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Abstract

The Birch and Swinnerton-Dyer conjecture — which is one of the seven million-
dollar Clay Mathematics Institute Millennium Prize Problems — and its gener-
alizations are a significant focus of number theory research.

A 2017 article of Jetchev, Skinner and Wan proved a Birch and Swinnerton-
Dyer formula at a prime p for certain rational elliptic curves of rank 1. We
generalize and adapt that article’s arguments to prove an analogous formula
for certain modular forms. For newforms f of even weight higher than 2 with
Galois representation V' containing a Galois-stable lattice T', let W = V/T and
let K be an imaginary quadratic field in which the prime p splits. Our main
result is that under some conditions, the p-index of the size of the Shafarevich-
Tate group of W with respect to the Galois group of K is twice the p-index
of a logarithm of the Abel-Jacobi map of a Heegner cycle defined by Bertolini,
Darmon and Prasanna.

Significant original adaptations we make to the 2017 arguments are (1) a
generalized version of a previous calculation of the size of the cokernel of a
localization-modulo-torsion map, and (2) a comparison of different Heegner cy-
cles.
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1. Introduction, main result and outline of proof

A major theme in modern number-theoretic research is that analytic objects
(like L-functions) yield information about algebraic or geometric objects (like
Galois characters and groups of rational points on elliptic curves). A famous
example of a result expected to be true is the Birch and Swinnerton-Dyer (BSD)
conjecture:

Conjecture 1.1 (BSD). Suppose an elliptic curve E/Q is given. Let the ana-
lytic rank of E be the order of the zero of L(E,s) at s = 1. Then the analytic
rank of E equals the (algebraic) rank of the finitely generated abelian group
E(Q), and

1 L L(E,s)  #UUE/Q) [Iyece
RE/Q)Qp 21 (s — 1)k B@ ~  (ZE(Q)ror)?

where the requlator R(E/Q) is defined as in [33] except that the height pairing
in that source is to be doubled, and where the period Q g, Shafarevich-Tate group
II(E/Q) and Tamagawa numbers c; are defined as in [33].

So far, the main progress on BSD has been for analytic and algebraic rank
0 and rank 1 cases.

In the recent paper [15] of Jetchev, Skinner and Wan, the following “BSD
formula at a prime p” was proved. We write ind,z for the p-index of z; for
example, ind,(p") = n for n € Z.

Theorem 1.2. [15, Theorem 1.2.1] Assume that



(i) the elliptic curve E/Q is semistable,

(ii) the rational prime p is odd and does not divide the conductor of E,

(iii) the Galois representation E[p] of Gal(Q/Q) over F, is irreducible,

(iv) E has analytic rank 1, and

(v) if E has supersingular reduction at p, then ap(E) = 0.

Then

i LD N _y, e
ind, (MW%) = ind, (#HJ(E/Q) 1;[ é) :

The proof’s broad structure was as follows. For suitable auxiliary imaginary
quadratic fields K’, K", the following results were obtained.

(a)

(d)

A theorem obtained from Brooks, linked to work of Bertolini, Darmon
and Prasanna [15, Proposition 5.1.7]: For a certain Heegner point zx: €
E(K'), a certain differential form wg on F, and a certain L-function Lgpp
of Bertolini, Darmon and Prasanna, we have

2ind, log,, (zx) + 2ind, ((1 — ap(E) + p)/p) = indp,Lppp(1).

Interpolating and comparing L-functions [15, Corollary 5.3.2]: For a cer-
tain L-function Ly, of Wan, we have ind,Lppp(1) = indpLwan(1).

Iwasawa theory [15, Proposition 6.2.1], relying on a result of Wan that
is half of an Iwasawa main conjecture: For a certain cohomology-related
quantity C'(E[p]), we have

indy Livan (1) < indy (C(E[p=))# HL (K, Ep™]).
Galois cohomology [15, (3.5d)]: We have

ind,, (C(B[p™])#Ha (K', E[p™]))
= ind,(#11(E/K")) + 2ind, log,, , (2x7) + 2ind, (1 — a,(E) + p)/p)
—2ind, (E(K") : Zzg) + (p-indices of Tamagawa factors).

Points (a) to (d) yield

2ind,(E(K") : Zzk+)—(p-indices of Tamagawa factors) < ind,(#IL(E/K")[p>]).

(e)

Euler systems [15, Theorem 4.4.1], relying on a result of Nekovar: We
have
ind,(#UL(E/K")[p™]) < 2ind,(E(K") : Zzk~).



Applying Gross-Zagier formulas for the Heegner points zi+, zx, re-writing the
Shafarevich-Tate groups III(E/K’), III(E/K") in terms of III(E/Q) and IIT of
quadratic twists of F/, and applying a previously known rank 0 case of the BSD
conjecture produced Theorem 1.2.

This article replaces E with a modular form f of weight larger than 2,
adapting [15]’s arguments. Analogously to the intermediate results of Jetchev,
Skinner and Wan mentioned above, our main result (Theorem 11.1) says that the
p-index of a certain Shafarevich-Tate group is twice the p-index of the logarithm
of the Abel-Jacobi map of a Heegner cycle.

First, section 2 sets some notation and underlying assumptions. Sections 3
to 5 then review some background on class field theory, modular forms, algebraic
geometry and cohomology. Finally, sections 6 to 11 prove Theorem 11.1. The
basic structure of our argument is as follows; note the similarity with [15].

(a) First, a formula of Bertolini, Darmon and Prasanna [1] links the logarithm
of the Abel-Jacobi map of a Heegner cycle to a p-adic L-function.

(b) Second, p-adic L-functions are interpolated and compared.

(¢) Third, half of an Iwasawa main conjecture links a p-adic L-function to
Galois cohomology.

(d) Fourth, Galois cohomology is linked to the Shafarevich-Tate group of f.

(e) Fifth, an Euler-system-related result links Sha to the Abel-Jacobi image
of a Heegner cycle of Masoero.

(f) Sixth, Masoero’s Heegner cycle is compared with the Heegner cycle from
the first step.

Combining these six steps, we get a chain of inequalities 21 < x5 < -+ < x4 <
x1, so all x; are equal, and this yields the final result.

2. Notation and setup

2.1. Notation

For n € Zsq, Sy is the symmetric group of bijections from {1,2,...,n} to
itself. Let Gior be the torsion subgroup of an abelian group G; write G/tor :=
G/Gyor. Let Mgy be the maximal p-divisible subgroup of a Z,-module M.

For a rational prime p, let @p be the completion of the algebraic closure

~X

@p of Q,. Write ind,, : @p — Q¢ for the multiplicative p-adic valuation with
ind,(p™) = n for n € Z. For a finite-degree field extension L/Q,, let Oy, be the
ring of integers of L, with maximal ideal my,, and let 6%7 be the ring of integers
of the completion L of the maximal unramified extension L of L.

For a number field F, let O be the ring of integers of F' and, for each place
v of F, take the v-adic completion F;,. For finite v, F, has ring of integers OF,,
and we abuse notation by denoting the maximal ideal of O ,, and that ideal’s



intersection with Op, as v. Let the Hilbert class field, class group and class
number of F' be respectively Fi, Clg and hp.

The spaces of adeles, finite adeles, ideles and finite ideles over F' are written
Ap (as in [28, section VI1]), Apy, A, AL ; respectively, with elements » =
(2v)v» where each z, € F,.

For finite v and a character (that is, a continuous group homomorphism)
n: F)} — C*, the conductor of 7 is denoted C(n), and 7 is called unitary when
its image is in {z € C* : |z| = 1}.

For a Hecke character x : F*\AX — C*, the conductor of x is denoted
C(x), and x, is the restriction of x : Ax — C* to F. For a fractional ideal
a= [l v of F with each a(v) € Z, if a is coprime to C(x), then write x(a)
for the value of x at an idele z € A ; with 2Op = a and 2, =1 for v | C(x).

For a number field F, as in [1], let the Hecke character N : F*\A}% — C* of
conductor O be such that for F’s fractional ideals a, the positive element of Q
that generates the fractional ideal Np/ga of Q as a Z-module is N(a). For an
integral ideal a of F', we have N(a) = (OF : a).

We use the following notation from [35, section 2.1]. For a number field
F, the extension Fy/F and the Galois groups Gr, Gry = Gal(Fu/F), Gp,
and Ig, are defined in the standard way. For an imaginary quadratic ex-
tension K/Q, let Koo/K, KI /K and K3 /K be the Z2-extension, the cyclo-
tomic extension and the anticyclotomic extension respectively of K, and write
Ik = Gal(Ko/K), I'}e = Gal(KL /K) and 'y = Gal(K /K).

For a cusp form f = Y77 a(n, f)¢", let Q(f) = Q(a(n, f) : n € Zx) be
the number field generated over Q by all the a(n, f), and let O(f) = Za(n, ) :
n € Zso| be the ring generated as a Z-algebra by all the a(n, f).

2.2. Assumptions

The following assumptions apply throughout. In this paper’s final theo-
rem, the hypotheses will be these assumptions, plus some additional technical
statements to be described later. N

A prime p is fixed, together with an isomorphism @p =~ C. Fix an unramified
finite-degree field extension L/Q,.

Let the imaginary quadratic field extension K/Q (with complex conjugation
¢) have squarefree discriminant D = 1 mod 4 with D < —3. Assume K; C L.

Let f =" a(n, f)¢" € Sk(I'o(N)) be a non-CM newform of conductor
N with a(1, f) = 1 such that N > 5 is an odd integer, k > 2 is an even integer,
and k/2 is not congruent to 0 or 1 modulo p — 1. Assume Q(f) C L.

Let the representations T, V¢, Wy be as defined in subsection 5.4. Assume
Ty/mpTy is an irreducible G g-representation of dimension > 2.

Assume the following Heegner hypothesis: each prime factor of N splits or
ramifies in K, at least one rational prime factor of N ramifies in K, and every
prime ¢ | N ramifying in K is such that ¢ { N. This implies that there is
an ideal € of Ok for which the inclusion Z — O induces an isomorphism
Z/NZ = Ok /¢€; fix such an ideal €.

Let the prime p split in K as p = vo¥p. Define the set N, = {vo,To}.



For some representatives a of the class group of K, assume that the norms
N(a) are p-adic units when viewed as elements of Q,,.

Assume that p > k/2, the Fourier coefficient a(p, f) is a p-adic unit, and the
prime p does not divide (k —2)!- 6N@(N)Dghg - (Ogy) : O(f)).

3. Class field theory

This section briefly reviews class field theory and Hecke characters. We use
and adapt notation from [10, 11, 35]. For this section, take a discrete valuation
ring O with (@p 20 D Zy.

3.1. Class field theory and Galois extensions
For M € Z~, the ray class group modulo Mp>co over Q is

Z(M) = QX \AJ ;/Ug(Mp™) = 2° /Ug(Mp™)
where
Ug(Mp™) ={z € A zp =1,z € 1+ MZ, for finite £ # p}.

For pt M, we identify Z) x (Z/MZ)* = Z(M) in the standard way.

For all M € Z~g, the cyclotomic character € : Z(M) — Z) is identified via
geometrically normalized Artin reciprocity with the Galois character describing
the Galois action on roots of unity with order a power of p [35, section 2.2.3].
For a p-adic Galois representation U and an integer n, let U(e") := U ® €" be
the twist of U by €". (We write U(e”) instead of U(n) to keep the notation
uniform and make the choice of normalization for € clear.)

