a factor calculated
from the sum of all metabolites identified in all samples, and by calculating the relative
concentration of each by using the internal standard. All missing/zero values were re-
placed by a value calculated as 20% of the minimum detection limit of the entire dataset,
as these are most likely present in sub-minimum concentrations rather than being com-
pletely absent [68]. An 80% data filter was then applied to eliminate compounds with more
than 80% zero values within both groups [69]. To provide a balanced representation of
all metabolites, log transformation and auto-scaling (mean-centered and divided by the
standard deviation of each variable) were applied. This prevents compounds with minor
concentrations from being overlooked due to the domination of compounds with higher
concentrations [70]. Making use of MetaboAnalyst (Version 5.0) [71], multivariate statistical
methods in the form of unsupervised principal component analysis (PCA) and supervised
partial least squares-discriminant analysis (PLS-DA) were applied [72]. Subsequently,
uni-variate analysis was performed by calculating t-test and effect size values [73].

Relationships between the selected metabolites were mapped using the KEGG, Meta-
Cyc, and BioCyc databases, in addition to intensive research of the previously published
literature on the topic.
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3. Results
3.1. Data Overview

When visualizing the analytical technique’s repeatability graphically (Figure 1), ap-
proximately 86% of all the compounds identified (n = 260) had a coefficient of variation
(CV) value under 50%, while 70% had CV values under 20%. The analytical technique
used during this analysis thus proved to be highly repeatable and can could be trusted
to provide reliable results. PCA was initially used to obtain an overview of the natural
grouping of metabolic data (Figure 2). The total variance between the groups, described by
the first two principal components (PCs), was 57.1%, of which PC1 and PC2 accounted
for 32.1% and 25%, respectively. The PCA scores plot of the metabolite data analyzed
by GCxGC-TOF-MS shows clear clustering between Mtb in the presence and absence of
ciprofloxacin, as represented in Figure 2.
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3.2. Marker Selection

The metabolite markers (n = 26) best describing the differences between the ciprofloxacin
and control samples were selected based on compliance with the following criteria: a PLS-
DA VIP value > 1 [74], a t-test p-value < 0.05 [75], or an effect size > 0.8 [76] (Figure 3).

The selected metabolite markers are listed according to their PLS-DA VIP values in
Table 1, along with their respective average concentrations and univariate test outcomes.
Of the total, 61.5% (16/26) of the markers were elevated; most of these were fatty acids.
The most differentiating marker was malic acid, with an exceptionally high d-value of 6.621
and low p-value of > 0.0001.
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Table 1. Metabolite markers best describing the variance between the individually cultured Mtb samples in the absence
(Mtb controls) and presence of ciprofloxacin.

Metabolite Name
(ChEBI ID)

Average Concentration
(mg/g Cell Mass)

(Standard Deviation)

t-Test
(p-Value)

Effect Size
(d-Value) PLS-DA (VIP) Fold Change

(log2)

Mtb with
Ciprofloxacin Mtb Controls

Malic acid (6650) 0.033 (0.002) 0.054 (0.004) 0.000 6.621 2.012 −0.39
Aspartic acid (17053) 0.007 (0.001) 0.013 (0.004) 0.008 2.236 1.732 −0.46

Glycerol (17754) 0.497 (0.033) 0.633 (0.031) 0.013 1.932 1.678 −0.21
5-Oxoproline (17203) 0.069 (0.014) 0.099 (0.020) 0.014 1.962 1.665 −0.30
Xylofuranose (46432) 0.075 (0.037) 0.034 (0.008) 0.037 1.376 1.511 1.21

Myo-inositol-1-phosphate (18297) 0.004 (0.001) 0.003 (0.001) 0.051 1.637 1.445 0.33
9-Hexadecenoic acid (28716) 0.005 (0.000) 0.004 (0.001) 0.091 1.329 1.299 0.25

