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Abstract: The normal distribution and its perturbation have left an immense mark on the statistical
literature. Several generalized forms exist to model different skewness, kurtosis, and body shapes.
Although they provide better fitting capabilities, these generalizations do not have parameters and
formulae with a clear meaning to the practitioner on how the distribution is being modeled. We
propose a neat integration approach generalization which intuitively gives direct control of the
body and tail shape, the body-tail generalized normal (BTGN). The BTGN provides the basis for a
flexible distribution, emphasizing parameter interpretation, estimation properties, and tractability.
Basic statistical measures are derived, such as the density function, cumulative density function,
moments, moment generating function. Regarding estimation, the equations for maximum likelihood
estimation and maximum product spacing estimation are provided. Finally, real-life situations data,
such as log-returns, time series, and finite mixture modeling, are modeled using the BTGN. Our
results show that it is possible to have more desirable traits in a flexible distribution while still
providing a superior fit to industry-standard distributions, such as the generalized hyperbolic,
generalized normal, tail-inflated normal, and t distributions.

Keywords: body-tail; finite mixture; autoregressive; normal; generalized; kurtosis; maximum likeli-
hood; maximum product spacing; stock returns; wind speed

1. Introduction

Flexible modeling is an ongoing study in distribution theory that dates back as long
ago as 1879, when Galton pioneered the log-normal distribution [1]. Since then, the field
has exploded with new distributions and ways of generating them. These models include
finite mixture models [2], variance-mean mixtures [3], copulas [4], the Box–Cox transfor-
mation [5], order-statistics-based distributions [6], probability integral transformations
of [7], and the Pearson system of distributions [8], to name but a few. The impact of flexible
modeling is further underscored by their successful integration into classical statistical
approaches, such as time series analysis [9], space-state models [10], random fields [11],
regression models [12], linear mixed-effects models [13], non-linear mixed-effects mod-
els [14], Bayesian statistics [15], and Bayesian linear mixed models [16]. In [17–19], some
of the desirable traits of a univariate flexible model are formulated. We focus on three
highlights that the authors have in common:

• A finite number of well interpretable parameters: These include parameters that
specifically control location, scale, skewness and kurtosis.

• Favorable estimation properties: It is important that the parameters can be estimated
correctly to ensure correct predictions and inferences from the model. Inferentially
speaking, the ideal would be to have a model to use in tests of normality.

• Simple tractability: Closed-form expressions are still desirable, despite modern com-
putational power. Simple formulae describing characteristics of distributions aid in
exposition and additionally improve computational implementation and speed.

• Finite moments: Most real-world measurements require this property.
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To this end, a systematic bottom-up approach is to be taken to specify a new flexible
model. A flexible model is commonly made up of a symmetric base model to which a
skewing parameter is added, as is the case with Azzalini skewed distributions [20], order-
statistics-based distributions [6], and transformation approaches, see [21–24]. The body and
tail properties of a skewed model are heavily dependent on the chosen base model, since
the skewing mechanism is intended to accommodate the skewness, and not necessarily
the heavy tails in the data. The motivation for the body-tail generalization of the normal
distribution would be to provide a new symmetric model with the aforementioned desir-
able traits for symmetric data, and serve as a new base model for further generalizations to
accommodate skew data in the future.

The paper is structured as follows. Section 2 gives a short overview of the generalized
normal distribution (GN), which will be generalized. Section 3 introduces a derivative
kernel method of generalizing known distributions. Section 4 consists of the derivations
for the body-tail generalized normal (BTGN), density function, cumulative probability
function (CDF), moments, moment generating function (MGF). Section 5 gives background
on maximum likelihood (ML), maximum product spacing (MPS), seasonally adjusted
autoregressive (SAR) models, and finite mixtures models of BTGN. Section 6 applies
the BTGN to log-returns data, a SAR model to minute average wind speeds, and a two-
component finite mixture model to annual wind speed data. Finally, Section 8 concludes
with final remarks and observations.

2. The Generalized Normal Distribution

This contribution generalizes the known GN distribution further. The latter has been
referred to by many names, such as exponential power, generalized power, generalized
error, and generalized Gaussian. This family is originally proposed by [25], and later on
again by [26–28]. A complete review of the GN is given by [29]. The GN density function
is given below:

φ(z) =
s

2Γ( 1
s )

e−|z|
s
, (1)

z ∈ R and s > 0. From (1), it is clear that it contains the normal, Laplace, and uniform
distributions are sub-models of the GN for shape parameter values of s = 2, s = 1,
and s = ∞, respectively. From Figure 1, it can be seen that for smaller values of s, the GN is
more heavy-tailed and more light-tailed for larger values of s.

Figure 1. The generalized normal (GN) density function for different values of s. The GN density
function is relatively heavy-tailed for values of s < 2 and light-tailed for values s > 2.

A significant limitation of the GN must be noticed here. The body shape cannot
be adjusted separately from the tail shape. Fixed body and tail shapes are common
among distribution generalizations. For instance, the normal, Laplace, logistic, t, [30],
and hyperbolic (HYP) [31] distributions have either fixed body or tail shapes, respectively.
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Subsequently, in the next section, we provide a new body-tail generalization of the normal
distribution that provides different body and tail shape combinations. The intent of this
generalization is to provide a new base model for skew generalizations, as discussed in
Section 1, and for fitting a more comprehensive range of data types, as will be shown in
Section 6.

3. Modifying Distributions through Their Derivative Kernel Functions

The construction is based on the relationship between the derivative kernel function
and the density function. Given some “appropriate” derivative kernel function, k′(z), a new
distribution can be generated by simply integrating k′(z) and normalizing the resulting
function to give a new density function f (z). To the best of our knowledge, this particular
type of deliberate integration of a derivative kernel function has not been done before.
The procedure followed for the generalization of the GN kernel is as follows:

• Calculate the derivative kernel function for the GN.
• Inspect the functional components of the kernel function to understand which proper-

ties can be changed or generalized.
• Take the indefinite integral of the derivative kernel function.

Note that simple derivative kernels simplify subsequent mathematical operations,
as is the case for the BTGN. Since the t-distribution generalizes the normal distribu-
tion with heavier tails, we use it as an introduction to tail behaviour from a derivative
kernel perspective.