The classical Teichmiiller character w : Z — Z, satisfies w(y)? = w(y) =
y mod pZ, for y € Z;. Define a Teichmiiller character w : Z(M) — Z, with
the same image as the previous w, so that

(a) If the embedding Z < Aj ; sends y € Z) toy, € Ag ; in the equivalence

class [y,] € Z(M), then w([y,]) = w(y) (so e([y,]) = wly) mod pZy); and

(b) Each element (1,yy mod MZ) € 7 x (Z/MZ)* corresponds to an ele-
ment of Z(M) in the kernel of w : Z(M) — Z,.

(Under geometrically normalized reciprocity, this w corresponds to the inverse of
the character denoted w in both [35, section 2.2.4] and [37, Theorems 1.1-1.2].)
The embeddings Z, — Ok, and Z, — Ok 3, are isomorphisms. Let the
Teichmiiller characters wy, : Ok, — Z, and wg, : Og 5 — Z) send the
embeddings of y € Z, in respectively O ., and Og 5, to w(y).
Write

Zr(€) = K*\AL /U (€p™) = K*\AL /(Ux (€p™)KX)
where

Uk (€p>®) ={z € 6?( 2wy = 25, = 1,2y € 1 + €0k, for finite v { p}.



Since € is relatively prime to p = v9Tp and (Ok : €) > 1 is odd, we have a
standard group isomorphism

Ok wo ¥ Ok 5, % Clic x (O /&) J{£1}) = Zk(€) (1)
which is the product of an isomorphism from
wug [Of 4] ¥ w5, [Of 5,1 X Clie x (O /&) /{£1}) (2)

to Zk (€)tor, and an isomorphism

7 (1 =+ U00K71,0) X (1 —|—@00K,§U) i Ik
which is the composition of group maps
(1 + UOOK’UO) X (1 -l—ﬁoOKjo) — OIX(,UO X OIX(,EO — A;( - ZK(Q:)/tOI' = FK

using geometrically normalized reciprocity and Galois theory in the usual way
to identify Zk (€)/tor and I'c. (There is no p-part in (O /€)*/{£1} or Clg
since p{ ¢(N)hk.)

In K. /K, the maximum extension unramified at Ty (respectively, vg) is
the extension K,,/K (respectively, Kz,/K) such that K,, is the fixed field of
i[{1} x (14+790k 5,)] (respectively, Kz, is the fixed field of i[(14+v9Ok v,) X {1}])
in K. The standard quotient map pr,, : ['x — Gal(K,,/K) sends i(yyy, Yz,) €
I'k to the class of i(yy,, 1) in Gal(K,,/K) 2Tk /Gal(Ks/Ky,)-

The embeddings Z, — Ok 4, and Z, — Og 3, yield

(14 pZy)* =2 (1 4+ 190Kk 0y) X (1 +ToO0x z,)-

The group I‘}g (respectively, I';) is topologically generated by the element v, =
i((14p)Y/2, (1 4+ p)1/?) (vespectively, v_ = i((1 + p)'/2, (1 + p)~/2)), or more
precisely, by the class of that element in the appropriate quotient of I'ir. The
standard quotient map prqc : I'x — I'x sends g = i(Yu,, ¥5,) € T to the class
of (gg~)"/2 = iyt ys, " oo Cyz) ") i T 2 D /Gal(Koo /K5

Define the squaring maps sq : Zg(€) — Zk(€), sq : T'x — I'x and sq :
Gal(K,,/K) — Gal(K,,/K) given by g + ¢°.

Define the O-algebra maps prq. : O[[I'k]] = O[I'k]], sq : O[[Zk(€)]] —
O[[Zk(€)]] and sq : O[[T'k]] — O][l'k]] by extending O-linearly and continu-
ously.

Let ¢ : z — Z be the conjugation map on C (or on any subfield of C stable
under conjugation). The group Gal(K/Q) = {1,c} acts on I'x via conjugation
(csends g € ' to cge™t € I'k); c acts on I'f;, T'c as 1, —1 respectively.

3.2. Complex and p-adic Hecke characters
For a Hecke character x : K*\A% — C with x(200) = 25, Z% identically for

oo

some ¢, u € Z, the p-adic avatar of x is a p-adic Hecke character y : K™\ A F

@; satisfying
X(2) = (20Z00) - (20 255 )X (2¢) (3)



(use Q, = C to view (2, 25 ")X(2f) € @; as belonging to C*). Write y =

Vo “vo
X9, The corresponding Galois character oy : Gg — @: sends the geometric
Frobenius at any vt pC(x) to x, of a uniformizer at v [35, section 2.2.1].

Recall the identification Zg (€) 2 I'k X Zk (€)tor. Characters P : ' — @:
and ¥ : Zg (€)por — @:, respectively, can be precomposed with the projections
Zk(€) » Tk and Zx (€) = Zx (€)tor to yield characters P and ¢ from Zx (€) to
@;, whose product P : Zg(€) — @: sends (0,¢) € Tk X Zg(€)tor = Zk (€)
to P(0)¥(C). Precomposing with K*\Ag  — Zk(€) gives a p-adic Hecke
character Py : K*\AR » — @:

A continuous character P, : I'y — @; gives a character P = P,. o prg :

' — @: A character @ : Zg (€)1or — O™ yields a continuous O-algebra map
Yy O[[Zk(€)]] = O[[I'k]] (respectively, ¥qc : O[[Zk(€)]] - O[[I'k]]) which
restricts to the identity (respectively, prq.) on ' and which restricts to i on
ZK <¢>tor-

4. Modular forms

This section briefly reviews modular forms while fixing notation. From now
on, let O be any ring with O, CO € Q, € Q, = C.

4.1. p-adic modular forms

Let Si(M,O) be the space of p-adic cusp forms of level M and weight k
with Fourier coefficients in O, let hi(M, O) be its Hecke algebra, and let their
nearly ordinary parts be gzrd(M ,0) and hgr4(M, O) respectively. (To be pre-
cise: in [10, 11], these correspond to Sk ., (Vi (M) (p*), O), hi, (V1 (M) (p>), O),

—n,ord

Sk (Vi(M)(p>),0) and her (Vi (M) (p™), 0) for a suitable choice of w,
e.g., w = k/2 for k even.) Write the Fourier expansion of a p-adic cusp form
f€SK(M,0) as f=3"",a(n, f)g". Let e be the ordinary projector.

There is a continuous multiplicative map Z(M) — hi(M,O) : z — (z) (see
[10, sections 2-3] and [11, p. 334]), and for a € Z) yielding a, € Aa,f’ there is
a Hecke operator T(ap) € hi(M,O) [11, pp. 330-332].

The perfect pairing

S(M,0) x hy(M,0) = O : (f, H) v a(1, f|H)

yields isomorphisms between each of its arguments and Homo (-, O) of the other
([11, Theorem 3.1]; see also [10, Theorem 5.3]). Applying ®0Q,, yields a perfect
pairing over @p given by the same formula with each O replaced by @p.

4.2. Hida families and parameterizations

This subsection introduces Hida families of modular forms, following [11, pp.
335-337].



Let the O[T k]]-algebra I be contained in the integral closure of O[[T'k]] in
a finite-degree field extension of the quotient field of O[[I'k]].

Let A : hi(M,0) — I be an O-algebra map such that for ¢ € 1 + pZ,
corresponding to z = [0,'] € Z(M), the map A sends (2) to i(0,0) € I'k, and
if 0 €1+ pZy, = 14700 5, , then X sends T(o, ") to i(1,0) € T'k.

Let P: I — @p be an O-algebra map so that for some finite-order multi-
plicative characters ep : 1 + pZ, — @; and € : 1+ pZ, — @; , and for some
w € Z, we have

(a) P(i(o,0)) = c*2%ep(0) for 0 € 1 + pZ,, and
(b) P(i(1,0)) = o' =Wes(0) for o € 1+ pZ,,.
Call such P arithmetic, following Hida [11, pp. 316, 335-337] as well as Skinner
and Urban [35, section 3.3.8]. Write k(P) := k and w(P) :==w. B
From A and P, we obtain the Q,-algebra map A(P) : h(M,Q,) — Q, as
the composite

— e ord — — (PO)\)@@p —
hk(M7Qp) Hhk (M7Qp)(—> hk<M7Qp) —>Qp .

Define the finite-order characters ¢¥p : Z(M) — @; and p 1 Z) — @; by

vp(Clo, ) = €2 AP)((C)) -ep(o)
Up(C'o) = ()71 MPHT((C), ) - plo)

for ¢ € Z(M)tor, ¢’ € (Z; )tor and o € 1 + pZyp.

Via Hecke algebra duality, A\(P) yields an eigenform F(X, P) € Sx(M,Q,)
such that a(l, F'(A,P)) = 1 and, for each element H of the Hecke algebra,
F(\,P)|H=XP)(H)-F(\ P).

The map A is a cuspidal Hida family; it corresponds to the collection of
ordinary normalized eigenforms F'(\, P) ranging over the arithmetic points P :
I —Q,.

4.3. Theta series

In this subsection, we describe classical theta series and fit them into a Hida
family. See [9, p. 257], [12, pp. 234-238] and [17, sections 5.1-5.2].

Let x : K*\Aj — C* be a Hecke character so that for some n € Z-( and
some finite-order character ¢ : (Ox/C(x))* — C*, for all @ € Ok coprime
to C(x), we have x(aOk) = a™p(a)~!. Then the theta series of x is 6, =
> o x(a)gVx/e® with L-series L(s, 0y ) = L(s, x) = Y., X(a)(Nk/ga) ™ summing
over nonzero integral ideals a of Ok coprime to C(x). If

oK+ (Z/|Dk|Z)* — {£1}

is the Legendre-symbol character of K/Q with ¢k (¢) = (££) for odd rational
primes £, then 0, € S,11(|Dk|(Nk/@C(x)),¢€) for the character

€:(2/|Dk|(Nk/oC(x))Z)* — C*



with e(m) = o (m)~=1(m) for m € Zso.

The modular form ¢, will now be fit into a Hida family.

Let the character P_,, o : I' = Zk(€)/Zk (€)or — @; satisty P_p, 0(i(Yuo, Y5,)) =
Yoo fOr Yo, € 1+ pZp 21+ 090k v, and yz, € 1 +pZy =1+ 000k 5, -

Interpreting a character ¢ : Zg(€)or — @; as a finite-order character
AIXQ ;o @; whose restriction to 5;( corresponds to a Dirichlet character

(O /C(W))* — @;7 we have C(¢) | €vyTp, because 1 factors through

Wog [O;(,vo] X Wy [OIX(,EO} x Clg (OK/Q:)X/{il}
> (Ok/vp)™ X (Ok/Tg)* x Clg x (O /€)* /{£1}

and C(v) is determined by the restriction of ¢ to 5;(
For each ideal a of Ok coprime to C(¢)p, let

[a] € Zx (€) = K"\AL ;/Uk (€p™)

be the class of some z € AL , with 20k = a and z, = 1 for v | C(1). For an
ideal a of Ok not coprime to C(¢)p, let [a] = 0 € O[[Zk (€)]].

