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Abstract

The Birch and Swinnerton-Dyer conjecture – which is one of the seven million-
dollar Clay Mathematics Institute Millennium Prize Problems – and its gener-
alizations are a significant focus of number theory research.

A 2017 article of Jetchev, Skinner and Wan proved a Birch and Swinnerton-
Dyer formula at a prime p for certain rational elliptic curves of rank 1. We
generalize and adapt that article’s arguments to prove an analogous formula
for certain modular forms. For newforms f of even weight higher than 2 with
Galois representation V containing a Galois-stable lattice T , let W = V/T and
let K be an imaginary quadratic field in which the prime p splits. Our main
result is that under some conditions, the p-index of the size of the Shafarevich-
Tate group of W with respect to the Galois group of K is twice the p-index
of a logarithm of the Abel-Jacobi map of a Heegner cycle defined by Bertolini,
Darmon and Prasanna.

Significant original adaptations we make to the 2017 arguments are (1) a
generalized version of a previous calculation of the size of the cokernel of a
localization-modulo-torsion map, and (2) a comparison of different Heegner cy-
cles.
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1. Introduction, main result and outline of proof

A major theme in modern number-theoretic research is that analytic objects
(like L-functions) yield information about algebraic or geometric objects (like
Galois characters and groups of rational points on elliptic curves). A famous
example of a result expected to be true is the Birch and Swinnerton-Dyer (BSD)
conjecture:

Conjecture 1.1 (BSD). Suppose an elliptic curve E/Q is given. Let the ana-
lytic rank of E be the order of the zero of L(E, s) at s = 1. Then the analytic
rank of E equals the (algebraic) rank of the finitely generated abelian group
E(Q), and

1

R(E/Q)ΩE
· lim
s→1

L(E, s)

(s− 1)rank E(Q)
=

#X(E/Q) ·
∏
`-∞ c`

(#E(Q)tor)2

where the regulator R(E/Q) is defined as in [33] except that the height pairing
in that source is to be doubled, and where the period ΩE, Shafarevich-Tate group
X(E/Q) and Tamagawa numbers c` are defined as in [33].

So far, the main progress on BSD has been for analytic and algebraic rank
0 and rank 1 cases.

In the recent paper [15] of Jetchev, Skinner and Wan, the following “BSD
formula at a prime p” was proved. We write indpx for the p-index of x; for
example, indp(p

n) = n for n ∈ Z.

Theorem 1.2. [15, Theorem 1.2.1] Assume that
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(i) the elliptic curve E/Q is semistable,

(ii) the rational prime p is odd and does not divide the conductor of E,

(iii) the Galois representation E[p] of Gal(Q/Q) over Fp is irreducible,

(iv) E has analytic rank 1, and

(v) if E has supersingular reduction at p, then ap(E) = 0.

Then

indp

(
L′(E, 1)

R(E/Q)ΩE

)
= indp

(
#X(E/Q) ·

∏
`

c`

)
.

The proof’s broad structure was as follows. For suitable auxiliary imaginary
quadratic fields K ′, K ′′, the following results were obtained.

(a) A theorem obtained from Brooks, linked to work of Bertolini, Darmon
and Prasanna [15, Proposition 5.1.7]: For a certain Heegner point zK′ ∈
E(K ′), a certain differential form ωE on E, and a certain L-function LBDP
of Bertolini, Darmon and Prasanna, we have

2indp logωE
(zK′) + 2indp((1− ap(E) + p)/p) = indpLBDP (1).

(b) Interpolating and comparing L-functions [15, Corollary 5.3.2]: For a cer-
tain L-function LWan of Wan, we have indpLBDP (1) = indpLWan(1).

(c) Iwasawa theory [15, Proposition 6.2.1], relying on a result of Wan that
is half of an Iwasawa main conjecture: For a certain cohomology-related
quantity C(E[p∞]), we have

indpLWan(1) ≤ indp(C(E[p∞])#H1
ac(K

′, E[p∞])).

(d) Galois cohomology [15, (3.5d)]: We have

indp(C(E[p∞])#H1
ac(K

′, E[p∞]))

= indp(#X(E/K ′)) + 2indp logωE
(zK′) + 2indp((1− ap(E) + p)/p)

−2indp(E(K ′) : ZzK′) + (p-indices of Tamagawa factors).

Points (a) to (d) yield

2indp(E(K ′) : ZzK′)−(p-indices of Tamagawa factors) ≤ indp(#X(E/K ′)[p∞]).