According to Figure 2, for heavier tails and lower degrees of freedom ν, the derivative
kernel function has higher magnitudes in the tail and lower magnitudes at the body of the
function. Next, we study the derivative of the GN distribution kernel from (1)

d
dz

e−|z|
β
= −β sign(z)|z|β−1e−|z|

β
, β > 0. (2)

Figure 2. The density and derivative density functions of the t-distribution. Note the different density
derivative function magnitudes at the body and tail for lighter and heavier tails.

The kernel is proportional to two main factors—|z|β−1 and e−|z|
β
. Since these factors

have a fixed relationship with β, we can generalize the kernel by breaking the relationship.
Replacing |z|β−1 with |z|α−1 in (2), we have a new more general derivative kernel

k′(z) = −β sign(z)|z|α−1e−|z|
β
, (3)

where z ∈ R with α, β > 0. In Figure 3 the effect of the additional parameter α of (3) is
shown. For a fixed value of β, the α parameter controls the shape of the body, making it
“sharper” or “flatter” in a similar fashion to the parameter s of the GN distribution, see
Section 1. Likewise, for a fixed value α, β, the parameter controls the shape of the tails,
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making them lighter or heavier. The derivative kernel in (3) has therefore achieved separate
control of the body and tail shape of the distribution.

Figure 3. The derivative kernel function of body-tail generalized normal (BTGN) distribution.

Importantly, the role of β is very similar to ν in the t-distribution, but with a wider
range, which includes lighter than normal tails for β > 2, which is advantageous in flexible
modeling. This is clear from the higher and lower magnitudes of the derivative kernel
function in the tails for different values of β, see Figure 3. This derivative kernel (3) lays the
foundation for the BTGN distribution that will, by definition, contain the GN distribution,
for α = β, and has separate control of the body and tail shape. The latter makes the BTGN
an ideal candidate for body and tail shape tests for normality in future research. In Section 4,
the density function will be derived from (3), as well as various other statistical properties.

4. The Body-Tail Generalized Normal Distribution

In this section, the BTGN is defined, and various properties are derived, such as the
density function, CDF, moments, MGF, and ML equations.

4.1. Density Function

Let the standard BTGN derivative kernel function k′(z) be defined by (3) for z > 0.
The indefinite integral of (3) is evaluated by making the transformation y = zβ and the
definition of the upper incomplete gamma function to get∫

k′(z)dz =
∫
−βzβ−1e−zβ

dz

=
∫
−y

α−1
β y

1
β−1exp(−y)dy

= Γ
(

α

β
, zβ

)
,

(4)

where Γ(·, ·) is the upper incomplete gamma function, see ([32], p. 899). The indefinite
integral of k′(z) given by (4) yields a new symmetric kernel function

k(z) = Γ
(

α

β
, |z|β

)
. (5)

The normalizing constant for k(z) in (5) is given by direct substitution of Lemmas A1
and A2 in Appendix A

2
∫ ∞

0
Γ
(

α

β
, zβ

)
dz = 2Γ

(
α + 1

β

)
. (6)
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normalizing the kernel function with (6) gives the standard BTGN density function below

f (z; α, β) =
Γ
(

α
β , |z|β

)
2Γ
(

α+1
β

) , (7)

where z ∈ R and α, β > 0. Referring back to the desirable traits in Section 1, the density
function, CDF, and moments of the BTGN consist of very well known special functions
and satisfy the desirable trait of simple and closed-form expressions. The BTGN density
function is depicted for different combinations of its parameters in Figures 4 and 5. For a
fixed body shape of α, values of β < α are more heavy-tailed than the GN distribution
with s = α, and more light-tailed for values of α < β. The excess Pearson kurtosis for the
BTGN, GN, and normal distribution is depicted in Figure 6, confirming the latter properties.
The range of different body or tail shapes for a given level of kurtosis has been generalized
to contours on the plane α, β > 0 for the BTGN. Although different levels of kurtosis can
be achieved on straight line combinations of α = β, the body and tail shapes cannot vary.

Figure 4. The density function of the BTGN distribution for different body shapes α for a fixed tail
shape of β = 2.

Figure 5. The density function of the standard BTGN for different tail shapes of β for a fixed body
shape of α = 2.
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Figure 6. Excess Pearson Kurtosis for the BTGN distribution for different values of α and β. Excess
kurtosis of zero is equal to the normal distribution kurtosis.

Again, it can be verified that if α = β, we have the regular GN distribution, as
discussed in Section 2:

f (z; α, α) =
αe−|z|

α

Γ(1/α)
.

This fact implies that for α = β = 2, we have a normal distribution with scale, σ =
√

2,
and the Laplace distribution for α = β = 1 respectively. This implies that the BTGN
can be used for tests of normality of distributions with different body and tail shapes,
giving it another desirable trait. For comparison, two other candidate distributions that
include the normal distribution come to mind; the t and generalized hyperbolic (GYHP)
distributions [31]. These are well-documented distributions that both lack separate control
of the body and tail shape. The former can not model lighter than normal tails and has a
fixed normal-like body shape. The latter has shape parameters that interact to give different
body and tail shape combinations [33]. The BTGN, therefore, excels at the desirable trait of
a finite number of well interpretative parameters. Finally, the location-scale BTGN density
function is derived using the transformation X = µ + σZ

f (x; µ, σ, α, β) =

Γ
(

α
β ,
∣∣∣ x−µ

σ

∣∣∣β)
2σΓ

(
α+1

β

) , (8)

and is denoted as X ∼ BTGN(µ, σ, α, β) from here on forward.
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4.2. Characteristics

The CDF of the standard BTGN, F(z), is easily calculated from (7) using Lemma A2 in
Appendix A for z < 0

F(z; α, β) =
∫ z

−∞

Γ
(
α/β, |t|β

)
2Γ
(

α+1
β

) dt

= 2−1Γ
(

α + 1
β

)−1 ∫ ∞

−z
Γ
(

α/β, tβ
)

dt

=
Γ
(

α+1
β , |z|

)
− |z| Γ

(
α
β , |z|β

)
2Γ
(

α+1
β

) ,

(9)

and for z > 0
F(z; α, β) = 1− F(−z; α, β). (10)

The CDF of X ∼ BTGN(µ, σ, α, β) is given by the substitution of z = x−µ
σ

in (9) and (10).
Next, the moments X ∼ BTGN(µ, σ, α, β) are derived using the moments of the

standard BTGN. Noting that any odd moment of the standard BTGN is zero. The absolute
rth moment of the standard BTGN is derived from (7) by direct substitution of Lemma A2
in Appendix A

E(|Z|r) = 2
∫ ∞

0
zr Γ
(
α/β, |z|β

)
2Γ
(

α+1
β

) dz =
Γ
(

α+r+1
β

)
(r + 1)Γ

(
α+1

β

) .