In this paragraph, assume C(w, ") = €ug. The character Y = P_p ow, "1 :
K*\Ag ¢ — @; is the p-adic avatar of a Hecke character y : K*\A} — C*
such that for a € Ok coprime to €vyvy, we have x(aOf) = a™p~1(a) (view-
ing x(aOg) as the value of x at af/aey,w,).- Furthermore, as in [12, pp.
234-238], consider the O-algebra map A1 : hont1,1(pN|Dk|,0) — O[[Zk ()]
with A (T'(¢)) = Zu:NK/@a:Z[a]' Compose A\; with (w; ")+ : O[[Zk(€)]] —
O[[l'k]] to obtain a Hida family X : hopt1,1(N|Dgk|p,O) — O[[I'k]]. Then
0, = F(\, P_,0), so the Hida family A interpolates 6.

In this paragraph, assume C(w, ") = €vg. As before, P_, ow, "¢ : Zx (&) —
@; yields a character x = P_, ow, "¢ : KX\A;((J — @;, which is the p-adic
avatar of a Hecke character x : K*\Aj — C* such that for a € Ok coprime
to €, we have x(aOg) = a™p~'(a). As before, compose \; with the map
Yy : O[[Zk (€)]] = O[[I'k]] to obtain the Hida family A : hopt1,1(N|Dk|,O) —
O[[l'k]]. On the complex upper half plane, define the function U6, so that
Ub,(s) = 0, (s) — x(To)0y(ps); then U6, has g-expansion

vo =3 { O P Ly

n=1

and U6, = F(\ P_,0). This p-stabilized Hida family appears in p-adic L-
function interpolation formulas later in the article.

5. Algebraic geometry and cohomology

5.1. Kuga-Sato varieties and projections
We refer to [1, 21, 23] as references.

10



Let Y(N), Y1(N), Yo(N) be the open modular curves over Q, and let X (N),
X1(N), Xo(N) be the complete modular curves over Q (see, e.g., [5]).

Let j : Y(IN) — X(N) be the standard inclusion map. Let 7 : &y (I'(N)) —
Y (N) be the universal elliptic curve. Let Ex(I'(N)) — X (N) be the universal
generalized elliptic curve. For positive r € Z, the rth power of Ex(I'(N)) over
X(N) has as its standard desingularization the Kuga-Sato variety £™(I'(N)).
Similarly define j1 : Yl(N) — Xl(N), T Sy(l“l(N)) — Y(N)7 SX(Fl(N)) —
X1(N) and E"(I';(N)). Fixing the “forget a (Z/NZ)-basis vector” map X (N) —
X1(N), we get amap Ex (I'(N)) = Ex (I'1(N)), which yields maps P, : £"(D(N))
ENT1(N)).

Noting p{ N¢(N), we have the projection operators

75 = (1/#(To(N)/T(N) X ery e @ € Zp [Lo(N)/T(NV)
71 = (L/#(Co(N)/T1 (V) S pery (vyyrainy & € Zp [Lo(N)/T1 (V)]

Fort € {0,1,2} and r € Z~, define the group G(t,r) = (Z/NZ)' x{£1})"x
Sy. The group G(0,r) acts on the rth power A" of any elliptic curve A (see
[1, p. 1052]; A" can be viewed as a total space with fiber A" over a base space
consisting of one point), G(1,7) acts on E"(I'1(N)) (see [1, pp. 1056-1057))
and G(2,r) acts on E"(D(N)) (see [23, section 2] and [31, section 1.1]): the
subgroup S, permutes fiber components, then the subgroups {£1} multiply fiber
components by 41, then the subgroups (Z/NZ)* translate fiber components by
sections of order dividing V.

For t € {0,1,2}, let the group map ¢; : G(t,r) — {£1} be 1 on each (Z/NZ)*
factor, the identity on each {£1} factor, and the sign map on S,.. Define

Tir = (/#CE) Tecun a(0) -0 € QUG

Since p t (k — 2)!, we have my 2 € Zp[G(2,k — 2)].

Take a field F O K;. For an elliptic curve A defined over F', where A has
complex multiplication by O, we may choose F-vector space generators wa, 174
of Hyn (A/F), Hy (A/F) respectively; then mo . Hjp(A”/F) = Sym" H}, (A/F)
is generated as an F-vector space by the r + 1 elements

-1
whny = () Z </\ prswA> A /\ prana
J SC{1,2,...,r} ses se{1,2,....,r}—S

with j € {0,1,...,7}; see [1, section 1.4]. Also, we have an isomorphism [1,
Proposition 2.5]

Spy2(T1(N), F) @ Sym" Hip(A/F) = Fil" Ty mo  HHL(ET(TL(N)) x AT /F)

sending f ® n to wy An for the differential form wy corresponding to f as in [1,
section 1.1].
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5.2. Chow groups and Heegner cycles

This subsection gives definitions related to Chow groups and defines Heegner
cycles that will be used later in the paper.

For an algebraic variety U defined over a field F, CH*(U/F) is the Chow
group of codimension a cycles in U defined over F' up to rational equivalence,
and the subgroup CH§(U/F) is the group of such classes of cycles homologically
equivalent to zero up to torsion (see [8, p. 426] and [26, section 1]).

See [21, section 4.1]. Recall the ideal € of Ok and the isomorphism Z/NZ =
O /€ from subsection 2.2. The isogeny C/Ox — C/€1 gives 2y € Xo(N)(K)
by CM theory. Choose an x € X(N) that is sent to 2y under the standard map
X(N) = Xo(N); the fiber E, for Ex(T'(N)) = X(N) at = (which is also the
fiber E,, for Ex(I'1(N)) — X1(N) at the image 7 of z in X;(N)) is an elliptic
curve with complex multiplication by O, so the variety Graph(y/Dx) exists
in E2. We have an embedding i, : E¥~2 < ¥ 2(I(N)). Define the Heegner
cycle

Anraro = 7o k—2(ix)« (Graph(v/Dg)*?~1) € CH?(EF2(D(N)) /K1) @21 Z,
and let
Zna19 = Ng, ykAarg € NKl/K(CHk/2(gk_2(F(N))/Kl) ®z Lp)

be the image of Apsq19 under the norm map Nk, /g = deGaI(Kl/K) g.
See [2, section 3]. Similarly, with an embedding i, : EX~2 < EF=2(D';(N)),
we define

Aca1s = 3171k 2(iz, )+ (Graph(v/ D )*/>71) € CHM?(EF2(T1(N))/ K1) ©2Z,

as a Heegner cycle. Also, for an ideal a of O, define the modified Heegner
cycle

Acars,e = Tpam p-2(Graph(v/ D)y 5 () € CHM(EN2(T1(N)) /K1) @22y

For an isogeny ¢ : A — A’ between elliptic curves A and A’, where A’ has
I’y (V) structure, consider

Graph(p)” C (A")" x A" C E"(T1(N)) x A"

(embedding in the fiber in E"(I'; (V) at the point linked to A’) and the corre-
sponding Heegner cycle A, = m; ,mo,(Graph(y)”) in E™(T1(N)) x A" (where
T1,r, T0,r act on E(I1(N)), A respectively). For each nonzero integral ideal
a of Ok and elliptic curve A, we have a “modulo a-torsion” isogeny ¢(A,a) :
A — A/Ala] (see [1, formula 1.4.7]).

Choose representatives a of the class group of K so that the numbers N(a)

seen as elements of @p are p-adic units. Then, taking a sum over the classes [a]
of the class group of K, define

1 1 S _
ZBeDaPri3 = (/2= 1) Z NF21(q) Ay, ) € CH(E T (TL(N)) X B} ) @2y
[a]
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5.8. Cohomology

For a topological group G and a G-module U, see [29] for the definitions of
the continuous cohomology groups H™(G,U), the restriction and corestriction
maps resg,g : H"(G,U) — H"(H,U) and corg g : H"(H,U) — H"(G,U),
and the conjugation maps g, : H"(H,U) — H"(H,U) for g € G and certain
subgroups H of G. For additional background, see [30, Appendix B] and [36].

If G acts on finitely generated free R-modules U;, Us for a commutative
ring R with 1, then H'(G, Hompg (Us, U;)) = Ext! (Us, Uy) (see [38, Proposition
4] for the case Uy = Us); for subsection 5.4’s representation Vy, this yields an
isomorphism between H f(K,,, V) and the group Extl ;(Qp, V¢) of crystalline
extensions Vy < E — Q, of Gk, -modules over Q, [26, section 3.4].

Suppose G acts linearly and continuously over a finitely-generated Or-module
U, and B is an Op-submodule of H"(G,U). For an element ¢ € B that is not
in Bior, define ind,(c, B) to be the maximum of the set

{M € Z: M >0 and there is ¢’ € B such that ¢ —pMd e Bio }-

Intuitively, just as the p-index ind,, of a positive integer is the number of factors
of p in the prime factorization of that integer, so ind,(c, B) can be viewed as
the number of factors of p in the class ¢ thought of as an element of B/Bio,.

5.4. Galois representations

Recall subsection 5.1’s projectors g, Tp,1, T2 k—2.

The Galois representation T}, linked to f can be defined as follows [21, 23]:
For the p-adic sheaf F = lim F;, over Y (N) with the sheaves

Fo = Sym" (R'm.(Z/p" e, (r(w))
over Y (), define the Galois representations
Jp = mHL(X(N)®Q,j.F)(e), T, ={z € Jp : Iyz = 0}

where Iy is the kernel of the O(f)-algebra map from the Hecke algebra with
coefficients in Z to Og(s) sending T'(¢) to a(f, f). As mentioned in [23, p.
102], because f is a newform, a map R : J, — T, exists such that R respects
Hecke operators, R is Gg-equivariant and for some non-negative integer c, the
restriction of R to T}, is multiplication by p°. By [23, Proposition 2.1] (which
comes from [31, Theorem 1.2.1]) and [23, Lemma 2.2], H}(X(N) ® Q, j..F) is
torsion free (this is nontrivial) and there are isomorphisms

ma -2 HZ (EF2(D(N)) © Q, Z/p") (/271
= Hy(X(N)®Q,juFn) = Hy(X(N) ® Q, juF)/p"
so that identifying 75 with a projection on o HZ(EF2(T(N)) © Q,Z,)
yields _ -
Jp = wpma g2 HA(EN 2 (D(N)) @ Q, Zy) (€"/72).
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Using the standard map Og(y) ® Z, — Og(p), — Oy, for the first tensor

product below, define

Ty =T, ®oq;y 02, O, Vi =Tt ®o0, L, Wy =T ®0, (L/OL).

w(f)

The usual short exact sequence Ty — V; — Wy and maps p=" : Ty — Wy[p"]
for n € Z~ exist, as in [30, sections 1.1-1.2].

Let V' (respectively, Vfg ) be the Deligne/Scholl representations over L, pure?
of weight 1 — k (respectively, k — 1), with det(x] — F) = 2% — ayx + 71 the
characteristic polynomial of arithmetic (respectively, geometric) Frobenius F at
{1 Np [4, section 12.5]. Then:

(a) V{ =Homg(V{,L).