Nonadecanoic acid 0.067 (0.011) 0.055 (0.008) 0.094 1.151 1.292 0.22
Heptadecanoic acid (32365) 0.015 (0.003) 0.011 (0.002) 0.095 1.355 1.288 0.36
Octadecanoic acid (28842) 0.582 (0.164) 0.371 (0.141) 0.096 1.241 1.287 0.57

Valine (16414) 0.017 (0.004) 0.022 (0.005) 0.106 1.117 1.255 −0.23
β-Aminoisobutanoic acid (33094) 0.011 (0.002) 0.014 (0.004) 0.121 1.256 1.216 −0.21

Glutamic acid (16015) 0.010 (0.001) 0.015 (0.006) 0.124 0.960 1.209 −0.33
Hexadecanoic acid (15756) 0.575 (0.051) 0.480 (0.077) 0.128 0.969 1.198 0.20

9-Octadecenoic acid (36021) 0.679 (0.060) 0.600 (0.041) 0.132 1.089 1.187 0.13
Tetradecanoic acid (28875) 0.089 (0.010) 0.071 (0.017) 0.141 0.934 1.167 0.25

Eicosanoic acid (28822) 0.005 (0.001) 0.004 (0.000) 0.146 0.991 1.154 0.25
Glucose (17234) 0.045 (0.006) 0.037 (0.005) 0.152 0.934 1.140 0.22

Urea (16199) 0.005 (0.002) 0.002 (0.002) 0.171 0.816 1.099 1.50
N-Acetyl-L-Lysine (64859) 0.002 (0.001) 0.004 (0.003) 0.175 0.884 1.090 −0.50
2-Monopalmitin (75455) 0.011 (0.002) 0.009 (0.001) 0.175 0.907 1.089 0.22
1-Monomyristin (75562) 0.007 (0.003) 0.005 (0.001) 0.175 0.882 1.089 0.40

Pentadecanoic acid (42504) 0.005 (0.001) 0.004 (0.001) 0.181 1.021 1.077 0.25
Glycerol 3-phosphate (15978) 0.005 (0.001) 0.007 (0.002) 0.186 0.908 1.067 −0.29

1-Monoheptadecanoin (144339) 0.010 (0.002) 0.007 (0.001) 0.186 0.947 1.066 0.43
Erythritol (17113) 0.021 (0.002) 0.023 (0.001) 0.202 0.856 1.034 −0.09

4. Discussion

In this study, we identified a number of significantly altered metabolites induced by
the administration of ciprofloxacin to Mtb culture, which when interpreted, in the light of
known metabolism and previous ciprofloxacin findings, better elucidate its mechanisms of
action against Mtb, as shown in Figure 4. The most prominently altered pathways included
gluconeogenesis, fatty acid metabolism, amino acid metabolism, the pentose phosphate
pathway (PPP), and the urea cycle.