(e) Euler systems [15, Theorem 4.4.1], relying on a result of Nekovář: We
have

indp(#X(E/K ′′)[p∞]) ≤ 2indp(E(K ′′) : ZzK′′).
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Applying Gross-Zagier formulas for the Heegner points zK′ , zK′′ , re-writing the
Shafarevich-Tate groups X(E/K ′), X(E/K ′′) in terms of X(E/Q) and X of
quadratic twists of E, and applying a previously known rank 0 case of the BSD
conjecture produced Theorem 1.2.

This article replaces E with a modular form f of weight larger than 2,
adapting [15]’s arguments. Analogously to the intermediate results of Jetchev,
Skinner and Wan mentioned above, our main result (Theorem 11.1) says that the
p-index of a certain Shafarevich-Tate group is twice the p-index of the logarithm
of the Abel-Jacobi map of a Heegner cycle.

First, section 2 sets some notation and underlying assumptions. Sections 3
to 5 then review some background on class field theory, modular forms, algebraic
geometry and cohomology. Finally, sections 6 to 11 prove Theorem 11.1. The
basic structure of our argument is as follows; note the similarity with [15].

(a) First, a formula of Bertolini, Darmon and Prasanna [1] links the logarithm
of the Abel-Jacobi map of a Heegner cycle to a p-adic L-function.

(b) Second, p-adic L-functions are interpolated and compared.

(c) Third, half of an Iwasawa main conjecture links a p-adic L-function to
Galois cohomology.

(d) Fourth, Galois cohomology is linked to the Shafarevich-Tate group of f .

(e) Fifth, an Euler-system-related result links Sha to the Abel-Jacobi image
of a Heegner cycle of Masoero.

(f) Sixth, Masoero’s Heegner cycle is compared with the Heegner cycle from
the first step.

Combining these six steps, we get a chain of inequalities x1 ≤ x2 ≤ · · · ≤ x6 ≤
x1, so all xi are equal, and this yields the final result.

2. Notation and setup

2.1. Notation

For n ∈ Z>0, Sn is the symmetric group of bijections from {1, 2, . . . , n} to
itself. Let Gtor be the torsion subgroup of an abelian group G; write G/tor :=
G/Gtor. Let Mdiv be the maximal p-divisible subgroup of a Zp-module M .

For a rational prime p, let Q̂p be the completion of the algebraic closure

Qp of Qp. Write indp : Q̂
×
p → Q>0 for the multiplicative p-adic valuation with

indp(p
n) = n for n ∈ Z. For a finite-degree field extension L/Qp, let OL be the

ring of integers of L, with maximal ideal mL, and let ÔurL be the ring of integers

of the completion L̂ur of the maximal unramified extension Lur of L.
For a number field F , let OF be the ring of integers of F and, for each place

v of F , take the v-adic completion Fv. For finite v, Fv has ring of integers OF,v,
and we abuse notation by denoting the maximal ideal of OF,v, and that ideal’s
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intersection with OF , as v. Let the Hilbert class field, class group and class
number of F be respectively F1, ClF and hF .

The spaces of adeles, finite adeles, ideles and finite ideles over F are written
AF (as in [28, section VI.1]), AF,f , A×F , A×F,f respectively, with elements z =
(zv)v where each zv ∈ Fv.

For finite v and a character (that is, a continuous group homomorphism)
η : F×v → C×, the conductor of η is denoted C(η), and η is called unitary when
its image is in {z ∈ C× : |z| = 1}.

For a Hecke character χ : F×\A×F → C×, the conductor of χ is denoted
C(χ), and χv is the restriction of χ : A×F → C× to F×v . For a fractional ideal
a =

∏
v-∞ va(v) of F with each a(v) ∈ Z, if a is coprime to C(χ), then write χ(a)

for the value of χ at an idele z ∈ A×F,f with zOF = a and zv = 1 for v | C(χ).

For a number field F , as in [1], let the Hecke character N : F×\A×F → C× of
conductor OF be such that for F ’s fractional ideals a, the positive element of Q
that generates the fractional ideal NF/Qa of Q as a Z-module is N(a). For an
integral ideal a of F , we have N(a) = (OF : a).

We use the following notation from [35, section 2.1]. For a number field
F , the extension FΣ/F and the Galois groups GF , GF,Σ = Gal(FΣ/F ), GF,v
and IF,v are defined in the standard way. For an imaginary quadratic ex-
tension K/Q, let K∞/K, K+

∞/K and K−∞/K be the Z2
p-extension, the cyclo-

tomic extension and the anticyclotomic extension respectively of K, and write
ΓK = Gal(K∞/K), Γ+

K = Gal(K+
∞/K) and Γ−K = Gal(K−∞/K).