(b) V7 (€¥/2) is self-dual by a Poincare duality map qu(ek/Q) X Vfg(ekm) — L(e)
[27, section 1.3], so V{(e"/2) =2 V(e =(F/2)),
(c) Vp = VI(eH/2) = V(' =R/2)) s pure of weight —1 and Homp, (Vy, L(e)) &
V.
Let T}’ := Ty(e*/2), so that ij ®z, Qp = Vfg as Galois representations.
For the p-adic sheaf F! = SyInk72(R17T*(Zp)gY(F1(N))) over Y1 (N), we sim-
ilarly have an isomorphism (see [32, section 2.8])
T2 H (EF2(T1(V) © Q, Zy) = HY(X1(N) @ Q, i1 o F)
and we define

Ty =1 HY(X1(N)®Q, j1,.F')(€) 2 mpamip—oH (EXHT1(N) @ Q, Z,)(e)

after identifying 7 ; with a projector on 7T17k_2H:t((€:k72(].—‘1 (N))®Q,Z,). Note
that F! = Ty (N)= Yy (N),«F (Where Ty (n) Sy, (v),« has the obvious meaning); in
fact,

Ty = e HY (X (N) © Q51 F1)(e) 2 apHY(X(N) © Q4. F)(e) =
(see [25, section I1.2.5] for the analogous result with Xo (V) instead of X1 (N)).

5.5. Selmer group conditions

We define the Bloch-Kato Selmer groups following [21, section 2.2]. (Note the
small difference in principle between this and [23], which relaxes all conditions
for places over N.) For a number field F, letting I,, be the inertia group in G,
for a place v { 0o of F, define

HI(F V)* ker(Hl(FU’Vf)_)Hl(I’lMVf)) /U)[p
PEe T T ker(HY(Fy, Vi) — HY(F,, Vi ®g, Beris)) v | p

2“Pure of weight w” means that the eigenvalues of geometric Frobenius at v have absolute
value (Nv)w/2,
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and let H(F,,Ty) (respectively, H(F,, Wy[p"])) be the inverse image (respec-
tively, image) of H}(F, Vy) under the standard map H'(F,, Ty) — H'(F,, V)
(respectively, p~" : HY(F,,Tf) — H(F,,W¢[p"])). Define the global Bloch-
Kato Selmer groups

H{(F,Ty) = {ce H'(F,Ty):V places v of F': ¢, € H{(F,,Ty)}
H{(F,Vy) = {ce H'(F,Vy):V places v of F: ¢, € H(F,,Vy)}
H{(F,Wy) = {ce H'(F,W;y):V places v of F : ¢, € H}(F,,Wy)}.

The Shafarevich-Tate group is
Hlf(Fvwf) = H}(Fa Wf)/H}(Fvwf)div (4)

which has finite cardinality since the Or-module H } (F, W) has finite corank.
As in [15, section 2.3.4], we define the anticyclotomic Selmer groups

ker(H'(K,, V) — H'(I,,Vy)) split v { poo
H! (K,,V};) = HY(K,, V) v =T
0 otherwise

H!.(K,Vy)={ce H'(K,Vy):V places v of K : ¢, € H..(K,,V})}.

Define the local cohomology groups H..(K,,Ty), H!.(K,, W) by taking preim-
ages and images of H} (K, V), and define the cohomology groups H!.(K, Ty),
H!.(K,W¢) as the groups of global elements localizing to elements of H! (K, ),
H!.(K,,Wy) respectively at all v.

5.6. The p-adic Abel-Jacobi map

As in [26, section 1], for any smooth proper variety U defined over a field F'
and any n € Zx>o, there is a p-adic Abel-Jacobi map

AJY : CHJ(U/F) — HY(F, H*" YU, Zp)) (")

coming from the cycle class map and Hochschild-Serre spectral sequence. The
Abel-Jacobi map is Galois equivariant (see [21, section 3.2] and [23, Proposition
4.2]) and commutes with pushforwards and pullbacks of correspondences ([23,
proof of Proposition 4.2]; see [16, section 2] for the complex algebraic geometry
version of this result).

We consider the p-adic Abel-Jacobi map in the following three different set-
tings.

As described by [21, sections 3.1-3.3] and [23, chapters 2-4], for any field F'
containing Q, there is a p-adic Abel-Jacobi map (extending the map ®,, 1, in [21]
by Z,-linearity)

& : CHI(EF2(T(N))/F) @5 Z, — H'(F, HS Y (EF2(T(N)) ® F, Z,(*/?))).
Composing ® with the map that is H'(F,-) of the composite

TBT2,k—2 R

HITHEN(D(N) © F, Zy(4?)) Ip

T
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and then applying ®Oy, or QL yields compatible Abel-Jacobi maps
AJp : CHY?(EF2(T(N))/F)© O, — HHF,Ty)
AJp: CHYP(EF2(T(N))/F) @ L — HHF,Vy).
See [2]. Similarly,
Dears - CHy (€2 (T1(N))/F)@2,y — H (L, HiH(EF A (T1(N)0F, Zy (/%))
is a p-adic Abel-Jacobi map which, together with the composition of maps

TB,1T1,k—2 R

Sy, —2r 7,

HEHEM2(T1(N)) @ F, 2, (/2))
and the application of ®0p,, yields an Abel-Jacobi map
AJL s CHY?(EF2(Ty(N))/F) ® Op, — H'(F, Ty).

See [1, sections 3.1-3.4], taking that paper’s r to be k — 2. Let F be a
field containing K7, let A and A’ be elliptic curves over Q, let A’ have T';(N)
structure, and let ¢ : A — A’ be an isogeny for which A, is defined over F.

(Note that E"(T';(N)) x A" is defined over Q [1, p. 1056].) Define

JBeDaPr = Wl,kfz’ﬂ'o’k,QHgtkiB(gk*Q(]_—‘l(N)) % Ak*Q’ Qp(ckfl))
Jeipapr = Wl,k—zﬂo,kszfZFg(Sf_g(l“l(N)) x Ak=2 7, (k1))
Tipape = s omos 2 Hi S(E AN x A7) F)(E2)

There are compatible p-adic Abel-Jacobi maps

AJ};A . CHéC*l((Ek—Q(I‘l(N)) x AP /F) @y Ly — H}(Fa J]ZBI;DaPr)
AT CHEHN(E 2 (01 (N)) x A7)/ F) @2.Qp = H(F, Jpepapr).

5.7. Shafarevich-Tate-like groups

Following [21, section 3.3], we define a variant of the Shafarevich-Tate group
which will be used in section 8.

For each positive n € Z, the map p~" : Ty — Wy[p"] and the inclusion
Wyp™] < Wy[p"*1] yield maps on cohomology

p_n:Hl(K’Tf) — Hl(K7Wf[pn])
L: HY(K,W¢p"]) — HYK,W;p"t)).
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These maps combine to form a commutative diagram

H\(K,Ty) ——— H' (K, W;[p])
VP v1
HY(K,Ty) — = H (K, Wy [p")
!
Hl(Kva)%Hl(Kvwf[pn-H])

VP Vi

from which the direct limit of the maps p=" : HY(K, Tf) — H'(K, W¢[p"]) is a
map
HY(K,Ty) ®o, (L/OL) — H' (K, Wy). (5)

Define ITT,» (K, W) to be the quotient of H} (K, W[p"]) by the image under
the map p~" : HY(K,Ty) — H'(K,W¢[p"]) of (im AJk)/p™(im AJk). Sim-
ilarly, define the Shafarevich-Tate-like group II(K, W) to be the quotient of
H}(K,Wy) by the image under the map (5) of (im AJx) ®o, (L/Or). Then
we have a commutative diagram of short exact sequences

(im AJxe) /p(im AJge ) HY(K, Wi[p]) ———= T, (K, W)
VP V1 y1

(im AJxe)/p" (im Ay ) HY(K, W [p"]) ——— [ (K, W)

v b v

(im AJK)/p"+1(im AJK)CP—> H} (K, Wf [pn_HD —_—> Hlpn+1 (K, Wf)
VP v 2

in which each term has finite size, and these sequences’ direct limit is
(im AJx) ®o, (L/OL) < Hj(K,Wy) — HI(K, W)

which yields a surjection III(K, Wy) — I (K, Wy) by (4), since (im AJx)®o,
(L/Oy) is divisible. Note that IIT; (K, W) has finite cardinality.
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5.8. Logarithms on local cohomology

In this subsection, we define logarithm maps on local cohomology groups.

Recall that H'(K,,, Vy) = Ext'(Q,, V}) via an isomorphism which takes the
subgroup H(Ky,, Vy) to Extl.;s(Qp, V}) (see [26, section 3.4]).

Define _ _
V = mpmo o Hig (EF"2(T(N)) /L) (*?)
and let Ext} (L XN/) consist of the classes of extensions V < E — L of filtered
Frobenius modules [1, sections 3.2-3.3]. As in [1, sections 3.2-3.3] and [24,
Proposition 1.21 and Corollary 1.22], since the extension L/Q, is unramified, an
etale-versus-de-Rham-cohomology comparison theorem of Faltings [7, Theorem
5.6] yields a map

comp : Extl,;,(Q,, J, ® L) = Ext},, (L, V) 2 V/Fil'V.
From the inclusion T}, < J,, we obtain a map
H}(KUU ) Hom(Qpa Vf)) = H}(Kvov HOIH(Qp, TP®L)) - H}” (Kvoa Hom(@Pv J;D®L))

which, because of the isomorphism between Hf(K,,,-) and Extl . (Qp,), is
identified with a map

J/ : EXtiris (@P7 Vf) = EXttlsris (QP7 TP ® L) - EXtiris (Qpa JP ® L)

of which thie image is sent by comp to a module which we’ll call UC ‘7/ Fil’V.

Define 1% to be the annihilator of Fil’V with respect to the Poincare dual-
ity map V x V. — L (see also [27, section 1.3.4]); then that duality gives an
isomorphism J : V/Fil’V = Hom (V, L).

We define the logarithm as the composite

log : Jocompo J : Hi(Ky,, V) = Extl ;. (Q,,V;) = Homy(V, L)
and, for a differential form n € V, we define log,, : H}(KvO ,V¢) — L as the map
sending C € H}(KUO, V) to (log C')(n); here we adapt notation of [15, section
3.5].
Those maps log, log, were adapted from the following logarithms of 1,
sections 3.1-3.4]. Let F be a field containing K1; let A be an elliptic curve over
Q. There is an isomorphism

logy + H}(F, Jpepapr) — Homp (Fil' J& ., F)

given in [1, p. 1070] as the composition of three vertical maps in that source’s

diagram: the isomorphism H(F,-) = Ext’ . (Qp, "), then a comparison isomor-

phism, then a Poincare duality map. Precomposing log};’A with the canonical
z .

map H}(F, J5eDapr) = H}(F, JBepapr) yields a map

IOg;’A)Zp : Hy(F, JéﬁDaPr) — Homp (Fil' J§ ¢, py, F)-
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From log}?’A and log};A’Zp, for each n € Fil' JE%, . we obtain compatible maps

1og};;1 tH{(F,Jpepapr) — F (6)

logy 7« HY(F i papy) = F (7)

sending a cohomology class C' to (log;A C)(n) and (log},A " C)(n) respectively.
We may take n = wys A wk/g 1772/2 ! for [1]’s differential forms wy, wa, na.

6. L-functions

6.1. The Rankin-Selberg L-function

For classical cusp forms g, h that are eigenforms for the Hecke operators away
from their levels, we have the classical Rankin-Selberg L-function L(s,g x h).
We write LP(s,g x h) for the L-function L(s,g x h) without the Euler factor
over p.