Of note were the elevated levels of various even- and odd-chain saturated fatty acids
of between 14 to 20 carbons (C14:0–C20:0) in length, in the Mtb treated with ciprofloxacin.
This was also true for two ∆9-unsaturated fatty acids; 9-hexadecenoic (∆9C16:1), and 9-
octadecenoic (∆9 C18:1) acids. These indicate a strongly upregulated synthesis toward
cell wall repair, supporting previous evidence associating ciprofloxacin with cell wall
damage [47]. Simplified, lying outside of the cytoplasmic membrane, a peptidoglycan (PG)
layer is covalently attached to arabinogalactan (AG), which itself attaches to mycolic acids
(MA) to form the MA-AG-PG complex (MAPc) [77,78]. Interspersed within the MAPc,
are the glycerolipids, phosphatidyl myo-inositol mannosides (PIM) and lipoarabinoman-
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nans (LAM) [79]. PIM is a crucial part of the membrane structure and serves as a precursor
of LAM [80]. The saturated fatty acid markers in this study are produced by fatty acid
synthase type I (FAS I). FAS I generates 16 to 26 carbon length fatty acyl-coenzyme As
(CoA) [81], which are fed into FAS II for elongation. FAS I and FAS II provide acyl groups for
the synthesis of all cell envelope components, except for AG [82,83]. ∆9C16:1 and ∆9 C18:1
and their precursors, hexadecanoic (C16:0) and octadecanoic (C18:0) acid, respectively,
are considered major fatty acids of glycerolipids and mycolic acids [84–86]. ∆9C16:1 and
∆9 C18:1 are reduced from C16:0 and C18:0, in the presence of Fe2+, a flavin, NADPH,
and O2 [87,88]. Interestingly, some mmpL genes, encoding fatty acid transporter protein
MmpL have been shown to be repressed when their transcriptional regulator proteins
bind to C:16 fatty acids and monoacylglycerols (MAG) [89,90]. Even so, further research is
needed to establish possible activity of different fatty acids on different MmpL regulator
proteins. It is, however, important to note that the damage that ciprofloxacin administration
induces to the cell wall may be direct, but is most likely indirect, by inhibition of other
energy-producing mechanisms or simply by induction of the SOS response in Mtb, shift-
ing energy production away from glucose toward the preferential use of fatty acids [91];
hence, less of these fatty acids are now available to cell wall synthesis. Increased FA syn-
thesis or the accumulation of cell wall components has also been identified in Mtb treated
with EMB, INH, PZA, RIF, and pretomanid [92–96].
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The dramatically elevated synthesis of intracellular fatty acids would be expected to
consume a considerable amount of carbon, which can be supplied from various sources [91].
However, as will be explained, glucose and glycerol seem to be the major suppliers for such,
and for the various components required for DNA repair. This is supported by previous
findings indicating ROS, produced during the FQ-induced SOS-response, causes oxidative
stress, which in turn activates utilization of triacylglycerol (TAG) and cell wall lipids for
energy [97–99], as is generally the case during the non-replicative phase of Mtb [100,101].
These results are also supported by previous findings showing reduced concentrations of
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phospholipids and mycolic acids in the cell wall macromolecules of sub-MIC ciprofloxacin-
treated M. smegmatis [47], because these are now being preferentially used for energy
production, with glucose supplying the necessary carbon substrates for the continued
synthesis of these much-needed fatty acids, which are now preferentially used for en-
ergy production.

A shift in energy supply to β-oxidation of fatty acids, as opposed to the TCA cy-
cle, reserves NAD+, in addition to CO2, for de novo synthesis of nucleotides (for DNA
repair and fatty acids). NADH and NADPH released during fatty acid metabolism fuel
the upregulated non-oxidative PPP and glycerolipid metabolic pathway. In this study,
the downregulated TCA cycle was indicated by a reduction in malic acid and aspartic acid,
which according to the uni- and multivariate statistics, were ranked as the two most impor-
tant metabolite markers altered by ciprofloxacin (Table 1). Aspartic acid is considered a
validated reporter of oxaloacetate (OAA) [102], and together with malic acid, supports TCA
cycle inhibition. Although oxidative stress is normally associated with an increase in
glyoxylate shunt activity, in this study the glyoxylate shunt was clearly downregulated.
This indicates a greater need of carbon flux through gluconeogenesis toward the PPP
and glucose, for subsequent fatty acid and nucleotide synthesis [103,104]. Reduced aspar-
tic acid concentrations were also previously found in a study investigating phenotypic
antibacterial persistence in Mtb [105]. These results support the SOS response-induced
decrease in oxidative phosphorylation and increase in energy reserves for DNA repair in
response to FQs [32,102]. It is noteworthy to mention that the ATPase activity of DNA
gyrase (29), shows reduced adenosine triphosphate (ATP) conversion in the presence of
ciprofloxacin [106], which most likely is for the purpose of reserving ATP for other energy
consuming pathways, such as gluconeogenesis and DNA repair [107].