Then, the rth moment X ∼ BTGN(µ, σ, α, β) is a function of (11) and the binomial
expansion of a polynomial ([32], p. 25)

E(Xr) = E((µ + σZ)r)

= E

(
r

∑
k=0

(
r
k

)
µr−kσrXr

)

=
r

∑
k=0

Ir r! µr−kσr

(r + 1)!(r− k)!

Γ
(

α+r+1
β

)
Γ
(

α+1
β

) ,

(11)

where Ir = 0 if r is odd and Ir = 1 if r is even. The mean, variance, and Pearson kurtosis
for the BTGN are then given as

E(X) = µ (12)

Var(X) =
σ2Γ

(
α+3

β

)
3Γ
(

α+1
β

) (13)

Kurt(X) =
9Γ
(

α+1
β

)
Γ
(

α+5
β

)
5Γ
(

α+3
β

)2 . (14)

A numerical expansion of the MGF is derived for completeness and the for calculat-
ing moments of log-transformed BTGN data. That is, for a distribution Y = eX where
X ∼ BTGN(µ, σ, α, β). The rth moment of Y is given by E(Yr) = E(erX), the MGF of
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X evaluated at r. Starting with the MGF of the standard BTGN, from (7) and the series
expansion of the hyperbolic cosine function ([32], p. 28)

MZ(t) =
1

2Γ
(

α+1
β

) ∫ ∞

0

(
e−tz + etz)Γ( α

β
, zβ

)
dz

= Γ
(

α + 1
β

)−1 ∫ ∞

0
cosh(tz)Γ

(
α

β
, zβ

)
dz

= 2
∞

∑
k=0

t2k

(2k)!

∫ ∞

0
z2k

Γ
(

α
β , zβ

)
2Γ
(

α+1
β

)dz.

Finally, from (11)

MZ(t) =
∞

∑
k=0

t2kΓ
(

α+2k+1
β

)
(2k + 1)!Γ

(
α+1

β

) . (15)

Therefore, MGF for X ∼ BTGN(µ, σ, α, β)

MX(t) = etµMZ(tσ). (16)

5. BTGN Estimation Procedures

This section proposes estimation procedures for fitting finite mixtures and SAR times
series models based on the BTGN using ML and MPS estimation. The updated ML estima-
tion is well known, and we elaborate more on MPS estimators. MPS estimators are similar
to ML estimators, in that they are estimators of Kullback–Leibler divergence, consistent
estimators, and are at least as asymptotically efficient as ML estimators, where the latter ex-
ist [34]. The MPS method of parameter estimation was developed independently by [35,36].
The motivation for MPS estimation is based on the probability integral transform: that
any sample of independent and identically distributed observations should be uniformly
distributed and therefore uniformly “spaced” with respect to the distribution CDF from
which they were sampled. By maximizing the geometric mean of these spacings with
respect to the distribution parameters, MPS estimates are obtained.

5.1. ML Estimation

The log-likelihood (LL) for a random sample X1, X2, . . . , Xn from BTGN(µ, σ, α, β)
observations is

LL(µ, σ, α, β; x1, x2, . . . , xn) =

n

∑
i=1

(
ln

(
Γ

(
α

β
,
∣∣∣∣ xi − µ

σ

∣∣∣∣β
))
− ln(2) − ln(σ)− ln

(
Γ
(

α + 1
β

)))
(17)

using (8). The ML estimates are given as the solution of the parameters for the partial
derivatives of (17) set to zero. The derivatives with respect to individual terms inside the
sum of (17) are given in Appendix B.

5.2. MPS Estimation

For an ordered random sample x1 < x2 · · · < xn of size n from a distribution with
unknown parameters θ ∈ Θ and CDF F(x; θ). The sample spacings are given by:

Di(θ) = F(xi; θ)− F(xi−1; θ), (18)
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where x0 = −∞, xn+1 = ∞ for i = 1, 2, . . . , n + 1. The MPS estimates of θ is defined as a
value that maximizes the logarithm of the geometric mean of sample spacings:

θ̂ = arg max
θ∈Θ

ln n+1
√

D1D2 · · ·Dn+1 =
1

n + 1

n+1

∑
i=1

ln Di(θ) ∝
n+1

∑
i=1

ln Di(θ) (19)

In situations where repeat observations are present, Equation (18) will lead to infinite
values in the logarithm of Equation (19). To counter this problem, [35] suggests using
density function of the distribution, Di(θ) = f (xi; θ) for values of i that are repeated. Next,
maximizing Equation (19) requires partial derivatives of the form

∂

∂θi

n+1

∑
i=1

ln Di(θ) =
n+1

∑
i=1

1
F(xi; θ)− F(xi−1; θ)

(
∂

∂θi
F(xi; θ)− ∂

∂θi
F(xi−1; θ)

)
(20)

for each θi ∈ θ. The partial derivatives in (20) are set to zero and solved analytically
or numerically to yield MPS estimates. In cases where repeat values are encountered,
the partial derivatives of the individual terms are equal to the LL derivatives. The partial
derivatives within the individual terms of (20) for the BTGN are given in Appendix B.