For classical modular forms g,h € Si/ (To(M), x) for a common Dirichlet
character x, the related function D(s, g, h%) = >_.° | a(n, g)a(n, h¢)/n* satisfies

(g, 1) oy = vol(To (M)\b) - (T(K')/(47)* res oy D(s, g, h°) (8)

as can be shown using the Rankin-Selberg method [34, p. 35], where

(9:)roan) = iy 9T ATy dady/y?

is the Petersson inner product (denoting 7 = = + iy € C).
See, for instance, [1, pp. 1088-1089] and [3, pp. 222-224].

6.2. Local characters and representations

The following expressions will appear in p-adic L-function interpolation for-
mulas. Notation is adapted from that of [11, 12, 37].
For a (not necessarily unitary) character n: Q) — C*, define

)
W= 5 e (gt )
@O C(n)
u D 7))

where the ideal C'(n) of Z,, is identified with a generator of the form p’, ¢t € Z.
Similarly, for a (not necessarily unitary) character n : K\ — C*, define

M “Hu)exp | —2miTr S
Guo (1) = Nsa(C) ue(oK§C(n))X" ) p( 2 TK“O/QP<250(77>>>

where the ideal C(n) of Ok, is identified with a generator of the form p?,
t € Z, and where the number § € (Rsoi) N K is chosen so that the fractional
ideal {Trg,q(x7/(20)) : 2,y € Ok} of Q is coprime to pN.

19



Recall that for (not necessarily unitary) characters n : Q — C* and 7’ :
Q, — C*, we have the principal series representation 7(n,n’) or (for o' = | -
|, !) special representation o(n,7’), which is an infinite-dimensional irreducible
subquotient of the space of locally constant functions GL2(Q,) — C on which
the character

( 0 4 ) = (@)’ (d)la/d];

gives the action of the Borel subgroup of GL2(Q)) by left translation.

For P and A as in subsection 4.2, let the characters np,,np, : Q) — C~
be so that for the automorphic representation 7(F(\, P)) = ®,m,(F(), P)) of
GL3(Ag) corresponding to F'(A, P) (see for example [10], [11], [14, section 9]
and [20, p. 333]), we have that m,(F(A, P)) is equivalent to m(npy,np,) or

a(Mpps Npp)-

6.3. p-adic L-functions

This subsection gives interpolation formulas for different p-adic L-functions.
Fix an even positive integer k. In this subsection, the character P,. : 'y — @:
and the anticyclotomic character ¢ : Zg (€)por — @; are allowed to vary so that,
for the characters P = P,.oprq. : ' — @; and Py : Zg(€) — @;7 there is a
positive integer n > k/2, depending on P,., such that (Py)9(2,.) = 22z "
Define the variable j = (2n — k)/2 € Z>(. Each interpolation formula evaluates
Py : O[[P%]] = @, at a p-adic L-function.

6.3.1. The Katz p-adic L-function of Hida and Tilouine

Let the Hecke character & : K*\Aj — C* with infinity type 2o — 2517257
be such that ££7¢ has p-adic avatar induced from (P) o sq.

From a 1993 paper of Hida and Tilouine [12] (see also [37, Definition 7.8]),
there is a Katz p-adic L-function Ly, (K) € 5?[[1“;(]] satisfying the interpo-
lation formula

PaC(LI_(atz(K)) = F9301,93051,93 (9)

where the function Fys and the constants C g3, Ca 93 are given by

F93 = L(Lfg_c)gm«g_lgc)vo)r(?n + 1)
(1= p e 4(T0)) (1 — €6 (m0) [ [ (1 — (Nw) 1€ (v)),

v|C

Ci93 = 2im(d)/m, Ca 93 = (Qp/Qoo)4 (m/im(5))*

for certain periods €, € (3757", Qoo € C defined in [12], using subsection 6.2s 4.
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6.3.2. The L-function of Hida
Consider Hida families

A hons1 (N| D |, 0%") — O [[Tk]] and X : hy (N, O4") — O% [T k]

Fix @ so that F(X,Q) = f¢, ¥ = 1 and k(Q) = k. Let P1 = P o sqo pry,.
Assume 1}, =1 (this is an assumption about A). Assume that each of p?(¥) =
Cng.p), p7' @ = Cng.p) poP) = C(np, ,) has at least one factor of p. Assume
F(\, Py) is p-ordinary.

From a 1991 paper of Hida [11], there is a p-adic L-function D, € 6%T[[F;(]]
satisfying the interpolation formula

Pye(Dg) = F9101,0105 9, (10)
with
o 1 90(1Q.9)9p (1 )
o1 = :
W'(F(A, P1)) 9p(Mp, )
D(n+ 3k)(n — ik + 1)p°® LP(0,F(\, Py) x f)
Py p (PP @yt (pO)) <F()\7P1)7F()‘vpl»l“o(N\DK\)7
Cro1 =g (7™ @) Yoo (— )V N|Dk|/(2m),

Co01 = 1/(167T2|DK|)

where for primitive cusp forms f; € Sy (I'1(M)) of level M, the number W'(f1)
is described in Hida [11, pp. 344-345] as part of a decomposition W(f1) =
W' (f1)W,(f1) of the W factor W (f1) € C with [W(f1)| =1 such that

W (g ) =W

see also [5, exercises 1.5.4, 5.5.1 and section 5.10] and [11, pp. 344-345] (where
formula (4.10b) should have no minus sign).

6.3.3. The L-function of Wan

For this subsubsection, let I = O}"[[T'k]]. Fix an irreducible component of
IR0 L, OY¥" and let that component’s associated ring have normalization I'*" (see
[37, before Theorem 1.1]).

For a set S of finitely many places of K including vy and 7y, Wan [37,
section 7.5] defines two related p-adic L-functions in I“"[[I'k]] which we call
L3, and LS, (Wan calls them Lj gH 4% and cg €K respectivelyz. For the
Hida family @ : I — @p corresponding to f, write L3, (f) = Q(L3y,,,) and
L3 (f) = Q(L5,,,); let their images under prq. be LS (f) and Ly (f)
respectively.

We have Lyn? (f) = DL e (K), and Lyga? (f) = CwanLyar ( f) for a
constant Cyyqn € O Wthh Wan calls Ct g ¢. Starting with LWan or L , and

omitting Euler factors at primes over S\N,, yields L%, or L%, respectlvely.
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6.3.4. The BDP L-function

Let the Hecke character x : K*\Ax — C* be so that P is the p-adic
avatar of y“'N¥/2. Let b be an ideal of Ok coprime to Np, and let by be a
number in Og, such that b€ = byOk.

From a 2013 paper of Bertolini, Darmon and Prasanna [1], there is a p-adic
L-function L;}:J,VI’;( f) e Ogr[[r;(]} satisfying the interpolation formula

—Np n
Pac(Lgpp(f)) = F1301,1302,13 (11)

with

Fia =1 (n * ;k> " (n a %k - 1) (PY)™9(0)1 (0 se) < (Nicjob)
(1= x" @o)alp, f) + x 2 (@o)p" 1) - L(0,0,-1 x f),

2y/|Dk]| Q7 by [bla,x
Chriz = —NVIZE yropoy O — 2T ONIBIAK
1,13 47(—1)k/2 ( ( >Q))7 2,13 ng *N
where 10, /¢)x is obtained by precomposing 1 with the projection from Zx (€)¢or
to its (O /€)*/{£1} part, using the decomposition (2), and the periods €,,
Qo are as before, following the argument of [15, section 5.2].

As in [15, section 5.1], for a set S of finitely many places of K such that

S D Ny, define

Lypp(f) = Lppp ()  Tlesx, Lo(f)

where L, (f) is the Euler factor at v.

6.4. Comparison and missing factor
The line of argument of [15] is followed and adapted. The arithmetic O}"-

algebra map Py, : (5?[[17(]] — 6}7 and the character x are as before.
From subsection 6.3’s interpolation formulas (9), (10) and (11), we obtain

Pac( Lyt (£)) = Pac(Dg Ligap(K)) = C(f, Pac)Pac(L5p 5 (f))

writing C(f, Pae) = FC,C% where we define

~ Fo1 F ~ C191C ~ C39:C
Foofofos 5 ClonCues 5 Co0iCoss
Fi3 Ch,13

As in the argument of [15, section 5.2], F is a constant times the nth power of
a constant. (We have U6, -1 = F(), P1) and

L(1, 79T (2n + 1)
(U1, Uby=1)ro(N| D))
by equation (8) and the fact that
ress—on+1D(s, Ul -1, U0 1) = (constant)L(1,££7°)
holds.) So we can write C(f, P,.) = C1C¥ for constants C7, Co.

= (constant)(167%)"
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6.5. Interpolation

Lemma 6.1. There is a constant C, € O¥[1/p]* and a p-adic unit u €
5ET[[FI_(]}X such that for all Py with ¢(pN) = (p — 1)p(N) | n, we have
Pac(Cru) = O(f, Pac)-

Proof. Let Cy be as in subsection 6.4, and let u be such that P,.(u) = C¥
identically; this is possible since ¥?®N) = 1 and the infinity type exponents of
Py are £n. O

The maps P, as in Lemma 6.1 are dense in Spec 6?[[1“;(]], =) E;Vﬁ‘;(f) =
Do Ly (K) = CluL;g]’;(f). So we have shown the following theorem.

Theorem 6.2. In O¥"[[Tx]] ®0, L = O [[Tx]][1/p], we have
(Lppp(H) = (Ligar(£)) 2 (Lygar ()

7. From Wan’s L-function to cohomology: Iwasawa theory

This section collects progress in one direction of an Iwasawa main conjecture
and, as a consequence, links Wan’s L-function to the cohomology of the (Q,,/Z,)-
representation Wy of the modular form f.

7.1. Notation

We use and adapt notation of [11, 35, 37].

As in subsection 4.2, take a cuspidal Hida family A : hy(N,0r) — I,
with I a finite-rank Z,[[t]]-module and an integrally closed domain, and let the
continuous Z,-algebra map @ : I — @p correspond to f via A, with Q[I] = Oy.

Choose an irreducible component of I&0, A%T, and let the normalization of
that component’s associated ring be Ivr (see [37, before Theorem 1.1]).

Let T be the Galois representation coming from A. (In [35, section 3.3.10],
T) is denoted by pg; Hecke duality identifies that source’s f with our X\.) We have
T\ = I? and T7 = O%; for a sufficiently large L/Q,, we have Ty ®; Oy, = Ty.

Let Uy : Gg — ' C OL[[FK]]X, V_ :Gg »T'yp C OLHF;(]]X be the
standard projections. Write ()* = Homop, (-, L/OL) for the Pontryagin dual.
The module O [[I'k]] acts on Op[[T'k]]* so that (zF)(y) = F(yx) for z,y € Ag
and F € Op[[T'k]]*. Define the modules

TA,K,g = T)\O—gfc (622_(”/22)) ®1[[1‘K” IHFK]](\I/;(C) ~
Tixe = Tioe—e(@ /) @0, r. OLlCk](¥E).
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For any finite set S of finite places of K, such that S includes vy, U9 and all
places at which V; ramifies, define the modules

Self K¢ — {c € HY (K, T\ k¢ @ I[[Tk]]*) : ¢ unramified at vy and outside S}
Sel?K,g = {ce HY(K, Tt ke ® OL[[lk]]*) : ¢ unramified at 7 and outside S}
X§K,§ = (SeliK,g)*
)f?jk,f = (Selfre
Xike = Xlwe @riray I [C]
Xike = Xike®ora O [Tkl

7.2. Main conjecture for Hida families

Wan proved the following main conjecture (see [37]; the result is in the final
proof of that source’s Theorem 1.2):

Theorem 7.1 (Main conjecture). Assume some nebentypus-1 weight-2 special-
ization fy of a Hida family A satisfies:

(i) fo is the ordinary stabilization of a newform of level divisible by some odd
prime q not split in K.

