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Abstract: Non-negative continuous outcomes with a substantial number of zero values and incom-
plete longitudinal follow-up are quite common in medical costs data. It is thus critical to incorporate
the potential dependence of survival status and longitudinal medical costs in joint modeling, where
censorship is death-related. Despite the wide use of conventional two-part joint models (CTJMs) to
capture zero-inflation, they are limited to conditional interpretations of the regression coefficients in
the model’s continuous part. In this paper, we propose a marginalized two-part joint model (MTJM)
to jointly analyze semi-continuous longitudinal costs data and survival data. We compare it to the
conventional two-part joint model (CTJM) for handling marginal inferences about covariate effects
on average costs. We conducted a series of simulation studies to evaluate the superior performance
of the proposed MTJM over the CTJM. To illustrate the applicability of the MTJM, we applied the
model to a set of real electronic health record (EHR) data recently collected in Iran. We found that
the MTJM yielded a smaller standard error, root-mean-square error of estimates, and AIC value,
with unbiased parameter estimates. With this MTJM, we identified a significant positive correlation
between costs and survival, which was consistent with the simulation results.

Keywords: zero-inflated; right-skewed; semi-continuous; conventional two-part joint model; marginal-
ized two-part joint model; proportional hazards model; medical costs data

1. Introduction

In many medical studies, the measurement of the primary outcome may be via a
semi-continuous random variable that combines a continuous distribution with point
masses at one or more locations [1]. A particular type of semi-continuous outcome is
characterized by a point mass at zero and positive values that usually follow a skewed
distribution [2]. Examples include alcohol use, driving-simulator-based research, annual
medical costs, etc. [3–5]. For instance, in medical-insurance-based economic applications,
medical costs typically include a large number of zero values representing a population of
“non-users” who do not benefit from the medical care system in a given time interval, and
a continuous distribution representing the cost levels of those who do receive care [6,7].

Two-part models are often used to analyze such semi-continuous data. These models
consist of two separate model parts, with part I to model the zero values and part II to
model the continuous values. In fact, some researchers have shown an increased interest
in analyzing the semi-continuous outcomes by modeling the discrete zero component
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separately from the nonzero continuous component [4]. More recently, accommodating
longitudinal data has necessitated the extension of these two-part models, with researchers
jointly modeling these two outcomes for valid and efficient inference. It has been sug-
gested that ignoring the potential dependency between the components can lead to biased
results [2,5,8].

Although still extensively used, the conventional two-part models (CTMs) for captur-
ing zero-inflation are limited to conditional interpretations of the regression coefficients
in the model’s continuous part. Expressly, they exclude zero values from the second
component, and they only provide inferences on the subpopulation of those with positive
outcomes. When doing so, a generalization of the results for the effects of covariates that are
included in the continuous part of model is only applicable to “users” (e.g., those positive
values). Marginal inferences on the populations of health care users and non-users cannot
be easily obtained using the conventional two-part model [7]. Moreover, in longitudinal
studies, the population of health care users is not fixed over time, whereas the inferences
from conventional two-part models are made based on a fixed population [9].

To enhance such marginal inferences, marginalized two-part (MTP) models are prefer-
able for longitudinal semi-continuous data [7]; they yield more interpretable estimates
when the primary focus is to estimate covariate effects on the average costs across the
entire population of both users and non-users. These models retain many of the most
significant features of conventional two-part models, such as capturing zero-inflation and
skewness. Still, they allow investigators to examine covariate effects on the overall mean—
one of the primary targets in many applications [7,9]. Numerous studies have attempted
to explain the importance of using marginalized two-part models to accurately model
semi-continuous data from complex surveys [4,10,11]. Thus far, this method has not been
applied to joint models of longitudinal and survival data, which is the aim of this paper.

Moreover, in health economics studies, patients are monitored longitudinally, and
their medical costs are gathered until death or incomplete follow-up occurs. Particularly,
this terminal event changes the repeated measures process afterward [12]. For example,
death precludes further accumulation of medical costs—therefore, the repeated measures
of medical costs (e.g., monthly medical costs) are zero after death [13]. In such cases,
the repeated measures and time-to-event outcomes are not independent. Ignoring this
possible correlation can result in biased parameter estimates and inefficient statistical
inference [13,14]. In a variety of public health applications, the joint modeling of these two
processes is a useful tool for considering the possible correlation between the longitudinal
and survival outcomes [15,16].

Added to this correlation, as mentioned previously, the distribution of medical costs
data is generally right-skewed, and includes a substantial number of zero values. An
appropriate model, therefore, must take all of these aspects into consideration [17]. Liu et al.,
and Xu et al., proposed two-part joint models of these semi-continuous data. However,
they used a CTP model for the longitudinal part, so they did not obtain the marginal
inference for the continuous part of the models for the longitudinal part [13,14]. However,
there have been no studies that join MTP and survival models. In this paper, we propose a
new extension of a marginalized two-part model for a joint analysis of longitudinal and
survival data that accounts for the semi-continuous nature of longitudinal medical costs
data. This new method readily allows investigators to obtain marginal inferences for the
entire population of heath care users and non-users. Considering that there is no closed
form of the likelihood function, we use approximate maximum likelihood estimation with
the Gaussian–Hermite quadrature method to make statistical inferences based on the new
model. The analysis of medical costs data lies at the core of our motivation for attempting
to conduct this study. Since these data are often highly skewed to the right, with a large
proportion of patients having zero costs, together with censoring due to lack of follow-up
or death, the distributional features of such medical costs data make modeling challenging
from a methodological standpoint.
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The remainder of this paper is arranged as follows: Section 2 briefly reviews the
conventional two-part model for the joint analysis of longitudinal semi-continuous data
and survival data, along with the new marginalized two-part joint model. A series of
simulation studies is presented in Section 3 to investigate the performance of the proposed
marginalized two-part joint model (MTJM). In addition, Section 3 presents an application
of this new MTJM to electronic health record (EHR) data in Iran. Finally, Discussions are
provided in Section 4 and conclusions in Section 5.

2. Materials and Methods

In this section, we describe the methods in detail.

2.1. Conventional Two-Part Model for Joint Analysis of Longitudinal Semi-Continuous Data and
Survival Data

Suppose that the monthly medical costs for the j-th observation of subject i (i =
1, 2, . . . , n) at time tij (j = 1, 2, . . . , ni) are denoted by Yij (i.e., semi-continuous repeated
measures), where n is the total number of subjects, and ni is the number of measurements
for the i-th subject. For each subject, consider a random censoring time Ci and a random
terminal event (death) time Di such that the repeated measures process is terminated
at τi = min(Ci, Di). Additionally, let ∆i = I(Di < Ci) denote an indicator variable,
and assume that the deaths and censoring times are both continuous and independent.
Moreover, let xij denote the vector of covariates corresponding to the repeated measure for
subject i at time j, and zit the vector of covariates corresponding to the terminal event for
subject i. Let λi(t) denote the hazard for the terminal event.