For a cusp form f =
∑∞
n=1 a(n, f)qn, let Q(f) = Q(a(n, f) : n ∈ Z>0) be

the number field generated over Q by all the a(n, f), and let O(f) = Z[a(n, f) :
n ∈ Z>0] be the ring generated as a Z-algebra by all the a(n, f).

2.2. Assumptions

The following assumptions apply throughout. In this paper’s final theo-
rem, the hypotheses will be these assumptions, plus some additional technical
statements to be described later.

A prime p is fixed, together with an isomorphism Q̂p ∼= C. Fix an unramified
finite-degree field extension L/Qp.

Let the imaginary quadratic field extension K/Q (with complex conjugation
c) have squarefree discriminant DK ≡ 1 mod 4 with DK < −3. Assume K1 ⊆ L.

Let f =
∑∞
n=1 a(n, f)qn ∈ Sk(Γ0(N)) be a non-CM newform of conductor

N with a(1, f) = 1 such that N ≥ 5 is an odd integer, k > 2 is an even integer,
and k/2 is not congruent to 0 or 1 modulo p− 1. Assume Q(f) ⊆ L.

Let the representations Tf , Vf , Wf be as defined in subsection 5.4. Assume
Tf/mLTf is an irreducible GK-representation of dimension ≥ 2.

Assume the following Heegner hypothesis: each prime factor of N splits or
ramifies in K, at least one rational prime factor of N ramifies in K, and every
prime q | N ramifying in K is such that q2 - N . This implies that there is
an ideal C of OK for which the inclusion Z ↪→ OK induces an isomorphism
Z/NZ ∼= OK/C; fix such an ideal C.

Let the prime p split in K as p = v0v0. Define the set Np = {v0, v0}.
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For some representatives a of the class group of K, assume that the norms

N(a) are p-adic units when viewed as elements of Q̂p.
Assume that p ≥ k/2, the Fourier coefficient a(p, f) is a p-adic unit, and the

prime p does not divide (k − 2)! · 6Nφ(N)DKhK · (OQ(f) : O(f)).

3. Class field theory

This section briefly reviews class field theory and Hecke characters. We use
and adapt notation from [10, 11, 35]. For this section, take a discrete valuation
ring O with Qp ⊇ O ⊇ Zp.

3.1. Class field theory and Galois extensions

For M ∈ Z>0, the ray class group modulo Mp∞∞ over Q is

Z(M) = Q×>0\A
×
Q,f/UQ(Mp∞) ∼= Ẑ×/UQ(Mp∞)

where

UQ(Mp∞) = {z ∈ Ẑ× : zp = 1, z` ∈ 1 +MZ` for finite ` 6= p}.

For p -M , we identify Z×p × (Z/MZ)× ∼= Z(M) in the standard way.
For all M ∈ Z>0, the cyclotomic character ε : Z(M) → Z×p is identified via

geometrically normalized Artin reciprocity with the Galois character describing
the Galois action on roots of unity with order a power of p [35, section 2.2.3].
For a p-adic Galois representation U and an integer n, let U(εn) := U ⊗ εn be
the twist of U by εn. (We write U(εn) instead of U(n) to keep the notation
uniform and make the choice of normalization for ε clear.)

The classical Teichmüller character ω : Z×p → Z×p satisfies ω(y)p = ω(y) ≡
y mod pZp for y ∈ Z×p . Define a Teichmüller character ω : Z(M) → Z×p , with
the same image as the previous ω, so that

(a) If the embedding Z×p ↪→ A×Q,f sends y ∈ Z×p to yp ∈ A×Q,f in the equivalence
class [yp] ∈ Z(M), then ω([yp]) = ω(y) (so ε([yp]) ≡ ω(y) mod pZp); and

(b) Each element (1, yM mod MZ) ∈ Z×p × (Z/MZ)× corresponds to an ele-
ment of Z(M) in the kernel of ω : Z(M)→ Z×p .

(Under geometrically normalized reciprocity, this ω corresponds to the inverse of
the character denoted ω in both [35, section 2.2.4] and [37, Theorems 1.1-1.2].)

The embeddings Zp ↪→ OK,v0 and Zp ↪→ OK,v0 are isomorphisms. Let the
Teichmüller characters ωv0 : O×K,v0 → Z×p and ωv0 : O×K,v0 → Z×p send the
embeddings of y ∈ Zp in respectively OK,v0 and OK,v0 to ω(y).