(i) The Galois representation TJ?O has wrreducible residual representation TT?O|GK,

and TT?O s ramified at q.

Suppose the Hecke character & : K*\A} — C is of infinity type 200 — 27z
for some positive integer u divisible by p — 1, and is such that the p-adic avatar
of &] - |% (wy, - wg,) factors through Tk .

Let S be a set of finitely many places of K, including all places dividing
pNDK . =R

Then, letting Py, ..., P, be the height 1 primes in I*"[[Tk]|] dividing L3,
that are pullbacks of height 1 primes in IA‘”’, we have

~

S Tur : S
Lwan " [k lp. Py, 2 Fittpurp, gy, o0 XX ke

in which the notation ]'\“T[[I‘K]]pﬁp1
primes P; and p as in [37].

p, indicates localization with respect to the

.....

7.3. From Hida families to modular forms

We follow the argument in the proof of [37, Theorem 1.2]. In this subsection,
S is a set of finitely many places of K including all places over pN D

Recall L3, (f) = Q(L§,,,.) € O¥[[lk]] ®o, L for Q corresponding to
f via A, Applying @ to Theorem 7.1’s result, and noting Fittr,;(M/IM) =
(Fittg M) (R/I) for an R-module M and ideal I in a noetherian ring R (see [6,
Corollary 20.5], [35, section 3.1.5] and [37, section 2.2]), we obtain

)A(ﬁ\g,K,g ®o, L >
(ker Q)(XY k¢ ®0, L)

L%/an(f)(é\%r[[rl(]] Ko, L) 2 FittézT'[[FK]](X)oLL (

24



and therefore

Liyan (O [Tk]] ®0, L) 2 chargurr, oo, L ( —

(ker Q)(X¥ ¢ @0, L)
because the characteristic ideal is the minimum principal ideal containing the
Fitting ideal (see the last sentence in the proof of [15, Corollary 3.4.2]).

Now Wan [37, Proposition 2.4] proved an Op[['k]]-module version of the

following result for f of weight 2; that argument carries through for higher
weight to give:

Theorem 7.2. There is an 5%’”[[FKH—module exact sequence
M — X5 e/ (ker Q) X5 e = Xipe =0

where M ®¢, L has annihilator of codimension > 2 in Spec 6%T[[FK]] ®L, ie.,
is pseudo-null. In OY"[[I'k]] ®o, L, this implies

)A(S?,K,g ®o,, L
ker Q)(Xf,K,{ ®o, L)

_ N S
chargurr, 100, 1 <( = chargurr, 10, L(XfK®0. L)

SO
Liyan(DOF k] @0, L) 2 charger v 100 (X ke ©0, L).

7.4. From Greenberg to anticyclotomic: characteristic ideals

In this subsection, the set S is as before. The following arguments are
adapted from [15, section 3.4] (that source’s ¥ is our S\N,).

Define M = Tf7K7§ ®Xoy, OL[[F[_(]]* and M = Tf7K7£ XKooy, OLHFKH* analo-
gously to [15]. For M € {M, M} and e € {ac,Gr}:

(a) Identify H'(Kgs/K, M) with the space of classes in H'(K, M) unramified
at all primes outside S (see [30, Lemma 1.5.3]).

(b) Let HX(K,M) C H'(Kg/K,M) be the space of classes in H(K, M)
satisfying the following conditions:

— If e = ac (“ac” is for “anticyclotomic”): no condition at vy, unrami-

fied at finite primes outside IV, splitting in K, 0 at all other primes.

— If e = Gr (“Gr” is for “Greenberg”): no condition at vy, unramified
at all other primes.

Let Hol,S\N,,(K’ M) C HY(Ks/K, M) be the space of classes in H!(K, M)

satisfying the above conditions at primes outside S\ N, (but not necessar-
ily at primes in S\NN,: the conditions are relaxed at these primes).
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(c) Define

Xes\w, (M) = (H, g\, (K, M))* ~
Kes\w, (M) = Xes\w, (M) @0, iy OF [Tk ]
Xes\v, (M) = X¢5\n,(M) @0, (r) O [[Tk]]

Note that Sel?’K’g = H(l;nS\Np (K, M) and XfS’K’g = Xgrs\N, (M).
The argument of [15, section 3.4] goes through, yielding
Theorem 7.3.
(v = DO Tk + chargr, 1 X7 k¢
(v+ —1OL[[Ik]]

7.5. Half of an Iwasawa main conjecture R
From Theorems 7.2 and 7.3, we have the following over O}"[[I'%]][1/p].

D) ChaI'éZT»[[F;(]]Xac,S\Np (M)

Theorem 7.4. For S including all places of K dividing pN Dy, we have

~

L;V’fn(f) ) 6%7"[[1—‘;(]][1/17] 2 Char@gr[[r}”u/p] (Xac,S\Np (M))

There is a g = 0 result for L;}:I,V;(f) due to Hsieh ([13, Theorem B]J; see

also the Remark on the previous page in that source). Recall the isomorphism
Oy ([T k] = OF7[[t]] sending y— to 1+ ¢.
Theorem 7.5 (Hsieh’s p = 0). As in the Weierstrass preparation theorem,
factor the p-adic L-function L;g\’;(f) as Lg,gf;(f) =p'R()U(t), where p € Q,
U(t) € OF[[t]* and the monic distinguished polynomial R(t) € OY"[t] is chosen
so that deg R is minimized. Then p = 0.

Using that theorem, the reasoning of [15, Theorem 6.1.6] goes through to
prove half of an Iwasawa main conjecture:

Theorem 7.6. For any set S of finitely many places of K containing N, (pos-
sibly S = Np), we have
-5 Aur — v
LWan(f) 071 [[FK]] 2 Char@gr[[r;(”(Xac,S\Np(M))~

7.6. Consequences R R

Let the continuous OY"-algebra map Py : O}"[[['x]] — Q, send each element
of T'x to 1; under the identification égr[[rg]] = 6%’"[[1?]] with y_ — 1+ ¢, the
map P; has the effect of substituting ¢ = 0.

Define

C(W) := #H (K, W) - #H°(Kz0, W) - [[ e #Hpp (Ko, W)

where S’ is the set of finite places v of K such that v { p, V; is ramified at v,
and v is above a rational prime that splits in K.
The argument of [15, section 6.2] finally yields

Theorem 7.7. We have
ind, Py (Lygo? () < ind, (C(Wy)#HL (K, Wy)).
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8. From cohomology to III

In this section, we adapt an argument of Jetchev, Skinner and Wan [15,
section 3.5] to relate #H_} (K, Wy) and #1I(K, Wy).

8.1. Main formula
Theorem 8.1. Suppose the following hold.

(i) Congruence: k/2 is not congruent to 0 or 1 modulo p — 1.
(i) Rank 1: The Op-module im AJy has rank 1.
(iii) Finiteness of Sha: IIL(K, W;)[p™] has finite cardinality as a set.
(iv) Localization: For each placev | p of K, the localization map H (K, Wy) —
H}(Kv7 W) restricts to a map
(im AJx) @0, (L/Or) — (im AJk,) ©o, (L/OL)
of which the kernel is torsion.

(v) Local corank 1: For each place v | p of K, the Or-module H}(KU, Wy) has
corank 1.

Define 6, to be the cokernel of the localization map
locy, /tor : Hi (K, T¢) — Hj(Ky,,Ts)/H(Kuy, T )tor-

Then
#H;c(Kv Wf) = #H—I(K, Wf) : (#51)0)2 (12)

and H}(K, Tf) = Oy.

Proof. We show that for (T', V, W) = (T, Vy, W), the hypotheses of [15, Propo-
sition 3.2.1] are true, which yields (12); we also show (K, Wy) = I (K, Wy)
and then prove H}(K, T¢) =2 Or.

As in [15, section 3.5] (noting assumption (i), V§ = Vy = Homp, (Vy, L(e)),
p {1 N and that the Gg-representation Ty/mpTy is irreducible), to apply [15,
Proposition 3.2.1], it is enough to show the following two hypotheses of [15] for
W = W;: (corank 1) the Op-modules H (K, W )aiv, H}(Kyy, W), H(Kg,, W)
have corank 1, and (sur) the localization maps H}(K, Waiy — H}(KUO,W)
and H}(K, Waiv — H} (K%,, W) are surjections.

In the short exact sequence

(im AJx) @0, (L/OL) — H(K, W) — LK, Wy)[p™]

of Or-modules, the first term has corank 1 because im AJg has rank 1 (assump-
tion (ii)), and the third term has corank 0 (assumption (iii)), so H}(K, Wy)

and H}(K, Wy)aiv have corank 1. So by assumption (v), (corank 1) holds for
W= W;.
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Let v | p be a place of K. The Op-module (im AJk) ®o, (L/Or) has
corank 1, and it is isomorphic as an Or-module to L/Or. By assumption (iv),
(im AJg)®0, (L/OL) is sent by the localization map to (im AJk,)®o, (L/OL)
with torsion kernel, so (im AJk,) ®o, (L/Or) has corank at least 1. But
(im AJk,)®o, (L/OL) is an Or-submodule of H}(K,, W), which has corank 1
(assumption (v)). So as Or-modules, (im AJk,) ®o, (L/Or) = H(K,, W) =
L/Oy, and each class in H}(Kv, W) is the image of some class in (im AJx)®o,
(L/Or) C H}(K, Wi)div. This implies (sur) for W = Wy.

So [15, Proposition 3.2.1] applies, yielding (12).

There are quotient maps

H}(K,Wf)

i
(K, Wy) = Hp(K Wy)/((im AJk) ®o, (L/OL))
Iy (K, Wy) = Hi(K, Wy)/H (K, Wy)div.

Since (im AJk) ®o,, (L/Oy) is divisible, it is the maximal p-divisible subgroup
of H}(K7 W) (because H}(K, W) has corank 1), so II(K, Wy) = I (K, Wy).

For a uniformizer wy € my of L, taking the long exact Gi-cohomology of
the short exact sequence

Ty S5 Ty — Ty Jwi Ty
implies that the sequence
(Ty /@ Ty)% — H' (K, Ty) = H' (K, Ty)

is exact. The left term is 0: it is an Op-submodule of the G g-module Ty /m T,
and Ty/mpTy is irreducible and not 1-dimensional. So w; : HY(K,Tf) —
H'(K,Ty) is injective and H*(K,T}) is torsion free. Now H} (K, Ty) is finitely
generated as an Op-module, and

rankoLH}(K, Ty) = dimy, H}(K, Vi) = corankoLH}(K, W) =1 (13)

SO H}(K, T¢) = Op. (Proof of (13): We have H'(Gk,Tf)®0, L =2 H' (Gk, Vy).
There is no divisible part in the cokernel of H'(K, V) — H'(K, Wy), since that
cokernel is the image of the connecting map H'(K,Wy) — H?(K,Ty), which
is the torsion subgroup of H?*(K,Ty), and H?(K,T}) is a finitely generated
Op-module.) O

8.2. Finding #6y,

We now adapt [15, section 3.5] to find a formula for #d,,.
In this subsection, assume that H}(K, Ty) = O as Op-modules and that

H}(KUO,Tf)/tor >~ Oy, is a torsion-free rank-1 Op-module (both of which are
implied by the hypotheses of Proposition 8.1).
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Define Cy = corg, )k AJk, (Anrar9) € H} (K, Ty). In this subsection, assume
that the image of Cj in H}(Kvo,Tf) is not torsion; then loc,,/tor : O =
H}(K,Ty) = Hi(K,,,Ty)/tor = Oy is injective.