5.3. Fitting Mixtures of BTGN

Finite mixture models are helpful in situations where the data have more than one
sub-group, for which the sub-groups cannot be individually identified and separately
analyzed. Here, we outline the use of the BTGN in this context. The density function of a
k component finite mixture of body-tail generalized normal (FMBTGN) distributions is a
function of (8), as given below

f (x; θ) =
k

∑
i=1

πi f (x; θi) =
k

∑
i=1

πi

Γ
(

αi
βi

,
∣∣∣ x−µi

σi

∣∣∣βi
)

2σiΓ
(

αi+1
βi

) , (21)

where, θ =
{

θj = {πi, µi, σi, αi, βi}|i = 1, 2, . . . , k
}

, σi, αi, βi > 0 ∀i, and ∑k
i=1 πi = 1. The LL

for a random sample X1, X2, . . . , Xn from a k component FMBTGN observations is

LL(θ; x1, x2, . . . , xn) =
n

∑
i=1

log( f (xi; θ)), (22)

where f (·) is given in (8). Due to the summation within the logarithm of (22), direct opti-
mization may be cumbersome. Therefore we follow a modified expectation maximization
(EM) algorithm based on [37]. In order to use the EM algorithm, an unobserved indicator
variable

Zij =

{
1 if the ith observation belongs to the jth component
0 otherwise

(23)

is introduced into (22) to replace the mixing proportion. Then the conditional expectation
to be maximized is

E(LL|Z, θ) =
n

∑
i=1

k

∑
j=1

γij log(πi) +
n

∑
i=1

k

∑
j=1

γij log( f (xi; θj)). (24)

The expectation step equation is

γij =
πj f (xi; θj)

∑k
j=1 πj f (xj; θj)

, (25)
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and the maximization step equations are:

πj =
1
n

n

∑
i=1

γij (26)

n

∑
i=1

γij
β j|zi|αj−1e−|zi |

βj

σjΓ
(

αj
β j

, |zi|β j
) sign(zi) = 0 (27)

n

∑
i=1

γij
β j|zi|αj e−|zi |

βj

σjΓ
(

αj
β j

, |zi|β j
) − 1

σj
= 0 (28)

n

∑
i=1

γij ln(|zi|)−
1
β j

ψ

(
αj + 1

β j

)
+

A
(

αj
β j

, |zi|β j
)

β jΓ
(

αj
β j

, |zi|β j
) = 0 (29)

n

∑
i=1
−γij ln(|zi|)

 αj

β j
+
|zi|αj e−|zi |

βj

Γ
(

αj
β j

, |zi|β j
)
+

α + 1
β2 ψ

(
α + 1

β

)
−

αj

β2
j

A
(

αj
β j

, |zi|β j
)

Γ
(

αj
β j

, |zi|β j
) = 0 (30)

with A(u, v) = G3,0
2,3

(
v

∣∣∣∣∣ 1, 1

0, 0, u

)
, and zi =

xi − µ

σj
. (31)

It is clear that (24)–(28) are weighted functions of (A5)–(A8) in Appendix B. For a
detailed guide to implementing the EM algorithm, see [38,39]. The normal approach to im-
plementing the EM for optimization would consist of an estimation step and a maximization
step, which is iteratively used to update the parameters until convergence. The modified
EM used for fitting k component FMBTGN works by updating the location and scale
parameters separately from the shape parameters, as described in the Algorithm A1 in
Appendix C . Similar to most EM-based algorithms, the final estimates are sensitive to
initial starting values and provide a local optimum [40]. Since the normal distribution is a
special case of the BTGN, a fitted finite k component mixture of normal can serve as initial
values of µi and σi with αi, βi = 2.

5.4. Fitting SAR Models

Seasonality and autoregressive innovations are commonly observed in many time
series data. Here, we outline a simple model using the BTGN in this context. A basic
autoregressive model of order p defines the process Yt with a linear combination of p
lagged terms as

yt = φ0 + φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p + zt, (32)

for time intervals of t = 1, 2, ... , where φ0, φ1, φ2, · · · , φp are AR parameters, and zt is white
noise with scale and shape parameters, θ, respectively. Additionally, the process mean is
given by µ∗ = φ0(φ1 + φ2 + · · ·+ φp)−1 and for stationary AR processes, the roots of the
characteristic equation

φ(x) = 1− φ1x + φ2x2 + · · ·+ φpxp (33)

are all greater than one [41]. The adjustment for seasonality is done by the addition of sine-
cosine pairs for a cyclical adjustment of the process mean for seasonal cycles of frequencies
f j for j = 1, 2, . . . , k as

yt = φ0 +
p

∑
i=1

φiyt−i +
k

∑
j=1

ψ1sin(2π f j) + ψ2jcos(2π f j) + zt. (34)
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This process is denoted as S( f1, . . . , fk) · AR(P) from here on. The joint density
function of Y1, Y2, . . . , Yp is intractable since these random variables are linear combinations
of each other. However, the joint density function can be approximated by the conditional
joint density function of Yt

f (yt; y1, y2, . . . , yp, θ) =
n

∏
t=p+1

f (z∗t ; θ) (35)

z∗t = yt − φ0 − φ1yt−1 − φ2yt−2 − · · · − φpyt−p −
k

∑
j=1

ψ1sin(2π f j) + ψ2jcos(2π f j) (36)

where θ is the scale and shape parameters of the white nose. The conditional ML estimates
are given by maximizing the log of (35). Similarly, the conditional MPS estimates are
given by

Θ̂ = arg max
φ0,φ1,...,θ

n+1

∑
i=p−1

ln(Di(z∗i ; θ)), (37)

where z∗p−1 = −∞, z∗n+1 = ∞, Di(z∗i ; θ) is defined by (18), and z∗i the ordered values of (36).
The model estimates are then found as explained in Section 5.2.

6. Application

In this section, the BTGN is used in a real-world application, showing the need for
flexible distributions and the benefits they have to existing fields of study. The evalu-
ation of fit is done by computing both in-sample and out-of-sample validation metrics.
The in-sample statistics are Akaike information criterion (AICin) and Bayesian information
criterion (BICin), and it is computed on the subset of data used for estimation. The out-of-
sample validation is the LLos computed a subset of data excluded from estimation. This
ensures robust goodness of fit analysis and prevents the overfitting of the final models.
Overall, we illustrate the wide applicability of the BTGN in a variety of applications by
the use of different competitor distributions and estimation techniques in each data model-
ing situation. All applications are implemented using packages NumPy [42], Scipy [43],
and mpmath [44] in Python. All the above is applicable unless stated otherwise.