Write

ZK(C) = K×\A×K,f/UK(Cp∞) ∼= K×\A×K/(UK(Cp∞)K×∞)

where

UK(Cp∞) = {z ∈ Ô×K : zv0 = zv0 = 1, zv ∈ 1 + COK,v for finite v - p}.
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Since C is relatively prime to p = v0v0 and (OK : C) > 1 is odd, we have a
standard group isomorphism

O×K,v0 ×O
×
K,v0

× ClK × ((OK/C)×/{±1}) ∼= ZK(C) (1)

which is the product of an isomorphism from

ωv0 [O×K,v0 ]× ωv0 [O×K,v0 ]× ClK × ((OK/C)×/{±1}) (2)

to ZK(C)tor, and an isomorphism

i : (1 + v0OK,v0)× (1 + v0OK,v0)
∼=→ ΓK

which is the composition of group maps

(1 + v0OK,v0)× (1 + v0OK,v0) ↪→ O×K,v0 ×O
×
K,v0

↪→ A×K � ZK(C)/tor ∼= ΓK

using geometrically normalized reciprocity and Galois theory in the usual way
to identify ZK(C)/tor and ΓK . (There is no p-part in (OK/C)×/{±1} or ClK
since p - φ(N)hK .)

In K∞/K, the maximum extension unramified at v0 (respectively, v0) is
the extension Kv0/K (respectively, Kv0/K) such that Kv0 is the fixed field of
i[{1}×(1+v0OK,v0)] (respectively, Kv0 is the fixed field of i[(1+v0OK,v0)×{1}])
in K∞. The standard quotient map prv0 : ΓK � Gal(Kv0/K) sends i(yv0 , yv0) ∈
ΓK to the class of i(yv0 , 1) in Gal(Kv0/K) ∼= ΓK/Gal(K∞/Kv0).

The embeddings Zp ↪→ OK,v0 and Zp ↪→ OK,v0 yield

(1 + pZp)2 ∼= (1 + v0OK,v0)× (1 + v0OK,v0).

The group Γ+
K (respectively, Γ−K) is topologically generated by the element γ+ =

i((1 + p)1/2, (1 + p)1/2) (respectively, γ− = i((1 + p)1/2, (1 + p)−1/2)), or more
precisely, by the class of that element in the appropriate quotient of ΓK . The
standard quotient map prac : ΓK � Γ−K sends g = i(yv0 , yv0) ∈ ΓK to the class

of (gg−c)1/2 = i(y
1/2
v0 y

−1/2
v0

, y
−1/2
v0 y

1/2
v0

) in Γ−K
∼= ΓK/Gal(K∞/K

−
∞).

Define the squaring maps sq : ZK(C) → ZK(C), sq : ΓK → ΓK and sq :
Gal(Kv0/K)→ Gal(Kv0/K) given by g 7→ g2.

Define the O-algebra maps prac : O[[ΓK ]] � O[[Γ−K ]], sq : O[[ZK(C)]] →
O[[ZK(C)]] and sq : O[[ΓK ]] → O[[ΓK ]] by extending O-linearly and continu-
ously.

Let c : z 7→ z be the conjugation map on C (or on any subfield of C stable
under conjugation). The group Gal(K/Q) = {1, c} acts on ΓK via conjugation
(c sends g ∈ ΓK to cgc−1 ∈ ΓK); c acts on Γ+

K , Γ−K as 1, −1 respectively.

3.2. Complex and p-adic Hecke characters

For a Hecke character χ : K×\A×K → C with χ(z∞) = zt∞z
u
∞ identically for

some t, u ∈ Z, the p-adic avatar of χ is a p-adic Hecke character χ̃ : K×\A×K,f →
Q×p satisfying

χ(z) = (zt∞z
u
∞) · (z−tv0 z

−u
v0

)χ̃(zf ) (3)
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(use Q̂p ∼= C to view (z−tv0 z
−u
v0

)χ̃(zf ) ∈ Q×p as belonging to C×). Write χ =

χ̃alg. The corresponding Galois character σχ : GK → Q×p sends the geometric
Frobenius at any v - pC(χ) to χv of a uniformizer at v [35, section 2.2.1].

Recall the identification ZK(C) ∼= ΓK ×ZK(C)tor. Characters P : ΓK → Q×p
and ψ : ZK(C)tor → Q×p , respectively, can be precomposed with the projections
ZK(C) � ΓK and ZK(C) � ZK(C)tor to yield characters P and ψ from ZK(C) to

Q×p , whose product Pψ : ZK(C) → Q×p sends (σ, ζ) ∈ ΓK × ZK(C)tor
∼= ZK(C)

to P (σ)ψ(ζ). Precomposing with K×\A×K,f � ZK(C) gives a p-adic Hecke

character Pψ : K×\A×K,f → Q×p .