To specify the semi-continuous nature of Yij, consider two groups of subjects, with
group 1 for those with zero costs, and group 2 for those with positive costs. The probability
that a subject belongs to group 2, and the parameters associated with the level of costs to
some explanatory variables during repeated measurements, can be considered as common
random variables, denoted by ai, to capture the variability of subject effects. Since there
might be subject effects with regard to hazard rates, we consider common random variables,
denoted by bi, to capture the correlations between hazard rates and costs.

With these notations, the conventional two-part joint model (CTJM) proposed by
Liu et al. [14] can be defined as:

ηC
ij = logit

(
πij
)
= x′ijα

C + aC
i (1)

µij = E
(

log
(

Yij

∣∣∣Yij > 0, xij, aC
i , bC

i

))
= x′ijβ

C + δC
1 aC

i + bC
i (2)

λC
i (t) = λ0(t) exp

(
z′itγ

C + δC
2 aC

i + δC
3 bC

i

)
(3)

where πij = P(Yij > 0
∣∣xij, aC

i , tij < Di) is the probability that subject i has positive costs
at time tij, given all associated covariates, and µij is the logarithm of the costs for subject i.
Moreover, consider λ0(t) as the baseline hazard function for the terminal event. In addition,
αC, βC, γC, δC

1 , δC
2 , and δC

3 are unknown parameters. The subject-specific random effects

cC
i =

(
aC

i , bC
i
)
∼ N

(
0,
[

σ2
a σab

σab σ2
b

])
correlate the odds of having positive costs, the

level of positive costs, and the survival. As discussed in Liu et al. [14], more complicated
random effects—such as a random slope—can be easily incorporated into these equations
if necessary. In Equations (1) and (2), ηC

ij and µij can be considered only when a patient
is still alive. Naturally, the monthly medical costs after death are zero. In a recent study,
Rustand et al. [1] further developed this CTJM to analyze longitudinal semi-continuous
biomarkers and terminal events from metastatic colorectal cancer data.
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2.2. Marginalized Two-Part Joint Model for Longitudinal Semi-Continuous Data and Survival
Data

Extending the conventional two-part joint model (CTJM) proposed by Liu et al. [14]
and Rustand et al. [1], which has been widely used to jointly model semi-continuous data
and survival outcomes, we propose a more flexible marginalized two-part joint model
(MTJM) by using marginalized two-part (MTP) models instead of conventional two-part
(CTP) models for the longitudinal part. This newly proposed MTJM is also an extension of
the work of Smith et al. [9], where they considered only the marginalized two-part model
for longitudinal medical costs data, without considering the survival data (i.e., without
joint modeling).

2.2.1. Marginalized Two-Part Model for Longitudinal Semi-Continuous Data

The general form of the probability density functions (PDFs) for the CTP model [9] is
given by:

gCTP
(
yij
)
=

{
1− πij, i f yij = 0

πij f
(

yij; x′ijβ
C
)

, i f yij > 0
(4)

where the probability of observing a non-zero cost—i.e., πij—can be modeled using a logit
link:

ηC
ij = logit

(
πij
)
= x′ijα

C + aC
i

and the location parameter µij from the positive values can be modeled in the second part
of the CTP model assuming a log link:

µij = E
(

log
(

Yij

∣∣∣Yij > 0, xij, aC
i , bC

i

))
= x′ijβ

C + δC
1 aC

i + bC
i .

Under this parameterization, βC lacks a meaningful interpretation in many conditions.
Often, greater interest lies in estimating the effects of covariates on the marginal mean of
yij on the original scale for the overall population of users and non-users. For example,
investigators are interested in examining the association between treatment and average
costs among health care users and non-users. The conventional two-part model poses
challenges to the estimation of this effect [7,9,18,19]. Therefore, a flexible two-part model
remains necessary to accommodate dependence between components, while providing an
interpretable parameterization of the marginal mean in longitudinal studies.

Smith et al. [9] proposed a novel marginalized two-part (MTP) longitudinal model
in order to alleviate the limitations posed by the CTP model, directly parameterizing the
effect of covariates on the marginal mean of Yij.

The MTP model has the same two-part structure as the conventional model, but rather
than parameterizing the model in terms of µij—the log-scale location parameter of the
conditionally positive values—the model is parameterized in terms of νij = E

(
Yij
)
—the

overall mean from the combined population of users and non-users. Therefore, for the
MTP model, the general form of the PDF [9] can be written as:

gMTP
(
yij
)
=

{
1− πij, i f yij = 0

πij f
(

yij; x′ijβ
M
)

, i f yij > 0

The MTP model specifies the linear predictors:

ηM
ij = logit

(
πij
)
= x′ijα

M + aM
i

E
(

Yij

∣∣∣xij, aM
i , bM

i

)
= exp

(
x′ijβ

M + δM
1 aM

i + bM
i

)
= νij.

Under this parameterization, βM is estimated for the entire population, while βC is
conditional on Yij > 0.
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2.2.2. Parameter Estimation of the Marginalized Two-Part Joint Model (MTJM)

We extend the previously proposed model to accommodate longitudinal semi-continuous
and survival responses. We specify the general form of the marginalized two-part joint
model based on CTJM, as before:

ηM
ij = logit

(
πij
)
= x′ijα

M + aM
i , (5)

νij = E
(

Yij

∣∣∣xij, aM
i , bM

i

)
= exp

(
x′ijβ

M + δM
1 aM

i + bM
i

)
, (6)

λM
i (t) = λ0(t) exp

{
z′itγ

M + δM
2 aM

i + δM
3 bM

i

}
. (7)

The common random variables, denoted by aM
i and bM

i , capture the variability of
subject effects and the correlations between hazard rates and costs, respectively. It is impor-
tant to note that, with the MTJP model, the parameter βM in Equation (6) is interpreted
differently from the parameter βC in the CTJP model. In the CTJP model, the parameter βC

in Equation (2) is conditional on Yij > 0, which means that the parameter βC considers the
effect of covariates for the subpopulation with positive costs. However, in the MTJP model,
the parameter βM in Equation (6) is estimated for the whole population with positive costs
in the CTJP model, as well as the subpopulation with zero costs that is not included in the
CTJP model. Using the MTP model as parameterized, βM in Equation (6) is estimated for
the entire population, while βC in Equation (2) is conditional on Yij > 0. Using log-normal
distribution for f (.) in Equation (4), the overall marginal mean νij can be defined as:

νij = E
(

Yij

∣∣∣xij, aM
i , bM

i

)
= πij exp

(
µij + σ2/2

)
,

so

µij = E
(

log(Yij

∣∣∣Yij > 0, xij, aC
i , bC

i )
)
= ln

(
νij
)
− ln

(
πij
)
− σ2/2 = x′ijβ

M + δM
1 aM

i + bM
i − ln

(
πij
)
− σ2/2.

where σ is the shape parameter in log-normal distribution. With the model formulation
in MTJM, the likelihood for the ith subject is:

Li(ω) =
∫ ∫

exp
(

lA
i

)
exp

(
lB
i

)
exp

(
lC
i

)
p
(

cM
i

)
dcM

i ,

where ω is the vector of parameters including αM, βM, γM, δM
1 , δM

2 , and δM
3 , and p

(
cM

i
)

is the density function for cM
i =

(
aM

i , bM
i
)
∼ N

(
0,
[

σ2
a σab

σba σ2
b

])
. The first part of the

integral results from the odds of having positive costs, and constitutes part I of the two-
part model:

lA
i =

ni

∑
j=1

[
Iij log πij +

(
1− Iij

)
log
(
1− πij

)]
=

ni

∑
j=1

[
Iijη

M
ij + log

(
1− πij

)]
,

where Iij is 1 if Yij > 0, and 0 otherwise.
The amount of positive medical costs per month constitutes the second part:

lB
i =

ni

∑
j=1

Iij

{
− ln yij −

1
2

ln 2π + ln(σ)− 1
2σ2

(
ln yij − µij

)2
}

,

and the likelihood of death is:

lC
i = ∆i(log fi(t)) + (1− ∆i) log(si(t)),
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where
si(t) = exp

(
−λM

i (t)× t
)

,

fi(t) = λM
i (t) exp

(
−λM

i (t)× t
)

,

λM
i (t) = λ0(t) exp

{
z′itγ

M + δM
2 aM

i + δM
3 bM

i

}
.

There is no analytical solution to obtain parameter estimates. Therefore, we adopt an
adaptive Gaussian quadrature technique that can be implemented conveniently using the
SAS procedure NLMIXED (SAS Program in Appendices A and B). In many real-life appli-
cations, nonlinear models are required that allow the investigators to specify parameters to
the model individually and nonlinearly. For example, in some repeated measurements, it
is of interest to fit a model that simultaneously accounts for the overall nonlinear mean
structure as well as the variability between and within subjects. In this situation, nonlinear
mixed-effects models can be useful, and the fitting of nonlinear mixed-effects models
using the SAS procedure “PROC NLMIXED” can be the first choice. PROC NLMIXED
fits nonlinear mixed-effects models by numerically maximizing an approximation to the
marginal likelihood—that is, the likelihood integrated over the random effects [20,21].

3. Results

This section is divided into simulation study and real data study.

3.1. Simulation Study

In order to validate the proposed MTJM model, a simulation study was designed for
the proposed estimation procedure performance to be examined. Repeated measures (such
as monthly medical costs) are assumed for subject i = 1, . . . , n at the integer “time” (the
month, for example), j = 0, . . . , ni with the baseline of month 0. Data are simulated using
the following model:

ηM
ij = logit

(
πij
)
= αM

0 + x1ijα
M
1 + x2ijα

M
2 + aM

i

νij = exp
(

βM
0 + x1ijβ

M
1 + x2ijβ

M
2 + δ1aM

i + bM
i − log

(
πij
)
− σ2/2

)
λM

i (t) = exp
{

z1itγ
M
1 + z2itγ

M
2 + δM

2 aM
i + δM

3 bM
i

}
.

The first time-variant covariate x1ij = z1it is simulated from the Bernoulli (p = 0.5)
distribution, and the second time-variant covariate x2ij = z2it is simulated from a standard
normal distribution. The fixed-effects coefficients are set to αM′ = (14.4,−0.3, 1.6) and
βM′ = (5, 0.05, 1.1). These values, and the coding of the covariates, are obtained from the
literature [7]. Additionally, in order to compare the performance between the MTJM and
CTJM, we used simulation codes from previous works [13,14] for the CTJM. We take USD
1 as the monthly medical cost’s unit. We assume that the positive costs follow a log-normal
distribution with σ2 = 4. The hazard rate of subject i at time t follows an exponential
distribution E(λi(t)). The parameter γ is a vector of coefficient of covariates, and it is
assumed to be γM′ = (0.1,−1).

The independent censoring occurs from time 1 to time 4, with censoring probabilities
of 2% (at time 1), 3% (at time 2), 15% (at time 3), and 80% (at time 4). The follow-up of
repeated measures is not available after either death or independent censoring. The times
of censoring are set independently to the exponential distribution E(1).

Independent random intercepts ai and bi are considered in the model. We assume
that the random effects jointly follow a bivariate normal distribution with mean 0 and

variance–covariance matrix
(

cM
i =

[
σ2

a σab
σab σ2

b

])
, where σ2

a = σ2
b = 9 and σab = 0.0. We

set the coefficients δM
1 = 1, δM

2 = 2 and δM
3 = 3. Note that all three δs are positive, meaning
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that the chances in the odds of having positive costs, the level of costs, and death hazard
have a positive correlation.

We set the sample sizes to n = 250, 500, and 1000, and ran 100 replicates for ni = 4
timepoints for the two responses. We used the Gaussian quadrature method to fit the data
using five quadrature points. The SAS program containing the simulation study code is
provided in Appendix A for readers interested in replicating the simulation study. We fit
the MTJM and CTJM with r = σab = 0.0, 0.5, 0.8 to data generated under the MTJM with
r = σab = 0.0.

The bias, standard error, and root-mean-square error (RMSE) of the parameter esti-
mates are shown in Tables 1–3 for n = 250, 500, 1000, and r = σab = 0.0, 0.5, 0.8, respectively.
Figure 1 graphically illustrates the RMSE over all 100 runs with the MTJM compared to
the CTJM.

From Table 1, under n = 250, the estimates’ bias is generally close to zero. From
Figure 1, we can observe that the RMSE is smaller for larger correlations. The results
for these two methods are comparable under n = 250 for the three correlation schemes
considered. In addition, the results under n = 500 in Table 2 and n = 1000 in Table 3 are
similar to those under n = 250 in Table 1.