6.1. Financial Risk Management and Portfolio Selection

Flexible modeling is particularly relevant to risk management and portfolio selection
when modeling stock prices and asset returns. Many empirical studies have shown and
cautioned using the normal distribution to determine risk factors in these areas, see [45,46].
The main criticisms are symmetry and thin tails [47]. The former is not necessarily a
limitation [48], and the latter is considered more harmful. Therefore, numerous alternative
distributions have been suggested, such as the α-stable sub-Gaussian (ASSG) distribu-
tions [49], GHYP, and sub-models of the latter such as the HYP, normal inverse Gaussian
(NIG), variance Gamma (VG), and t distribution [50]. The ASSG is so heavy-tailed that
the second moment is infinite, inconsistent with empirical findings [47]. Many theoretical
models in finance require the existence of this moment [51]. When using the t distribution,
the estimated degrees of freedom may be so low that either the second or fourth moment
may not exist. The GHYP is a very impressive distribution with high flexibility and various
sub-models. However, the density function of the GHYP is very complicated, with many
different parametrizations, see (38). Up to four parametrizations with limited interpreta-
tions are discussed by [52] alone. The BTGN can be considered an improvement by having
finite moments (11), a simple density function, and interpretable parameters. Validating
the empirical usefulness of the BTGN, we compare the performance of BTGN with the
symmetric versions of the GHYP, NIG, VG, t, and GN distributions on real financial data.
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Stock Returns Data

The data consist of daily log-returns for the shares of three companies listed on the
NASDAQ, each in different market sectors. The companies are CASI Pharmaceuticals,
Inc. (CASI), iShares S&P (ISHG), and Partner Communications Company Ltd. (PTNR).
The period for the data is 4 January 2016 to 31 December 2020, available online http://
finance.yahoo.com, accessed 20 September 2021. In Table 1, the summary statistics and the
Jarque–Bera test statistics for normality are given for each stock. It is observed that all the
series are leptokurtic, and the Jarque–Bera statistic confirms the departure from normality
at a 1% significance level. The returns distributions are fitted using ML estimation, and the
ghyp package in R [53] with the simplifying assumption of independence of observations.
For the validation of results, we use the in-sample criterion computed on the entire sample
and an extra verification with out-of-sample LL calculated on the last 20% of the data time
range, which was excluded during estimation.

Table 1. Summary statistics for log-returns data.

Stock Min Max Median Mean Std Pearson
Skewness

Peasrson
Kurtosis

Jarque–Bera
Test

CASI −0.291 0.390 0.000 0.001 0.051 0.997 12.085 4538.31 (<0.001)
ISHG −0.018 0.018 0.000 0.000 0.004 0.041 4.496 117.17 (<0.001)
PTNR −0.162 0.142 0.000 0.000 0.029 0.232 5.549 349.62 (<0.001)

6.2. Returns Distributions

The competing models against the BTGN are the GHYP and nested models. The den-
sity function of the GHYP is given as

f (x|λ, α, β, δ, µ) = α(λ, α, β, δ, µ)[δ2 + (x− µ)2](λ−
1
2 )/2

×Kλ−1/2(α
√

δ2 + (x− µ)2 exp[β(x− µ)] (38)

with α(λ, α, β, δ, µ) = (α2 − β2)λ/2/
[√

2παλ−1/2δλKλ

(
δ
√

α2 − β2
)]

,

where Kλ is the modified Bessel function of the third kind and x ∈ R. The domains of
variation of the parameters are µ, α ∈ R, and

δ ≥ 0, |β| < α i f λ > 0,

δ > 0, |β| < α i f λ = 0, (39)

δ > 0, |β| ≤ α i f λ < 0.

The fourth, (ᾱ, β̄), parametrization from [52] is used, where ᾱ = αδ and β̄ = βδ.
Note, that we fix β̄ = 0 for symmetric distributions. If X follows a distribution such
as (38), we write X ∼ GHYP(λ, α, β, δ, µ). Then, the nested models are given by X ∼
GHYP(1, α, β, δ, µ) as the HYP distribution, X ∼ GHYP(−1/2, α, β, δ, µ) as the NIG distri-
bution, X ∼ GHYP(λ, α, β, 0, µ) as the VG distribution, and X ∼ GHYP(−ν/2, 0, 0,

√
ν, µ)

as the t distribution.

6.3. Results

In Table 2, the in-sample criterion, out-of-sample LL, and fitted ML estimates are
given. The AICin and BICin are the lowest for the BTGN, and the LLos is the highest for
the BTGN distribution. It can therefore be concluded that the BTGN distribution fits best.
Interpreting the BTGN body parameters, the values of α < 2 show that all the body shapes
are “sharper" than normal. Interpreting the BTGN tail parameters, the values of β > α
show that all the tail shapes are thinner than a fixed GN body shape α would accommodate.
The departure from the normal distributional shape is also evident in Figure 7, where the

http://finance.yahoo.com
http://finance.yahoo.com
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fitted BTGN density functions are shown. Finally, comparing the BTGN to the fitted t
distributions, for the ISHG stock, the second and higher moments are infinite, and for the
CASI stock, the fourth moment is infinite, which will not be the case for the BTGN.

Table 2. Table of distributions fitted to log-returns data with in-sample criterion and out-of-sample log-likelihood (LL).