Recall the map log,, for differential forms w € V from subsection 5.8.

Theorem 8.2. Choose the differential form w € ‘:/ so that log,, restricts to

an isomorphism log,, : H(K,,,Ty)/tor 5 Oy with inverse exp,,. (Interpret

H}(KUO,Tf)/tor as a subgroup of H}(KUU,Vf) = (H}(KUO,Tf)/tor) ®o, L.)

Then

(O : Oplog,,(loc,,Ch)) - (H}(KUO,Tf) s exp, (pOr))
pllQel . #HO(Ky,, Wf) ) (H}(Ka Tf) :0LCo)

H#0y, = (14)

Proof. We argue as in [15], replacing that source’s Ay, #A¢[p>*](F,p), wy, P
with Hp (-, Ty), (H(Ky, Ty) : exp,, (pOL)), w, Co respectively.
The rank-1 Or-modules

H}(Kq,o,Tf)/tor D) (locvg/tor)H}(K, Ty) 2 Orloc,,Coy

are of finite index in one another, so we have

#H0y, = (H}(KUO,Tf)/tor : (locvo/tor)H}(K, Ty))
(H}(Kvo,Tf)/tor : Oploc,,Co) / ((locvo/tor)H}(K, T¢) : Orloc,,Co)
= (Hj(Ky,,Ty)/tor : Oglocy,Co) / (H(K,Ty) : OpCo) (15)

because loc,, /tor is injective.
Since log,,, : H}(KUO ,Tr)/tor — Oy, is an isomorphism, the numerator in the
last fraction in (15) is
(H(Ky,, Ty)/tor : Oploc,,Co)
= (logw(H}(Kvo,Tf)/tor) : log,, (Orloc,,Co))
= (O :Oplog,(loc,,Cy)) / (O : logw(H}(KUO,Tf)/tor)). (16)
Finally, the denominator in the last fraction in (16) is
(01 < Tog, (HN (K, Ty) 100))
= (O :pOr)/ (logw(H}(Kvo,Tf)/tor) :p0L)
(O :pOL) /| (H(Ku,, Ty)/tor : exp, (pOL))
(O pOL)  #H [ (Koo, T )ior | (Hj Koy, Tf) : exp,(pOr))
(Or : pOL) - #H(Kyy, Wy) | (Hf (Ko, Ty) : exp,(pOr)).  (17)

For the last equation, note that Hf(KUU,Tf)tOr = HY(Ky,, T )tor which is iso-
morphic to the image of the connecting map H%(K,,, W) = H(K,,,Ty); but

this image is isomorphic to H°(K,,, W) since Vmeo =0.
Noting that (Oy, : pOr) = p=@] (because p does not ramify in L/Q,) and
combining (15), (16) and (17) yields (14). O
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9. From III to Heegner cycles: an Euler system result

9.1. Masoero’s theorem

In this subsection, we link the order of III to subsection 5.2’s Heegner cycles
Anra19, Zaarg by describing and slightly adapting a result of Masoero [21],
which that paper proved by adapting arguments of Kolyvagin [18, 19] (as re-
organized by McCallum [22]) about Euler systems and Shafarevich-Tate groups.

Theorem 9.1. (/21, Theorem 7.3 and next sentence, Corollary 7.11]; see also
[23, Theorem 13.1]). In addition to subsection 2.2’s hypotheses, assume that:

(i) The cohomology class Co = corg, /g AJr, (Anraro) € HY(K,Ty) is not
torsion.

(i) If g € GL2(Oqyy ®z Zyp) and detg is a (k — 1)th power in Z), then
g is in the image of the representation py, : Go — GL2(Oq(y) @z Zp)
corresponding to Tp,.

Then
(im AJk)® Q= L-Co C H(K,Vy),

the group I(K, Wy) has finite cardinality, and
indp#H_I(K, Wf) § 2indp(AJK1 (ZJV[aIQ)a im AJK1)~

Remarks 9.2. (a) Although Masoero’s paper assumes that every prime divid-
ing N splits in K, the paper’s argument goes through under our more
general Heegner hypothesis. The only place where Masoero uses the split-
ting assumption is to deduce the existence of an ideal € of Ok for which
Z/NZ = O /€ [21, section 4.1]; such a € still exists if each prime over N
may split or ramify in K with the square of the prime not dividing IV in
the latter case.

(b) Condition (ii) excludes only finitely many p for given f and K; see [21,
section 4.2]. Masoero assumes p { hx to define Kolyvagin classes (see
the argument between Remark 4.2 and Proposition 4.3 in [21]). To adapt
Masoero’s reasoning to the case p | hx, one might need to use universal
Euler system arguments along the lines of Rubin ([30, sections 4.2-4.4];
see in particular [30, Remark 4.4.3]).

10. Comparing Heegner cycles: Abel-Jacobi maps

Recall subsection 5.1’s groups G(¢,7) and projections 7, mp, 1, as well as
subsection 5.2’s cycles and varieties.
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10.1. The section’s main result
In this section, we prove the following result.

Theorem 10.1. In addition to subsection 2.2’s hypotheses, assume that:
(i) We have
indp(AJKl (ZMalg); im AJKl) == indp(AJKl (AMa19)7 im AJKl ) (18)

(i) When the hi - ¢(N) elements of Gal(K1/K) x (IT'o(N)/T'1(N)) act on the
point of X1(N) associated to E,,, the corresponding hy - $(N) images of
that point are distinct.

(1ii) The map (7) with n = wy /\wi/%lni/%l, A=E,, and F = L has image
m OL.

Then

ind, (A, (Zarars), im AJr,) < indp ATy (Zgeparpss) (wf A W?E/jﬂ??%ﬁA) '
(19)

Remarks 10.2. We always have

indp<AJK1 (ZMa19)a im AJKI) = indp<COI‘K1/KAJK1 (AMa19)a im AJK) (20)
because

AJr, (Zpare) = resg, yk (cork, jk AJr, (Anrar9))
and, noting that p{ hg,
corg, )k AJk, (Znare) = corg, gresk, /i (corg, /k AJk, (Anaig))
= hKcorKl/KAJKl (AMaIQ)-

(To see why these imply (20), use versions of the next subsection’s lemmas with
pushforwards and pullbacks replaced by the maps resg, /x, corg, /k.) Equation
(18) says the corg, /i on (20)’s right hand side can be removed without changing
the p-indices, so (18) is stronger than (20).

10.2. Correspondences, Galois actions and p-indices
The following two lemmas are key tools in our argument.

Lemma 10.3. Let varieties Uy, Us be defined over Ky, with associated Abel-
Jacobi maps AJIIQ, AJI[?‘;. Let Ay, Ay be cycles defined over Ky in Uy, Us
respectively. Let P be a correspondence from Uy to Us, with induced pushforward
and pullback maps Py, P* between the Chow groups of Uy and Us. Write

My = indy (AT (A1), im AJH)
if this number is well defined, and write
My = indy(AJ2 (Az),im AJR2)

if this number is well defined.
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(a) Assume AJ%(AQ) is mot torsion and P,Ay = aly for some a € Z).
Then AJ%(Al) is not torsion, both of My, Ms are well defined, and
My < M.

(b) Assume AJIU(i (A1) is not torsion and aA; = P*Ay for some a € Z).
Then AJ%?(AQ) is not torsion, both of My, Ms are well defined, and
My > M.

Proof. (a) Assume for a contradiction that AJI% (A1) is torsion. Then so is
PAJ (Ay) = AT2 (PLAL) = 0 AT (D),

S0 AJ%‘;(AQ) is also torsion, contrary to assumption. So AJ%i(Al) is not tor-
sion.
Therefore, there are non-torsion classes C; € im AJI[Q and (5 € im AJ%?

for which AJILQ (A1) = pM1Cy and AJ%(AQ) =pM2(Cy, so

My, = indp(ozAJ% (Ap),im AJR?) (since a € Z))
= indp(AJILg (PeAy),im AJE?) (by assumption)
indp(P*AJI% (Aq),im AJ%) (Abel-Jacobi maps commute

with correspondences)
ind,, (pM* P, (C1),im AJi?)
M + ind,(P.(Ch),im AJ2) > M.

(b) In the argument for part (a), replace P, with P* and swap M; with Mo,
Uy with Uy, Ay with As and C; with Cs. We obtain M; > Ms. O

Lemma 10.4. Let U be a variety defined over K, with associated Abel-Jacobi
map AJ%I. Let A be a cycle defined over K1 in U. Suppose that

ind,(AJE, (A),im AJE )
is well defined. Then for any o € Gal(K,/K), we have
ind,(AJY, (A),im AJY,) = ind,(AJY, (cA),im AT ).

Proof. 1f a non-torsion class Cy € im AJ, satisfies AJY (A) = p1 Oy for some
My € Z>y, then applying o € Gal(K;/K) and noting that Abel-Jacobi maps
are Galois equivariant yields AJ%1 (cA) = pMi(0Cy), and oC; is non-torsion
since C; is non-torsion.

Conversely, if a non-torsion class Cy € im AJ%1 satisfies AJ%1 (cA) = pM2Cy
for some My € Z>, then applying o~ similarly yields AJ%1 (A) = pM2(071Cy),
and 0~ 1C4 is non-torsion.

The desired result follows. O

For the rest of this section, Theorem 10.1’s hypotheses are assumed.
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10.3. From Masoero to Castella

First, in this subsection, we link the p-index of Masoero’s Heegner cycle
Ara19 to the p-index of Castella’s Heegner cycle Agq1s.

The “forget the second (Z/NZ)-basis vector” map E(I'(N)) — E(T'1(N))
gives maps P, : £"(I(N)) — E"(I'1(N)). Passing to Chow groups, we obtain
pushforward maps P, . and pullback maps P}.

To help perform the calculations below, we define a Q-linear map?

Prs 2 QG(2,m) x (To(N)/T(N))] = Q[G(1,7) x (T'o(N)/T'1(N))]
so that the element
(211,212, €1)s - -+ (201, 202, 61)), 8) € ((Z/NZ)? x {£1})" 1 S, = G(2,7)
(where each z;; is in Z/NZ, each ¢; is in {£1} and s € S,.) is sent by P, to
(((z11,€1)5 -, (2r1,60)), 8) € ((Z/NZ) x {£1})" % S, = G(1,7),

and an element b € T'y(N)/T'(V) is sent by P, . to the image of b under the
quotient map T'y(N)/T(N) — To(N)/T1(N). Then, for any o € Q[G(2,r) x
(To(N)/T(N))], any cycle Z of E"(T'(N)) and any cycle Z; of E"(T'1(N)), we
have

P..(0-Z)=P, .(0) P .(2) (21)
PI(P,.(0)-Z1) =0 - P:(Z). (22)
Equations (21), (22) are easily shown by first considering the cases o € G(2, )

and o € T'o(N)/I'(N), then extending by Q-linearity.
The maps Py_2.., P;_, act on the cycles Aprq19, Acais as follows.