Overall, the simulation study demonstrated the superior performance of the MTJM
model compared to the CTJM model, and showed that the RMSE decreases as the number
of subjects increases; however, the model still demonstrates excellent performance with
small samples. We fit these two models to simulated data under an MTJM assumption,
so it is expected the MTJM model will outperform the CTJM model. Moreover, the two
models are structured differently, so the models should not be discriminated based only on
model comparison statistics. We also found that there exist negligible empirical biases for
the parameter estimates. The coverage probabilities of the confidence intervals are close to
the nominal level of 0.95 (the confidence interval coverage, therefore, is adequate).



Mathematics 2021, 9, 2603 8 of 20

Table 1. Simulation study: marginalized two-part joint model (MTJM) and conventional two-part joint model (CTJM) under n = 250.

r = 0.0 r = 0.5 r = 0.8
MTJM CTJM MTJM CTJM MTJM CTJMParameter True

Value Estimate S.E. RMSE Estimate S.E. RMSE Estimate S.E. RMSE Estimate S.E. RMSE Estimate S.E. RMSE Estimate S.E. RMSE
α0 14.4 14.4000 0.0001 0.0001 14.4003 0.0005 0.0007 14.4000 0.0001 0.0001 14.4003 0.0004 0.0005 14.4000 0.0001 0.0001 14.4001 0.0001 0.0002
α1 −0.3 −0.3007 0.0047 0.0048 −0.2965 0.0059 0.0069 −0.3001 0.0044 0.0047 −0.2962 0.0059 0.0070 −0.3007 0.0042 0.0044 −0.2975 0.0025 0.0035
α2 1.6 1.6000 0.0003 0.0003 1.6009 0.0023 0.0024 1.6000 0.0003 0.0003 1.6008 0.0019 0.0021 1.6000 0.0003 0.0003 1.5999 0.0001 0.0001
β0 5 5.0000 0.0001 0.0001 4.9963 0.0054 0.0065 5.0000 0.0001 0.0001 4.9967 0.0045 0.0056 5.0000 0.0001 0.0001 4.9986 0.0014 0.0025
β1 0.05 0.0496 0.0038 0.0038 0.0240 0.0066 0.0269 0.0494 0.0031 0.0038 0.0241 0.0066 0.0261 0.0496 0.0033 0.0032 0.0225 0.0029 0.0276
β2 1.1 1.0999 0.0004 0.0004 1.0960 0.0075 0.0084 1.1000 0.0004 0.0003 1.0967 0.0065 0.0070 1.1000 0.0004 0.0004 1.0992 0.0003 0.0065
γ1 0.1 0.0981 0.0051 0.0054 0.1226 0.0126 0.0259 0.0982 0.0057 0.0055 0.1228 0.0128 0.0262 0.0977 0.0058 0.0059 0.1203 0.0067 0.0214
γ2 −1 −1.0000 0.0001 0.0001 −0.9999 0.0012 0.0012 −1.0000 0.0001 0.0001 −0.9999 0.0010 0.0010 −1.0000 0.0002 0.0001 −0.9998 0.0002 0.0003
δ1 1 0.9999 0.0008 0.0008 0.9982 0.0022 0.0028 0.9998 0.0007 0.0007 0.9982 0.0018 0.0025 0.9995 0.0006 0.0007 0.9988 0.0009 0.0015
δ2 2 2.0000 0.0002 0.0002 2.0008 0.0022 0.0023 1.9998 0.0002 0.0002 2.0002 0.0013 0.0013 1.9999 0.0003 0.0003 2.0002 0.0005 0.0005
δ3 3 3.0001 0.0007 0.0007 3.0014 0.0033 0.0036 3.0000 0.0007 0.0007 3.0014 0.0029 0.0032 3.0002 0.0008 0.0007 3.0008 0.0004 0.0009
s1 3 2.9999 0.0002 0.0002 2.9990 0.0012 0.0016 2.9998 0.0002 0.0003 2.9988 0.0012 0.0017 2.9996 0.0003 0.0003 2.9998 0.0002 0.0003
s2 3 3.0002 0.0006 0.0007 2.9999 0.0027 0.0027 3.0000 0.0007 0.0006 2.9988 0.0021 0.0021 3.0001 0.0007 0.0007 3.0001 0.0003 0.0004
σ 4 4.0000 0.0001 0.0001 4.0009 0.0018 0.0020 4.0000 0.0001 0.0001 4.0008 0.0016 0.0018 4.0000 0.0002 0.0001 4.0003 0.0004 0.0005

Table 2. Simulation results for MTJM and CTJM under n = 500.