AICin BICin LLos µ σ λ/α ᾱ/β/ν

CASI

GHYP −3526.1490 −3506.4427 389.5723 −0.0019 0.0507 −0.7319 0.2987
HYP −3513.0744 −3498.2946 391.0317 −0.0000 0.0463 1.0000 0.0000
NIG −3527.8463 −3513.0666 389.6385 −0.0018 0.0503 −0.5000 0.3328
VG −3537.4194 −3522.6397 393.9111 0.0000 0.0524 0.7514 0.0000

t −3525.0400 −3510.2603 388.9277 −0.0019 0.0628 2.4891
GN −3537.7965 −3523.0168 389.8658 −0.0000 0.0188 0.7380 0.7380

BTGN −3733.5650 −3713.8587 417.4258 0.0000 0.1197 0.0476 1.8205

ISHG

GHYP −8352.2902 −8332.6115 980.9677 0.0000 0.0040 1.7862 0.0035
HYP −8352.0322 −8337.2731 979.6594 0.0000 0.0040 1.0000 1.1338
NIG −8350.0107 −8335.2516 978.4966 0.0000 0.0040 −0.5000 1.6525
VG −8354.2905 −8339.5315 980.9588 0.0000 0.0040 1.7864 0.0000

t −8346.3409 −8331.5818 977.3430 0.0000 0.0040 6.1793
GN −8357.9349 −8343.1759 982.0069 0.0000 0.0040 1.2773 1.2773

BTGN −8514.4274 −8494.7486 1043.9415 0.0000 0.0107 0.0182 2.6180

PTNR

GHYP −4516.8499 −4497.1791 440.9224 −0.0002 0.0273 1.1520 0.0004
HYP −4518.5882 −4503.8350 442.7398 −0.0000 0.0277 1.0000 0.0000
NIG −4509.7401 −4494.9870 437.6985 −0.0009 0.0272 −0.5000 0.9663
VG −4518.8500 −4504.0969 440.9128 −0.0002 0.0273 1.1509 0.0000

t −4504.1213 −4489.3682 436.0415 −0.0009 0.0277 4.4203
GN −4520.5684 −4505.8153 440.6156 −0.0000 0.0221 1.0964 1.0964

BTGN −4576.0918 −4556.4209 448.4033 −0.0000 0.0460 0.0001 1.4249

Figure 7. Fitted BTGN density functions to log-returns data.

7. Wind Energy

In the sector of renewable energy generation, wind energy has seen remarkable growth.
Annual wind energy generation grew by 2,477,646% from 1985 to 2020, with a current
all-time high of 1591.2 Terra-watt hours in 2020 [54]. The cost of wind energy has also
decreased dramatically, with some estimates of global weighted average levelized cost
of electricity reducing by 88% from $0.40 to $0.05 in 2016 $/kilowatt-hour [54]. Keeping
in mind the pressure mounting from the Intergovernmental Panel on Climate Change on
governments to take immediate steps to blunt the catastrophic impacts of global warming,
we expect this field of study to be relevant in the foreseeable future. The wind energy
application consists of basic short and long-run model analyzes for the initial investigation
into the wind distribution at a particular site. This is for the daily operations of a wind
farm, as well as the suitability of a site for a wind farm. We fit a SAR time series model for
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hourly wind speed data readings and a two-component finite mixture to make inferences
of the annual available wind energy.

7.1. Wind Speed and Power Distributions

The distribution of wind speed W determines the amount of energy available at a
particular site. The power distribution E is a cubic function of the wind speed

E =
P
A

=
1
2

ρW3, (40)

where ρ is the density of air and A is the sweep area of the wind turbine ([55], p. 6).
The expected wind energy is thus dependent on the third moment of the wind speed
distribution. The estimated (expected) power of a site is thus very sensitive to the fitted
distribution because of this cubic relationship, making it an ideal application of a more
flexible model. The most common and comparable industry models are the normal and log-
normal distributions [56], since they are both based on symmetric uni-modal distributions.
The short-run wind speed distribution will be modeled by a SAR model using different
comparable white noise distributions. For the long-run (annual) wind speed distribution,
we use two-component mixtures on the log of the wind speed data. This is done because it
is common for a particular wind site to have two different wind climates for summer and
winter ([55], p. 16), [56].

7.2. Wind Speed Data

The data consist of hourly one minute average wind speed measurements in m/s from
the University of Stellenbosch located at latitude: −33.92810059, longitude: 18.86540031
in South Africa available online https://sauran.ac.za, accessed 1 August 2021. The Cape
province has four wind farms in the area around Cape Town and Stellenbosch, see
https://sawea.org.za/wind-map, accessed 1 August 2021. The data date ranges for two
years, from 1 January 2017 to 1 January 2021. In Table 3, the summary statistics of the
annual wind data are given, which is relevant to the long-run application. In Figure 8, a
depiction of the hourly minute average readings is given in a time plot, and the correlation
structure is depicted by the autocorrelation function (ACF) and partial autocorrelation
function (PACF) for the short-run application.

Table 3. Summary statistics for annual wind data.

Min Max Median Mean Std Pearson
Skewness

Pearson
Kurtosis

0.020 2.000 11.960 2.434 1.804 1.007 3.707

7.3. Short-Run Wind Speed Model

The process in question is hourly wind speed measurements in m/s for the time period
1 January 2018 to 1 June 2018. In Figure 8, two important phenomena are observed. In the
autocorrelation function (ACF), a strong 24-h seasonality is shown, and in the PACF, the first
two lags are most significant. Therefore, we proceed in fitting an S(1/24) · AR(2) model
using different white noise and MPS estimation, with repeat measurements described in
Section 5.4. The out-of-sample subset is taken as the last 25% of data time range excluded
during estimation.

https://sauran.ac.za
https://sawea.org.za/wind-map
https://sawea.org.za/wind-map
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Figure 8. Timeplot, autocorrelation function (ACF), partial autocorrelation function (PACF) of hourly
wind speed measurements in Stellenbosch.

7.3.1. White Noise Distributions

The comparative white noise zt for the S(1/24) · AR(2) model is chosen as the normal
and GN distribution, since it is a nested model of the BTGN. Since these comparative
models do not have separate control of their body and tail shape, it can be shown that this
additional control is useful for the application.

7.3.2. Results

The in-sample criterion, out-of-sample LL, and fitted MPS estimates are tabulated in
Table 4. The AICin and BICin are the lowest for the BTGN, and the LLos is the highest for
the model using BTGN white noise. It can therefore be concluded that the BTGN model
fits best. In general, the data are more heavy-tailed than what the normal distribution can
accommodate, as can be seen from both the GN and BTGN tail shape β < 2. However,
a “flatter” than normal body shape has been fitted using the BTGN since α > 2, which
the GN can not achieve with a fixed body shape. In Figure 9, the residuals for the fitted
S(1/24) · AR(2) model are shown. In the histogram, the “flatter” than normal body is
evident, as well as some possible skewness for which a symmetric BTGN can not account.
From the ACF and PACF, there are very slight auto and partial autocorrelations remaining.
For parsimony and practical purposes, additional parameters are not considered.