Various PPP intermediates that contribute to DNA and cell wall synthesis were
detected to be altered in the ciprofloxacin-treated Mtb, [99,108,109]. Under normal cir-
cumstances, erythrose-4-phosphate and glyceraldehyde-3-phosphate produce xylulose-
5-phosphate (xylulose-5P) and fructose-6-phosphate (fructose-6P) [91]. The latter is con-
verted to glucose-6-phosphate, for subsequent PIM synthesis, via the myo-inositol path-
way [110], and to glucose-N-acyl 6-phosphate (GlcN6P), for subsequent PG synthesis [111].
Xylose-5P is the precursor of ribose-5-phosphate (ribose-5P), which, in the presence of ATP,
is converted to 5-phosphoribosyl-1-pyrophosphate (pRpp) [103,112]. PRpp is the branch
point intermediate of decaprenyl-phospho-arabinofuranose (DPA) [113], the only donor
of arabinose to AG and LAM [104,114] and nucleotide synthesis. In this investigation,
the upregulated non-oxidative PPP in the ciprofloxacin-treated Mtb was supported by the
elevated concentrations of xylofuranose and reduced erythritol (Figure 4). Furthermore,
it is well known that PPP metabolism is fueled by glucose and the glucogenic amino
acids valine, aspartic acid, and glutamic acid [115], all of which were specifically and
significantly reduced in the ciprofloxacin-treated Mtb, in addition to their degradation
products β-aminoisobutanoic acid [116], 5-oxoproline [117], and N-acetyl-lysine [118],
respectively (Figure 4). Furthermore, the reduced levels of glutamic acid and aspartic acid
in our investigation supported an oxidative state in the ciprofloxacin-treated group [119].
The above-mentioned amino acids also serve as precursors of cell wall related intermediates.
Alanine derived from aspartic acid combines with valine to produce CoA, which is used
for converting fatty acids into cell wall lipids [120–122]. Valine also serves as a precursor
of propionyl-CoA [116,123] and is used for the elongation of odd-chain fatty acids [124].
Aspartic acid additionally is the precursor of NAD+, 2,6-diaminopimelate (DAP) [125,126],
and S-adenosyl methionine (SAM) [127]. Considering this, NAD+ is subsequently an
important cofactor for FAS I [128], and SAM is required for the methylation of cell-wall
fatty acids [129]. Furthermore, the aforementioned DAP, along with alanine and glutamic
acid, serve as substrates for PG [130]. Lastly, the observed flux through aspartic acid can be
supported by the elevated levels of urea in Mtb treated with ciprofloxacin [131], and con-
sidering that aspartic acid is one of the top three metabolite markers identified (Table 1),
it is possibly utilized, contributing to many of the cell-envelope changes observed.
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The FQ-induced SOS response is known to cause cell growth arrest [132], and in this
study, inhibited cell growth is evident by the increased TAG metabolism and reduced TCA
activity, in addition to the inhibited protein synthesis observed in the ciprofloxacin-treated
Mtb. Protein synthesis requires ATP-dependent activation of glutamate and aspartate, fol-
lowed by amination by ammonia, to form aminoacyl-tRNA [115]. However, in this study,
urea was found to be elevated in Mtb treated with ciprofloxacin, indicating accumulation
of ammonia and reduced recycling of nitrogen via glutamine and proline metabolism. This,
in addition to a decreased degradation of urea by urease, also linked to the Mtb stress
response [133], retains ammonia from protein synthesis [134]. Inhibited protein formation
has also been suggested in a proteomics study of Mtb treated with ciprofloxacin [135],
as well as a metabolomics study of M. smegmatis treated with ciprofloxacin [48]. Disrup-
tion of protein synthesis has also been reported in studies investigating the response of
Mtb to pretomanid, streptomycin, EMB, RIF, PZA, and INH [95,136–138]. The inhibited
protein synthesis observed would in turn disrupt the functionality of membrane proteins,
subsequently inhibiting nutrient uptake as well as fatty acid transport to the cell wall [42].
Additionally, urea acts as an osmolyte, preventing dehydration or water loss as a result
of the seemingly damaged cell wall [139]. Increased urea could also be indicative of
polyamine synthesis (Figure 4) [140]. Polyamines, such as putrescine, have been reported
to reduce accumulation of trans-membrane proteins [141] and contribute to the phenotypic
drug resistance to FQs [142].