r = 0.0 r = 0.5 r = 0.8
MTJM CTJM MTJM CTJM MTJM CTJMParameter True

Value Estimate S.E. RMSE Estimate S.E. RMSE Estimate S.E. RMSE Estimate S.E. RMSE Estimate S.E. RMSE Estimate S.E. RMSE
α0 14.4 14.4000 0.0001 0.0001 14.4001 0.0001 0.0002 14.4000 0.0001 0.0001 14.4001 0.0001 0.0001 14.4000 0.0001 0.0001 14.4001 0.0001 0.0001
α1 −0.3 −0.3005 0.0031 0.0032 −0.2976 0.0023 0.0033 −0.3000 0.0033 0.0033 −0.2975 0.0024 0.0034 −0.3002 0.0031 0.0031 −0.2975 0.0024 0.0034
α2 1.6 1.6000 0.0001 0.0001 1.5998 0.0002 0.0003 1.6000 0.0001 0.0001 1.5999 0.0001 0.0001 1.6000 0.0001 0.0001 1.5999 0.0001 0.0001
β0 5 5.0000 0.0001 0.0001 4.9985 0.0004 0.0016 5.0000 0.0001 0.0001 4.9986 0.0005 0.0014 5.0000 0.0001 0.0001 4.9986 0.0005 0.0014
β1 0.05 0.0503 0.0017 0.0017 0.0227 0.0030 0.0255 0.0503 0.0017 0.0017 0.0224 0.0029 0.0278 0.0501 0.0020 0.0020 0.0224 0.0029 0.0272
β2 1.1 1.1000 0.0001 0.0001 1.0991 0.0003 0.0010 1.1000 0.0001 0.0001 1.0992 0.0002 0.0008 1.1000 0.0001 0.0001 1.0992 0.0002 0.0008
γ1 0.1 0.1002 0.0014 0.0014 0.1211 0.0067 0.0222 0.0999 0.0012 0.0012 0.1202 0.0068 0.0213 0.1007 0.0012 0.0014 0.1202 0.0068 0.0206
γ2 −1 −1.0000 0.0001 0.0001 −0.9997 0.0002 0.0004 −1.0000 0.0001 0.0001 −0.9997 0.0002 0.0003 −1.0000 0.0001 0.0001 −0.9998 0.0002 0.0003
δ1 1 1.0000 0.0003 0.0003 0.9982 0.0018 0.0025 1.0000 0.0003 0.0003 0.9988 0.0009 0.0015 1.0000 0.0003 0.0003 0.9988 0.0009 0.0015
δ2 2 2.0000 0.0002 0.0001 2.0006 0.0006 0.0009 1.9999 0.0001 0.0001 2.0003 0.0005 0.0005 1.9999 0.0001 0.0001 2.0003 0.0005 0.0005
δ3 3 3.0001 0.0002 0.0002 3.0011 0.0007 0.0013 3.0001 0.0001 0.0002 3.0008 0.0004 0.0009 3.0001 0.0001 0.0002 3.0008 0.0004 0.0009
s1 3 3.0000 0.0002 0.0001 2.9999 0.0002 0.0004 3.0000 0.0001 0.0001 2.9999 0.0002 0.0003 3.0000 0.0001 0.0001 2.9999 0.0002 0.0003
s2 3 3.0001 0.0002 0.0001 3.0004 0.0003 0.0007 3.0000 0.0001 0.0001 3.0001 0.0003 0.0004 3.0000 0.0001 0.0001 3.0001 0.0003 0.0003
σ 4 4.0000 0.0001 0.0001 4.0003 0.0006 0.0005 4.0000 0.0001 0.0001 4.0003 0.0004 0.0005 4.0000 0.0001 0.0001 4.0003 0.0004 0.0005
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Table 3. Simulation results for MTJM and CTJM under n = 1000.

r = 0.0 r = 0.5 r = 0.8
MTJM CTJM MTJM CTJM MTJM CTJMParameter True

Value Estimate S.E. RMSE Estimate S.E. RMSE Estimate S.E. RMSE Estimate S.E. RMSE Estimate S.E. RMSE Estimate S.E. RMSE
α0 14.4 14.4000 0.0001 0.0001 14.4000 0.0001 0.0001 14.4000 0.0001 0.0001 14.4001 0.0001 0.0001 14.4000 0.0001 0.0001 14.4001 0.0001 0.0001
α1 −0.3 −0.3001 0.0025 0.0025 −0.2981 0.0021 0.0029 −0.3000 0.0020 0.0020 −0.2971 0.0027 0.0030 −0.3004 0.0022 0.0023 −0.2971 0.0028 0.0029
α2 1.6 1.6000 0.0001 0.0001 1.6001 0.0002 0.0002 1.6001 0.0002 0.0001 1.6000 0.0002 0.0002 1.6000 0.0001 0.0001 1.6000 0.0002 0.0001
β0 5 5.0000 0.0001 0.0001 4.9989 0.0005 0.0013 5.0000 0.0001 0.0001 4.9988 0.0005 0.0009 5.0000 0.0001 0.0001 4.9988 0.0005 0.0013
β1 0.05 0.0501 0.0015 0.0014 0.0235 0.0028 0.0209 0.0507 0.0015 0.0018 0.0299 0.0015 0.0225 0.0491 0.0011 0.0014 0.0309 0.0018 0.0217
β2 1.1 1.1000 0.0002 0.0001 1.0993 0.0002 0.0008 1.1000 0.0001 0.0001 1.0992 0.0004 0.0009 1.1000 0.0001 0.0001 1.0993 0.0004 0.0008
γ1 0.1 0.1002 0.0008 0.0009 0.1197 0.0048 0.0204 0.1005 0.0010 0.0013 0.1137 0.0015 0.0213 0.0994 0.0008 0.0010 0.1134 0.0010 0.0202
γ2 −1 −1.0000 0.0001 0.0001 −0.9998 0.0001 0.0002 −1.0000 0.0001 0.0001 −0.9998 0.0001 0.0002 −1.0000 0.0001 0.0001 −0.9998 0.0001 0.0002
δ1 1 1.0000 0.0003 0.0002 0.9991 0.0005 0.0010 1.0005 0.0001 0.0001 0.9991 0.0005 0.0010 0.9998 0.0003 0.0002 0.9991 0.0004 0.0010
δ2 2 2.0000 0.0001 0.0001 2.0004 0.0001 0.0004 1.9998 0.0003 0.0003 2.0002 0.0001 0.0002 1.9999 0.0001 0.0001 2.0001 0.0002 0.0002
δ3 3 3.0000 0.0004 0.0002 3.0007 0.0007 0.0010 3.0003 0.0004 0.0002 3.0006 0.0008 0.0009 3.0000 0.0001 0.0001 3.0007 0.0008 0.0009
s1 3 3.0000 0.0001 0.0001 3.0000 0.0001 0.0001 3.0000 0.0001 0.0001 2.9999 0.0001 0.0002 3.0000 0.0001 0.0001 2.9998 0.0001 0.0002
s2 3 3.0001 0.0003 0.0001 3.0002 0.0003 0.0004 3.0002 0.0002 0.0001 3.0001 0.0003 0.0003 3.0000 0.0001 0.0001 3.0001 0.0003 0.0003
σ 4 4.0000 0.0002 0.0001 4.0003 0.0003 0.0004 4.0001 0.0002 0.0001 4.0003 0.0003 0.0005 4.0000 0.0001 0.0001 4.0003 0.0004 0.0005
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Figure 1. RMSEs for parameter estimates obtained from simulation study for the marginalized two-part joint model 
(MTJM) and conventional two-part joint model (CTJM). 
Figure 1. RMSEs for parameter estimates obtained from simulation study for the marginalized two-part joint model (MTJM)
and conventional two-part joint model (CTJM).