Proposition 10.5. We have
Py_2(Anrar9) = Acars (23)
Pp_5(Aca1z) = N - Aparo. (24)
Proof. For the pushforward, we have
P, (i) ((Graph(y/D))** 1) = (i, )« ((Graph(y/Di))* 1),
so by (21), for each o0 € G(2,k — 2) and each b € T'o(N)/T'(N), we have

Pe-a.e (b0 (i) (Graph(v/Dic))*71))
=Py_2. (b)Pk—Q,* (0) (g )x ((Graph(@))km*l). (25)

30ur reason for using the same notation P, . for different maps is explained by (21) and
(22).
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Multiplying (25) by
1 ca(o)
[To(N)/T(N)| G2,k =2)|
(recall that the expression cz(0) was defined in subsection 5.1) and then sum-
ming over all 0 € G(2,k — 2) and all b € Tx(NV)/T(V) yields (23).
For the pullback, we have

Pi_a(ia, )+ (Graph(v/Dic))*/*7) = 3 (iz)+((Graph(v/Dio)) /> 7)

x

where T runs over the N points in the inverse image of x; under the map
X(N) — X1(N). Arguing as before, using (22) instead of (21), yields (24). O

The Abel-Jacobi map commutes with correspondences, so applying the Abel-
Jacobi map to (23) and (24) yields

Pi_2 Adk, (Arraro) = AJg, (Acais) (26)

Pi_yAJ (Acais) = N - Ak, (Anarg). (27)

Since p1 N and AJk, (Aprq19) is not torsion, Lemma 10.3 yields the following.
Proposition 10.6. We have

ind,(AJk, (Ana1e), im AJg,) = ind,(AJg (Acais),im AJg ). (28)

10.4. Galois action on Castella’s Heegner cycle

By the theory of complex multiplication, there is a bijection between el-
ements ¢ € Gal(K;/K) and ideal classes [a] of Ok so that the elliptic curve
o E,, corresponds to the same point of X;(N) as E,, /E,, [a]. It is easily checked
that 0Acq13 = Acai3,q for o thus corresponding to [a]. Applying Lemma 10.4,
we obtain:

Proposition 10.7. For a nonzero ideal a of O, we have
ind,(AJk (Aca1s),im AJg ) = indp(AJg (Acais,a), im AJg, ).

10.5. From Castella to BDP
As in [2, proof of Lemma 3.4], define IT;_5 to be the image of

EF2(TL(N) x Ex*71 . EF2(Ty(N)) x (EF-2(T1(N)) x BE2)
(w,a) + (w,(w,(a,v/Dx -a)))

and view IIj_s as a correspondence from EF2(I'y (N)) x EF=2 to EF=2(T'y(N)).

Proposition 10.8. We have

Acaiz,a = Tp1llk—2Ap (B, a)- (29)
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Proof. For oy = ((2i,¢1:)¥-2,51) € G(1,k—2) and a0 = ((£0:)"=2, 50) € G(0, k—
2), we have

Iy _20100Graph(p(E,,,a))* 2 = JGraph(\/DK)];/fjgzl (a] (30)
where
o= ((Zi?EliEO,soosl_l(i))f:;127 si0sy ') € G(lk—2).

Multiplying (30) by
c1(o1) . co(00)
G(1Lk=2)] |G(0,k—2)|

and then summing over all (01,00) € G(1,k — 2) x G(0,k — 2), we obtain

Hk—QALp(Eml a) = lek_g(Graph(\/ DK)’;/j_/;ﬁ [a]) (31)
and applying 7 1 yields (29). O

Define Qq to be the correspondence from ¥~2(T'y (N)) to itself that sends a
cycle to its intersection with the fiber at E,, /E,, [a] in E¥72(T1(N)).

Proposition 10.9. We have

Hk—QAgo(Ezl,a) = ¢(N) ' QuACalS,w (32)

Proof. By definition, Acg13 is
1 ci(o) k/2—1
2 T 2 kg DR e ) (39)
bED(N)/T1(N) 0E€G(1,k—2)

Because of Theorem 10.1’s assumption (ii), applying Qq to A¢q13 eliminates the
terms in (33) involving a nontrivial b € To(N)/T'1(N) and preserves the terms
in (33) with b = 1. Therefore ¢(N) - QaAcq1s,qa is equal to

c1(o) k/2—1 - k/2-1
> G sy G (VDKL . ) = Trk-2(Craph(VDK)E 1)
cE€G(1,k—2)
which is Ily—2A (g, ) by (31), so (32) is proved. O

Let o € Gal(K;/K) correspond to the ideal class [a] as before. Define R, to
be the correspondence from £¥72(I'1(N)) to E¥72(I'1(N)) x EX~2 given by the
variety in

(EF2(TL(N)) x EE?) x EF2(T1(N))

whose points are precisely the points of the form

(((w1 mod E:zzl [Cl], e, We—2 mod .E‘g[;1 [a])Ea:l/Eml[a]7 (wh . ,w}c,2>),
(w1 mod E:h [a], sy W21 mod Egg1 a],xl, SN ,x‘k/Q,l)Ezl/Exl[a])
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where the w; are points in F,, and the z; are points in E,, /E,, [a]. The sub-

variety Graph(\/DK)];ﬁ7]{3wl[a] of E¥2(I'y(N)) is interpreted as the variety of

points of the form

(wla"' awk/Qfla V Dlev"'a V DKwk/Qfl)'

Proposition 10.10. We have
Ay, 0) = T k—2T0,k—2Ra k2808, a)- (34)
Proof. By (31), we have

k —
Hy—2Ay(E,, ) = m1,k—2(Graph(yv/ DK)E/Z /}Ewl[a])
and applying m1 —omo k—2Rq . yields (34). O
Combining Lemma 10.3 with Propositions 10.8, 10.9, 10.10 in that order
yields

indy (AT (A, o) im AJEE) < indy(AT), (Acas, a) im AJL,)
< ind,(AJ ( k—2Dp(E,, a)), iM AJKl)
<

indp(AJKl (AMEM)) im AT,

which means that all of the p—indices are equal. The additional fact that

1,E, 1,E

ind, (AT (B, ) im AT < indy (AT (B, )i AT)
now implies:

Proposition 10.11. We have

indy (AJk, (Acarz,a), im AJk,) < indy(AJ; " (A, o), im AT ),

10.6. Conclusion

By Theorem 10.1’s assumption (i) (that is, (18)) and Propositions 10.6, 10.7
and 10.11, we have

indy(AJx, (Zarars),im A,) < indy(AT; " (A, o), im AT, )

for each nonzero ideal a of Og. Since Zp.pepri13 is defined as a Z,-linear
combination of cycles (note that (k/2 — 1)! and N(a) are coprime to p) whose
Abel-Jacobi images’ p-indices are at least the p-index of AJk, (Zasa19), it follows
that

indy(AJx, (Zatare), im AJx,) < indy (AT} (Zpepapsis), im AT ). (35)
Using Theorem 10.1’s assumption (iii), we have

(RHS of (35)) < indpAJ2 " (Zpepapris) (waw’“/Q Lyk/2= 1) (36)

1

Equations (35) and (36) imply (19), so Theorem 10.1 is proved.
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11. Final argument
We now prove this paper’s main theorem:

Theorem 11.1. Suppose all the assumptions of subsection 2.2 hold, together
with the following technical hypotheses.

(i) For each place v | p of K, the Or-module H}(Kv, W) has corank 1, and
the localization map H}(K7 Wy) — H}(Kv, Wy) restricts to a map

of which the kernel is torsion.

(it) The cohomology class Cy = corg, /g AJK, (Ararg) € H}(K, Ty) has a

non-torsion image in H}(KUO,Tf) under localization.
(i1i) Theorem 9.1’s assumption (i) holds.
(iv) Theorem 10.1°s assumptions (i), (i) and (iii) hold.
(v) The prime p is coprime to the product of the two fractions

#HO(Kﬁoa Wf)HUES/ (#H;T(K'U’ Wf))
#HO (K, Wy)

and
(Or : Oplog,,(loc,,Co))*(H} (K, Ty) = exp,,(pOL))?

LR (HE(K, Ty) : 01.Co)?

where S’ is as described just before Theorem 7.7, and the differential form
w and its associated maps log,,, exp,, are described in Theorem 8.2 and
subsection 5.8.

Then we have
2ind, AJ,""*" (Zpepapris) (wf A w’fEﬁflnéﬁfl) = ind,#1I(K, Wy).

Proof. By Bertolini, Darmon and Prasanna’s [1, Theorem 5.13] (with that
source’s Y = N*/2 j =k/2 -1, r=k—2, ¢ =1, e = 1), noting the corre-
spondence between section 7’s P; and subsubsection 6.3.4’s P,. corresponding
to y = NF/2,

PULGR()) = (1= p *2a(p, ) +p~H)*

1,E, k/2-1 k/2-1
AT (Ag,) (wf /\WEil 77E/ )

@

1 1
(k/2 — 1) [Z]: NF/2=1(q)
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Since a(p, f) is a p-adic unit and k/2 > 2, this implies
B, . —N,
2ind, AJ}" (Zpepapris) (wf nwh 2 1) = k+ind, P, (L55(f)). (37)
By Theorem 6.2,

ind, Py (L5 (f)) < indy P (Lo (f)). (38)
By Theorem 7.7,

ind, Py (Lyyo? (f)) < indy (#H°(Kyy, Wy)) + ind, (#H° (Kg,, W)
+ind, (#Heo (K, Wy) + ) indy (#H,, (Ko, Wy)). (39)
veSs’

By Theorem 9.1, the Op-module im AJg has rank 1 and the group HI(K, Wy)
has finite cardinality, so all the hypotheses of Theorems 8.1 and 8.2 hold. By
those theorems,

ind, (#Hao (K, Wy))
= ind, (#II(K, Wy)) — 2[L : Qp] + 2ind,(Or, : Or log,,(loc,, Cp))
+ 2ind, (H} (K, Ty) : exp,, (pOr)) — 2ind, (#H° (K, , Wy))
— 2ind, (H} (K, Ty) : OCy). (40)

Again by Theorem 9.1,

ind, (#II(K, Wy)) < 2ind,(AJk, (Zarare), im AJg, ). (41)

By Theorem 10.1,

2indp(AJKl (ZMa19); im AJKl) S 2indpAJé’Ezl (ZBeDa,Prl?)) (wf A wk/2 1’172{21 1)
(42)
Each of (37) to (42) is either an equation or an inequality in the < direction.
Combining those six statements in that order yields

2ind,, AJ1 e (ZBepaPris) (wf A Wk/Q 1772/2 1)

ZBeDaPr13) (wf /\Wk/Z 1”2/21 1) - indp(#HO(Kvm Wf))
+ ind (#HO (Kuy, Wy)) + Y indy(#H,, (K, Wy))
veSs’
+ 2ind,(Of : Op log,,(locy, Cy)) + 2ind, (H (Ko, T) : exp,,(pOL))
+ k—2[L : Q) — 2ind,(H}(K,Ty) : OLCy). (43)

< 2ind, AJ1 Ezl(

Theorem 11.1’s assumption (v) forces equality in (43), hence equality in each of
(37) to (42). In particular, equality occurs in (41) and (42), so

2ind, AT, (Zeparna) (wp Awh2 T ) = ind, # 1K, W), O

‘El
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