Table 4. Fitted S(1/24) · AR(2) models with in-sample criterion and out-of-sample LL.

AICin BICin LLos φ0 φ1 φ2 ψ11 ψ12 σ α β

N 10,167.3 10,202.7 −4306.268 0.728 0.485 0.248 −0.400 0.103 1.317 2 2
GN 9518.66 9560.01 −4267.310 0.730 0.459 0.254 −0.501 −0.279 1.278 1.475 1.475

BTGN 9509.72 9556.98 −4218.535 0.625 0.491 0.263 −0.439 −0.197 1.287 6.890 0.466



Mathematics 2021, 9, 2648 16 of 22

Figure 9. Timeplot, ACF, and PACF of residuals for fitted seasonally adjusted autoregressive model.

7.4. Long-Run Wind Speed Model

The data in question are the full data set of hourly wind speed measurements. Two-
component finite mixtures are fitted to the log of the data using the EM and modified EM
Algorithm A1 in a two-step process. The initial estimation is done on the full data with
the computation of the in-sample criteria. Thereafter, a ten-fold cross-validation approach
is used on the full set of data. That is, for each randomly selected fold, a two-component
mixture is fitted, and the LL is calculated on the unseen folds (out-of-sample data).

7.4.1. Two-Component Mixture Distributions

The comparative distributions for the finite mixture model are the log-normal and the
log-tail-inflated normal. The tail-inflated normal (TIN) is a recent elliptical generalization
of the multivariate normal distribution with a tail inflation parameter that specifically
inflates the tail of the distribution [57]. For the purposes of our data, the dimension d = 1
is used in the equations of the multivariate TIN. The different mixture distribution density
functions are given below.

The two-component finite mixture of log-normal (FMLN):

f (w; πi, µi, σi|i = 1, 2) =
2

∑
i=1

πi
1

σi
√

2πw
e
−
(

ln(w)−µi√
2σi

)2

, (41)

where σi > 0, and π1 + π2 = 1.
The two-component finite mixture of log-TIN (FMLTIN):

f (w; πi, µi, σi, αi|i = 1, 2) =

2

∑
i=1

πi

2
∣∣∣ ln(w)−µi

σi

∣∣∣−3

αiσ
√

πw

(
Γ

(
3
2

,
1− αi

2

(
ln(w)− µi

σi

)2
)
− Γ

(
3
2

,
1
2

(
ln(w)− µi

σi

)2
))

(42)

where σi > 0, 0 < αi < 1, and π1 + π2 = 1.
The two-component finite mixture of log-BTGN (FMLBTGN):

f (w; πi, µi, σi, αi, βi|i = 1, 2) =
2

∑
i=1

πi

Γ
(

αi
βi

,
∣∣∣ ln(w)−µi

σi

∣∣∣βi
)

2σiΓ
(

αi+1
βi

)
w

(43)
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σi, αi, βi > 0, and π1 +π2 = 1. From (15) and (16), the moments of the FMLBTGN represent
a linear combination of BTGN MGFs

E(Wr) =
2

∑
i=1

πierµi
∞

∑
j=0

(σir)2jΓ
(

αi+2j+1
βi

)
(2j + 1)!Γ

(
αi+1

βi

) . (44)

7.4.2. Results

The in-sample criterion, average L̄Lcv, and average fitted fold estimates are tabulated
in Table 5. The AICin and BICin (divided by n for easier comparison) are the lowest for the
FMLBTGN, and the LLos is the highest for the FMLBTGN. It can therefore be concluded
that the FMLBTGN model fits best. Visually comparing the fitted density functions shown
in Figure 10, the FMLBTGN confirms the latter conclusion by providing the closest fit.
The FMLTIN performed the worst of the finite mixtures with the lowest L̄Lcv and visual
fit to the data. The FMLTIN has two drawbacks compared to the FMLBTGN; it can only
inflate the tail of the distribution and not deflate, and it cannot separately control the body
shape of the distribution. The location, scale, and mixing proportions of the FMLN are
very similar to those of the FMLBTGN, showing that the FMLBTGN mostly adjusted body
and tail shapes to fit the data. Focusing on FMLBTGN, the first component has a “sharper”
than normal body α1 < 2 and lighter than normal tails of β1 > 2. The second component
has a “flatter” body shape α2 > 2 and lighter than normal tails β2 > 2, respectively.

Figure 10. Histogram of hourly wind speed measurements and fitted finite mixture density functions.

Table 5. Fitted two-component mixture distributions, in-sample criterion, and cross-validated LL.

AICin BICin L̄Lcv i π̄i µ̄i σ̄i ᾱi β̄i

FMLN 3.66815 3.66836 −310,551.382 1 0.216 −0.668 1.116 2 2.0
2 0.784 0.862 0.636 2 2.0

FMLTIN 3.78236 3.78264 −319,375.068 1 0.840 0.364 1.064 0.874 ·
2 0.160 1.344 0.271 0.996 ·

FMLBTGN 3.63631 3.63666 −308,022.209 1 0.199 −0.839 1.066 1.022 2.173
2 0.801 0.867 0.620 3.204 3.335

The main shortcoming of the FMLBTGN fit is that the log wind data are skewed
more than the mixture can account for. This is evident with the mode of the FMLBTGN
not matching the mode of the histogram. The addition of a skewness parameter would
complement the analysis by taking into account and highlighting the fundamental skew
nature of the skew log-wind speed data tying back to the desirable traits, as outlined in
Section 1.
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7.5. Application Conclusion

The body and tail parameters of the BTGN have enhanced the capability of the normal
distribution to fit the data better in these three different data modeling situations. From the
overall results, it can be concluded that BTGN demonstrates a practical benefit to portfolio
selection, time series analysis, and finite component mixtures.