3.2. Analysis of HDK Data

We analyzed the direct medical costs per physician visit for coronary heart disease
patients in Kerman (HDK dataset) as an application of the newly proposed marginalized
two-part joint model. As a leading cause of mortality, morbidity, and disability, coronary
heart disease imposed a significant economic burden—ranging between USD 4715 and
4908 billion—on the Iranian economic system in 2014 [22].
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3.2.1. Data Description

The data were compiled from the Iranian Integrated Care Electronic Health Record
(ICHR). The ICHR is a national middleware that creates and manages electronic health
records (EHRs) for Iranian individuals. This national middleware is locally called SEPAS,
and all patient visits to health care facilities are communicated through it. It has a dis-
tributed and service-oriented architecture based on ISO 13606. We focused on the analysis
of the out-of-pocket medical costs of coronary heart disease in Kerman. We used data
from 1664 patients who were referred to the heart department of the state hospitals of
Kerman Province from 2016 to 2018. Each respondent was followed from their first hospital
admission until death in the hospital, or censored at the end of 2018 (31 December 2018).
Total medical costs were calculated by adding up the costs of each hospital visit. The
mean visit rate was four visits. Approximately 11% of patients died in the hospital during
the follow-up, and others were censored. For 10% of the total person-months, the direct
medical costs were zero. Table 4 shows the studied variables from the variable selection
part. In addition, Tables 5 and 6 show the descriptive statistics for the studied variables.
The direct medical costs per physician visit were highly right-skewed. At the time of HDK
data collection, USD 1 was worth, on average, IRR 35,847 16.

Table 4. Variable description.

Variables Description Type Participation

Gender Male */Female Time-independent Part II and survival

Age Age that they entered Time-independent Part II and survival

Place of residence Kerman */Other city Time-independent Survival

Type of hospitalization Outpatient */Inpatient Time-dependent Part I and part II

* Reference group in modeling.

Table 5. Summary of time-independent covariates (gender, age, and place of residence) fitted to the HDK dataset.

Variables Category n (%) Positive Cost (%) Mean Positive
Cost (USD) Died (%)

Gender
Male 835 (50.2) 92.1 633 16.3

Female 829 (49.8) 87.7 463 6.2

Age <75 years 1002 (60.2) 88.2 542 10.4

≥75 years 662 (39.8) 92.5 551 12.5

Place of residence
Kerman 1587 (95.4) 89.6 542 10.6

Other 77 (4.6) 97.8 660 24.7

Table 6. Summary of time-dependent covariate (type of hospitalization) fitted to the HDK dataset.

Visit Time Type of
Hospitalization n (%) Positive Cost (%) Mean Positive Cost

(USD)

1
Outpatient 933 (56.1) 80.9 62

Inpatient 731 (43.9) 99.7 1477

2
Outpatient 459 (27.6) 54.9 24

Inpatient 1205 (72.4) 99.5 931

3
Outpatient 188 (11.3) 31.9 13

Inpatient 1476 (88.7) 98.8 506
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Table 6. Cont.

Visit Time Type of
Hospitalization n (%) Positive Cost (%) Mean Positive Cost

(USD)

4
Outpatient 61 (9.7) 29.5 11

Inpatient 565 (90.3) 99.3 372

5
Outpatient 23 (8.4) 8.7 26

Inpatient 251 (91.6) 98.4 327

6
Outpatient 7 (5.2) 0.0 0

Inpatient 127 (94.8) 98.4 297

7
Outpatient 4 (5.6) 0.0 0

Inpatient 67 (94.4) 97.0 260

8
Outpatient 2 (4.3) 0.0 0

Inpatient 45 (95.7) 97.7 231

9
Outpatient 1 (3.7) 0.0 0

Inpatient 26 (96.3) 100.0 195

10
Outpatient 0 (0.0) 0.0 0

Inpatient 14 (100.0) 92.9 188

11
Outpatient 0 (0.0) 0.0 0

Inpatient 7 (100.0) 100.0 127

3.2.2. Detailed Explanations of Variable Selection

In this study, univariate analyses and full stepwise variable selection were conducted
using the same selection criteria as for the primary analysis to obtain the final model.
Univariate analyses were conducted to determine which variables were associated with the
longitudinal semi-continuous responses of costs, and the final survival model was obtained
using full stepwise variable selection with the same criteria as for the primary analysis.
Selected variables are shown in Table 4.

3.2.3. Fitting the CTJM and MTJM to the Data

The variables gender, age, and place of residence were included in the model as the
time-independent covariates. The type of hospitalization variable was included as the
time-dependent covariate. Specifically, the full MTJM model was specified as:

ηM
ij = αM

0 + αM
1 × type o f hospitalization + aM

i

νij = exp
(

βM
0 + βM

1 × sex + βM
2 × age + βM

3 × type o f hospitalization + δ1aM
i + bM

i − log
(
πij
)
− σ2/2

)

λM
i (t) = exp

(
γM

1 × sex + γM
2 × age + γM

3 × city + δM
2 aM

i + δM
3 bM

i

)
In addition, the full CTJM model was specified as:

ηC
ij = αC

0 + αC
1 × type o f hospitalization + aC

i

µij = exp
(

βC
0 + βC

1 × sex + βC
2 × age + βC

3 × type o f hospitalization + δ1aC
i + bC

i

)
λC

i (t) = exp
(

γC
1 × sex + γC

2 × age + γC
3 × city + δC

2 aC
i + δC

3 bC
i

)
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To select the best model from among these two candidate models, we used the Akaike
information criterion (AIC) and the Bayesian information criterion (BIC). The AIC is
generally considered to be the first model-selection criterion that should be used in practice.
For each model, this value is calculated, and the best model candidate is the one that
provides the minimum AIC. Another model selection criterion based on information theory
is the BIC, where the model with the lowest BIC considered the best model [23].

To facilitate the further understanding of the method developed in this paper with
this real data analysis, we included the SAS program in Appendix B.

3.2.4. Parameter Estimation

The adaptive Gaussian quadrature is used with five quadrature points to estimate the
model parameter. Table 7 summarizes the parameter estimates, SEs, and the associated
p-values for both the MTJM and CTJM.

Table 7. Summary of the MTJM and CTJM fitted to the HDK dataset.