Observed changes to the monoacylglycerols (MAG) 1-monomyristin, 2-monopalmitin,
and 1-monoheptadecanoin are indicative of cell envelope changes via the glycerolipid and
triacylglycerol (TAG) pathways. TAG in the cell wall [143] can be metabolized during
the stress-induced transition to the non-replicated phase [144] and during infection [145].
Mtb’s adaptation during these circumstances involves the use of lipids as main energy
reserves, as previously mentioned [146]. During the deacetylation of TAG to diacylglycerol
(DAG), and from DAG to MAG, acyl-CoAs are released, which are either directed toward
glycerolipid synthesis (Figure 4) or energy production [147,148]. Glycerolipid and TAG
metabolism share an important intermediate at the branch point, 1,2-diacyl-sn-glycerol
3-phosphate, commonly known as phosphatidate (PA) (Figure 4) [149]. PA is synthesized
via two pathways: 1) the phosphorylation of DAG by DAG kinase [150] or 2) the acylation
of glycerol-3-phosphate (glycerol-3P) by glycerol phosphate and acyl glycerol phosphate
acyltransferase [151]. In this study, the concentrations of glycerol-3-phosphate and its
precursor glycerol were decreased, supporting a MAG metabolic flux toward TAG and
PIM in the ciprofloxacin-treated Mtb group. Glycerol-3P appears to recycle the transport of
membrane lipids [152] and can thus be expected to be the rate-limiting step, which would
explain the accumulation of the fatty acids and the accompanying reduction in glycerol
levels. The synthesis of glycerolipids also requires myo-inositol, which is produced via
glucose-6-phosphate (glucose-6P) [153]. Firstly, myo-inositol 3-phosphate synthase con-
verts glucose-6P into myo-inositol 3-phosphate, which in turn is dephosphorylated by
several myo-inositol monophosphates to produce myo-inositol [84]. The elevated levels of
myo-inositol monophosphates in the ciprofloxacin-treated Mtb hence further support the
aforementioned flux toward glycerolipids [154]. Furthermore, myo-inositol-1-phosphate
is converted by a glycosyltransferase, mycothiol (Msh). Mycothiol is also considered
an important antioxidant required for balancing the cytosolic NAD+/NADH ratio [155].
In addition to the abovementioned inhibition of protein synthesis and enhanced fatty acid
synthesis, altered energy metabolism has also consistently been identified in response
to the first-line drugs INH [156], EMB [157], PZA [158], and RIF [159], supporting these
results. In summary, the mycobacterial cell wall metabolism is visibly linked to the SOS
response, which has frequently been proposed to cause resistance toward ciprofloxacin
and challenge the otherwise impressive bactericidal activity of this drug [18,160–162].
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5. Conclusions

In this study, we investigated the metabolic changes to Mtb induced by sub-MIC
of ciprofloxacin, in order to better understand its mechanism of action and the resultant
adaptations of Mtb. Previous studies have identified alterations in transcription, translation,
and cell wall synthesis as part of the mechanism of action of ciprofloxacin against Mtb (51,
52, 135). Our metabolomics study identified metabolite markers that support previous
results, as indicated by the drastic accumulation of metabolites associated with cell wall and
DNA repair. Moreover, many of these markers indicate an SOS-induced shift to the non-
replicative phase, which is a key mechanism determining Mtb persistence and tolerance to
various anti-TB drugs. This study not only gives a better understanding of ciprofloxacin’s
mode of action but provides helpful insight for further investigation of antibiotic-induced
resistance by Mtb, and also perhaps the use of ciprofloxacin in combination with existing
anti-TB drugs.
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