8. Conclusions

This paper outlines and motivates the derivative kernel integration method for gen-
erating distributions, while generalizing the normal and GN distributions. This method
produced an intuitive body-tail generalization of the normal distribution, with the follow-
ing desirable traits:

• a closed-form density function unlike the ASSG distribution (excluding the
Cauchy distribution);

• a single parameter governing body and tail shape unlike the majority of distributions
nested in the symmetric GHYP distribution;

• finite moments regardless of shape parameter selection differently from the t and
ASSG distributions;

• light and heavy-tailed kurtosis is achievable, unlike the TIN, GN, and t distributions;
• possess simple equations and tractability.

Derivations of important statistical quantities and equations are provided, such as
the density function, CDF, moments, MGF, ML, and MPS. Finally, the new properties of
the distribution are put to use on log-returns, time series, and finite mixture modeling
data, where the BTGN provides a valid alternative to popular distributions. The main
possibilities for future work include extending the BTGN to multivariate dimensions,
an addition of a skewness parameter, and tests for normality.
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Appendix A. Lemmas for Derivation of Statistical Quantities

Lemma A1. Let α, β > 0, then the following limit holds true below:

lim
x→∞

xkΓ
(

α

β
, xβ

)
= 0 for k ∈ R. (A1)
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Proof. If k ≤ 0 both factors on the left-hand side of (A1) tend to zero as x tends to infinity.
If k > 0, by L’Hospital rule

lim
x→∞

xkΓ
(

α

β
, xβ

)
= lim

x→∞

xα+β+k−1

exβ
· β

k
(A2)

Lemma A2. Let α, β > 0, then the following integral identity holds true

∫ ∞

x
trΓ
(

α

β
, xβ

)
dt =

Γ
(

α+r+1
β , xβ

)
− xr+1Γ

(
α
β , xβ

)
r + 1

. (A3)

Proof. Let y = tβ, which implies t = y
1
β . Integrating by parts, where v′(y) = r+1

β y
r+1

β −1

and u(y) = Γ(α/β, y). The latter implies that v(y) = y
r+1

β and u′(y) = −y
α
β−1e−y. The in-

tegral is evaluated as

∫ ∞

x
trΓ
(

α/β, tβ
)

dt = (r + 1)−1 y
r+1

β Γ(α/β, y)
∣∣∣∣∞
xβ
− (r + 1)−1

∫ ∞

xβ
y

r+1
β ·
(
−y

α
β−1e−y

)
dy. (A4)

Noting from Lemma A1 that lim
x→∞

y
r+1

β Γ(α/β, y) = 0 the result follows.

Appendix B. Derivatives for Estimation

The derivatives of the LL function with respect to individual terms inside the sum
of (17) are given below:

dLLi
dµ

= sign(zi)
β

σ

|zi|α−1e−|zi |β

Γ
(

α
β , |zi|β

) (A5)

dLLi
dσ

=
β

σ

|zi|αe−|zi |β

Γ
(

α
β , |zi|β

) − 1
σ

(A6)

dLLi
dα

= ln(|zi|)−
1
β

ψ

(
α + 1

β

)
+

A
(

α
β , |zi|β

)
βΓ
(

α
β , |zi|β

) (A7)

dLLi
dβ

= − ln(|zi|)

 α

β
+
|zi|αe−|zi |β

Γ
(

α
β , |zi|β

)
+

α + 1
β2 ψ

(
α + 1

β

)
− α

β2

A
(

α
β , |zi|β

)
Γ
(

α
β , |zi|β

) (A8)

with A(u, v) = G3,0
2,3

(
v

∣∣∣∣∣ 1, 1

0, 0, u

)
(A9)

where zi = xi−µ
σ , ψ(·) is the digamma function ([32], p. 902), and G··(·|·) the Meijer’s

G-function ([32], p. 850).
The derivatives of CDF with respect to individual terms for use inside the sum of (20)

are given below:
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∂F(z; µ, σ, α, β)

∂µ
= − f (z; α, β)

σ
(A10)

∂F(z; µ, σ, α, β)

∂σ
= − z f (z; α, β)

σ
(A11)

∂F(z; µ, σ, α, β)

∂α
= −sign(z)

ψ1

(
α+1

β , |z|β
)
− |z| ψ1

(
α
β , |z|β

)
2βΓ

(
α+1

β

) (A12)

− sign(z)
ψ
(

α+1
β

)(
Γ
(

α+1
β , |z|β

)
− |z|Γ

(
α
β , |z|β

))
2βΓ

(
α+1

β

) (A13)

∂F(z; µ, σ, α, β)

∂β
=
−sign(z)

2Γ
(

α+1
β

)[ ψ3

(
α + 1

β
, |z|β, β

)
− |z| ψ3

(
α

β
, |z|β, β

)

+
α + 1

β2 ψ

(
α + 1

β

)(
Γ
(

α + 1
β

, |z|β
)
− |z|Γ

(
α

β
, |z|β

))]
(A14)

where ψ1(u, v) = Γ(u, v) ln v + A(u, v),

ψ2(u, v) = vu−ae−v,

ψ3(u, v, w) = ψ1(u, v)
∂

∂w
u + ψ2(u, v)

∂

∂w
v,

and A(u, v) = G3,0
2,3

(
v

∣∣∣∣∣ 1, 1

0, 0, u

)

where z = x−µ
σ , and G··(·|·) the Meijer’s G-function ([32], p. 850).

Appendix C. Modified Expectation Maximization Algorithm

Algorithm A1 Modified EM algorithm for k component FMBTGN

1: Initialize parameters θ
2: Set εouter > εtol Preferred outer error (convergence) metric and tolerance
3: while εouter > εtol do
4: Set εinner > εtol Initialize location and scale inner loop error
5: while εinner > εtol do
6: Calculate weights (25) Location and scale EM steps
7: Update πj ∀j using (29)
8: Update µj, σj by solving (30,31) numerically ∀j
9: Update εinner Break upon location and scale convergence

10: end while
11: Set εinner > εtol Initialize shape inner loop error
12: while εinner > εtol do
13: Calculate weights (25) Shape EM steps
14: Update πj ∀j using (29)
15: Update α̂j, β̂ j by solving (32,33) numerically ∀j
16: Update εinner Break upon shape convergence
17: end while
18: Update εouter Break upon convergence of all parameters
19: end while
20: end
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