Parameter
MTJM CTJM

Est SE p-Value Est SE p-Value

Longitudinal: Part I
Intercept (α0) 5.299 0.136 <0.0001 2.059 0.078 <0.0001

Outpatient (α1) 1.300 0.364 0.0004 1.366 0.105 <0.0001
Longitudinal: Part II

Intercept (β0) 14.298 0.126 <0.0001 15.037 0.212 <0.0001
Male (β1) 2.497 0.331 <0.0001 2.109 0.037 <0.0001
Age (β2) 0.027 0.002 <0.0001 0.297 0.065 <0.0001

Outpatient (β3) 0.001 0.081 0.8950 0.012 0.003 0.0004
Survival

Male (γ1) 1.100 0.767 0.1520 1.142 0.209 <0.0001
Age (γ2) 0.499 0.378 0.1880 0.479 0.256 0.1603

(γ3) −0.135 0.004 <0.0001 −0.182 0.016 <0.0001
Other

δ1 1.010 0.122 <0.0001 1.382 0.042 <0.0001
δ2 1.999 0.309 <0.0001 1.870 0.319 <0.0001
δ3 3.000 0.072 <0.0001 3.131 0.310 <0.0001
σ2 1.005 0.033 <0.0001 0.786 0.018 <0.0001

AIC 211,965 222,610
BIC 212,035 222,680

As seen from Table 6, the results of the fitted MTJM model show that: (a) each outpa-
tient tended to have higher odds (i.e., OR = exp

(
αM

1
)
= exp(1.30) = 3.67, p < 0.0001)

of paying the costs per physician visit. Moreover, the direct costs were higher among
outpatients (whole population with positive and zero costs), but not significantly (i.e.,
βM

3 = 0.001, p > 0.05); (b) male patients in the whole population tended to pay higher
medical care costs (i.e., βM

1 = 2.497, p-value < 0.0001)—in other words, the direct costs for
males were USD 2.497 more than for females; (c) higher age in both groups with positive
and zero costs meant greater direct medical costs (i.e., βM

2 = 0.027, p-value < 0.0001). The
latter may be explained in two ways: (1) the higher frequency of visits to the hospital by
those at a more advanced age, and (2) the high-cost intensive care that older patients with
heart disease need toward the end of their lives.

We also fit the CTJM model to this data. The results of the fitted CTJM model show that:
(a) each outpatient tended to have higher odds (i.e., OR = exp

(
αC

1
)
= exp(1.366) = 3.92,

p < 0.0001) of paying the costs per physician visit. Moreover, if outpatients had positive
costs, their direct costs were higher (i.e., βC

3 = 0.012, p = 0.0004); (b) male patients who
had positive costs tended to pay higher medical care costs (i.e., βC

1 = 2.109, p-value < 0.0001);
(c) higher age among people with positive costs meant greater direct medical costs (i.e.,
βc

2 = 0.297, p-value < 0.0001).
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In both models, we found that age plays a role in the survival model, but it is not
statistically significant (i.e., γM

2 = 0.499, γC
2 = 0.479, p-value > 0.05). This means that under an

MTJM assumption every 1-year increase in age brings about an exp(0.499) = 65% increase
in death. In addition, not being residents of Kerman (i.e., γM

3 = −0.136, γC
3 = −0.182,

p-value < 0.0001) seemed to be a major mortality risk factor in this sample for both models.
In terms of the association between the three models, the high significance of all δs

(p < 0.0001) justifies using a joint model rather than considering the two models separately.
The latter shows a significant association between part I and part II, i.e., patients who
have positive costs per physician visit tend to pay higher medical treatment costs (i.e.,
δ1 = 1.010). Furthermore, it is suggested that the random effects influence death hazards
in both parts of monthly medical costs, i.e., a higher mortality rate is observed in patients
who had more frequent medical costs and who paid for medical costs more directly (i.e.,
δ2 = 1.999, δ3 = 3.000). In summary, it can be said that when the three outcomes show
a stronger correlation, our joint model is preferred over the separate longitudinal and
survival models.

The results suggest that both models fit the data adequately. However, the AIC
and BIC both indicate that the MTJM model is a more appropriate fit for these data
(AICMTJM = 211,965 vs. AICCTJM = 222,610 BICMTJM = 212,035 vs. BICCTJM = 222,680).
Although the two models do not have the same interpretation, the parameter estimates
from the CTJM are similar to those estimated from the MTJM model, except in part 2 of
the model.

4. Discussion

In this paper, we developed a marginalized two-part joint model for two correlated
longitudinal semi-continuous and survival outcomes using marginal inferences. This
model extended the advantages of marginalized two-part models to account for a depen-
dent terminal event, such as death. From a clinical perspective, the MTJM is of special
interest because it can account for various clinical responses to treatment, but with a more
meaningful interpretation. Prior studies have noted the importance of the extension of the
joint model in order to gain a better understanding of the medical cost data [13].

The simulation study demonstrated that the MTJM model performs well compared
to those demonstrated by the CTJM model, and showed that larger sample sizes result
in smaller bias and RMSE in parameter estimates, and that confidence intervals maintain
nominal coverage. Our model still shows excellent performance with smaller samples. The
latter is consistent with the results of previous studies [13,14]. The simulation showed that
both models tend to be the same for larger correlations and sample sizes, except for the
parameters in part two. In the MTJM, to examine such effects on the marginal mean in
order to draw conclusions about the impact of predictors on the population as a whole,
we parameterized the second part of the models, so it is expected that they should be
estimating the same quantity—especially in part 1 and part 3. To differentiate the MTJM
from the CTJM, we only made a change in the second part, so it is assumed that the
parameters in the second part (the betas) do not represent the same quantity. Our results
show that the MTJM works as well as the CTJM, but with marginal interpretation in the
second part. These results therefore need to be interpreted with caution. As we mentioned
previously, the two models are structured differently, so discrimination between these
models should not be based on model comparison statistics alone. We aimed to show that
the new model can work as well as previous models, but with the previous model not
being able to provide marginal inference.

In the survival model, we used the exponential distribution. We found that the
parameter estimation error consistently converges to zero when assuming an exponential
distribution. However, current methods cannot provide a more appropriate estimate of
parameter distribution if the parametric assumptions are violated [24]. For future studies,
we plan to adopt more flexible survival models if these assumptions are violated



Mathematics 2021, 9, 2603 16 of 20

Our real data application found a significant association between longitudinal medical
costs and survival, suggesting that the proposed MTJM model may be a more appropriate
tool than two-part models that model the longitudinal medical costs alone for these types
of data. The findings of the current study are consistent with those of Xu et al., who found
that parameter estimates could be seriously biased when information about the complex
survey design was ignored [13].

We also showed that the proposed MTJM model gave better model fits compared
to the simpler CTJM model, based on the AIC and BIC model selection criteria. It is
recommended to choose the appropriate model via these model selection criteria [25].
Furthermore, the correlation between hospital status and having positive costs in part I,
the correlation between gender/age and the level of cost in part II, and the correlation
between gender/place of residence and the hazard of death are all statistically significant.
These findings further support the importance of taking account of the correlation over
time between the probability of incurring positive costs and the level of cost in longitudinal
applications [4].

We acknowledge some limitations of our study. Our joint model is defined under
several assumptions, such as the normality assumption for random effects and the log-
normal assumption for positive costs. For future studies, we plan to adopt a more flexible
generalized gamma distribution or other heavy-tailed distributions in part II of our model
if these assumptions are violated. A Pareto distribution may better represent the upper
tail of the medical costs distribution than the log-normal distribution. In addition, one
may consider a Bayesian framework for parameter estimation with the MTJM. Finally, we
assumed normal random effects in the model, so it would be interesting to investigate non-
normal random effects in this proposed model. We are actively investigating these ideas.

5. Conclusions

To address the medical cost data problems—including right skewness, clumping at
zero, and censoring due to death and incomplete follow-up—a marginalized two-part
joint model (MTJM) was developed in this paper. The simulation study showed that
our proposed joint model yielded small biases of parameter estimates when the complex
sample design was considered.

In summary, when the primary interest is to estimate covariate effects on the aver-
age costs across the entire population of both users and non-users, the MTJM may be
most useful.
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Appendix A. SAS Procedures for Data Generation and Parameter Estimation

/* Data Generation MACRO —————- */
%macro generate_data(n_seed=, n_subjects=, n_T=);
data original_data;

/* Parameters —————- */
alpha_0 = 14.4;
alpha_1 = -.3;
alpha_2 = 1.6;
beta_0 = 5;
beta_1 = 0.05;
beta_2 = 1.1;
gamma_0 = 0;
gamma_1 = 0.1;
gamma_2 = −1;
s2_a = 9;
s2_b = 9;
sigma2 = 4;
lambda_1 = 1;
lambda_2 = 2;
lambda_3 = 3;

/* Subject Effects ————– */
array a(&n_subjects);
array b(&n_subjects);
array pmis{&n_T} (.02 .03 .15 .8);
array cmis{&n_T} (.02 .05 .2 1);
do i = 1 to &n_subjects;
a{i} = sqrt(s2_a) * rannor(&n_seed);
b{i} = sqrt(s2_b) * rannor(&n_seed);
end;
/* Data Genetation ————– */

do i = 1 to &n_subjects;
rmis = ranuni(&n_seed);
do iy = &n_T to 1 by −1;
if rmis < cmis{iy} then ny = iy;
end;
%do t = 1%to &n_T;
t=&t;
x1 = 50 + 10*rannor(&n_seed);
x0 = ranuni(&n_seed);
x2 = 1*(x0<=0.5);
pi = 1/(1+exp(-(alpha_0 + alpha_1 * x1
+ alpha_2 * x2 + a{i})));
mu = beta_0 + beta_1*x1 + beta_2*x2
- log(pi) - sigma2/2 + lambda_1*a{i} + b{i};
Y = ranbin(&n_seed, 1, pi);
if Y = 1 then Y = exp(sqrt(sigma2)*rannor(&n_seed) + mu);
if t > ny then Y=.;
lam = .;
tt = .;
cc = .;
time = .;
censored = .;
output;
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%end;
t=0;
x1 = 50 + 10*rannor(&n_seed);
x0 = ranuni(&n_seed);
x2 = 1*(x0<=0.5);
pi = 1/(1+exp(-(alpha_0 + alpha_1 * x1
+ alpha_2 * x2 + a{i})));
mu = beta_0 + beta_1*x1 + beta_2*x2
- log(pi) - sigma2/2 + lambda_1*a{i} + b{i};
Y = .;
lam = exp(gamma_0 + gamma_1*x1 + gamma_2*x2
+ lambda_2*a{i} + lambda_3*b{i});
tt = ranexp(&n_seed)/lam;
cc = ranexp(&n_seed);
time = min(tt, cc);
censored = (cc lt tt);

output;
end;
run;

/* Trimmed Data —————- */
data sim_data (keep =i t x1-x2 Y time censored);

set original_data;
run;
%mend;
/* Running Data Generation MACRO —————- */
%generate_data(n_seed=1, n_subjects=900, n_T=4);

/* Parameter Estimation —————- */
proc nlmixed data=sim_data qpoints=10 gconv=1e−4;
bounds 0 <=sigma2, 0<=sa, 0<=sb;
/* Initail Values —————- */
parms a0=14.4 a1=-.3 a2=1.6

b0=5 b1=0.05 b2=1.1
g1=0.1 g2=−1
sa=3 sb=3 sigma2=4
l1=1 l2=2 l3=3;

/* Log Likelihood —————- */
if t=0 then do;

lam = exp(g1*x1 + g2*x2 + l2*a + l3*b);
loglik=(censored=0)*(log(lam)-lam * time)

+ (censored=1)*(-lam * time);
end;
else do;

pi = 1/(1 + exp(-(a0 + a1*x1 + a2*x2 + a)));
mu = b0 + b1*x1 + b2*x2 - log(pi) - sigma2/2 + l1*a + b;

if Y=0 then loglik=log(1-pi);
else if Y>0 then loglik=log(pi)-log(Y)

-.5*log(2*CONSTANT(‘PI’))
-log(sqrt(sigma2))

-(1/(2*sigma2))*(log(Y)-mu)**2;
else if Y = . then loglik=0;

end;
model i ~ general(loglik);
random a b ~ normal([0,0], [sa**2, 0, sb**2]) subject=i;
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run;

Appendix B. SAS Procedures for Real Data Analysis

/* Parameter Estimation —————- */
proc nlmixed data=data qpoints=10 gconv=1e−2;
bounds 0 <=sigma2;
/* Initail Values —————- */
parms a0=5.3 a1=1.3

b0=14.3 b1=2.5 b2=0.02 b3=0.01
g1=1.1 g2=0.5 g3=−0.1
sigma2=1
l1=1 l2=2 l3=3 k=500;

/* Log Likelihood —————- */
if t=0 then do;

lam = exp(g1*GENDER + g2*CITY +g3*AGE + l2*a + l3*b);
loglik=(censored=0)*(log(lam)-lam * time) + (censored=1)*(-lam * time);

end;
else do;

pi = 1/(1 + exp(-(a0 + a1*TYPE OF HOSPITALIZATION + a)));
eta = abs(k)**(−2);

mu = b0 + b1*GENDER +b2*AGE +b3*TYPE OF HOSPITALIZATION - log(pi)-
sigma2*log(k**2)/k-lgamma(eta+(sigma2/k))+lgamma(eta) + l1*a + b;

u = sign(k)*(log(Y) - mu)/sigma2;
if Y=0 then loglik=log(1-pi);
else if Y>0 then loglik=log(pi)- lgamma(eta) + eta*log(eta) - log(sigma2) - log(Y) +

u*sqrt(eta) - eta*exp(abs(k)*u);
else if Y = . then loglik=0;

end;

model ID ~ general(loglik);
random a b ~ normal([0,0], [1, 0, 1]) subject=ID;
run;
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