A continuous character Pac : Γ−K → Q×p gives a character P = Pac ◦ prac :

ΓK → Q×p . A character ψ : ZK(C)tor → O× yields a continuous O-algebra map

ψ± : O[[ZK(C)]] → O[[ΓK ]] (respectively, ψac : O[[ZK(C)]] � O[[Γ−K ]]) which
restricts to the identity (respectively, prac) on ΓK and which restricts to ψ on
ZK(C)tor.

4. Modular forms

This section briefly reviews modular forms while fixing notation. From now

on, let O be any ring with OL ⊆ O ⊆ Qp ⊆ Q̂p ∼= C.

4.1. p-adic modular forms

Let Sk(M,O) be the space of p-adic cusp forms of level M and weight k
with Fourier coefficients in O, let hk(M,O) be its Hecke algebra, and let their

nearly ordinary parts be S
ord

k (M,O) and hordk (M,O) respectively. (To be pre-
cise: in [10, 11], these correspond to Sk,w(V1(M)(p∞), O), hk,w(V1(M)(p∞), O),

S
n,ord

k,w (V1(M)(p∞), O) and hn,ordk,w (V1(M)(p∞), O) for a suitable choice of w,
e.g., w = k/2 for k even.) Write the Fourier expansion of a p-adic cusp form
f ∈ Sk(M,O) as f =

∑∞
n=1 a(n, f)qn. Let e be the ordinary projector.

There is a continuous multiplicative map Z(M) → hk(M,O) : z 7→ 〈z〉 (see
[10, sections 2-3] and [11, p. 334]), and for a ∈ Z×p yielding ap ∈ A×Q,f , there is
a Hecke operator T(ap) ∈ hk(M,O) [11, pp. 330-332].

The perfect pairing

Sk(M,O)× hk(M,O)→ O : (f,H) 7→ a(1, f |H)

yields isomorphisms between each of its arguments and HomO(·, O) of the other
([11, Theorem 3.1]; see also [10, Theorem 5.3]). Applying ⊗OQp yields a perfect

pairing over Qp given by the same formula with each O replaced by Qp.

4.2. Hida families and parameterizations

This subsection introduces Hida families of modular forms, following [11, pp.
335-337].
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Let the O[[ΓK ]]-algebra I be contained in the integral closure of O[[ΓK ]] in
a finite-degree field extension of the quotient field of O[[ΓK ]].

Let λ : hk(M,O) → I be an O-algebra map such that for σ ∈ 1 + pZp
corresponding to z = [σ−1

p ] ∈ Z(M), the map λ sends 〈z〉 to i(σ, σ) ∈ ΓK , and

if σ ∈ 1 + pZp ∼= 1 + v0O
×
K,v0

, then λ sends T(σ−1
p ) to i(1, σ) ∈ ΓK .

Let P : I → Qp be an O-algebra map so that for some finite-order multi-

plicative characters εP : 1 + pZp → Q×p and ε′P : 1 + pZp → Q×p , and for some
w ∈ Z, we have

(a) P (i(σ, σ)) = σk−2wεP (σ) for σ ∈ 1 + pZp, and

(b) P (i(1, σ)) = σ1−wε′P (σ) for σ ∈ 1 + pZp.

Call such P arithmetic, following Hida [11, pp. 316, 335-337] as well as Skinner
and Urban [35, section 3.3.8]. Write k(P ) := k and w(P ) := w.

From λ and P , we obtain the Qp-algebra map λ(P ) : hk(M,Qp) → Qp as
the composite

hk(M,Qp)
e
// hordk (M,Qp)

�
�

// hk(M,Qp)
(P◦λ)⊗Qp

// Qp .

Define the finite-order characters ψP : Z(M)→ Q×p and ψ′P : Z×p → Q×p by

ψP (ζ[σ−1
p ]) = ε(ζ)k−2w · λ(P )(〈ζ〉) · εP (σ)

ψ′P (ζ ′σ) = (ζ ′)w−1 · λ(P )(T((ζ ′)−1
p )) · ε′P (σ)

for ζ ∈ Z(M)tor, ζ
′ ∈ (Z×p )tor and σ ∈ 1 + pZp.

Via Hecke algebra duality, λ(P ) yields an eigenform F (λ, P ) ∈ Sk(M,Qp)
such that a(1, F (λ, P )) = 1 and, for each element H of the Hecke algebra,
F (λ, P )|H = λ(P )(H) · F (λ, P ).

The map λ is a cuspidal Hida family; it corresponds to the collection of
ordinary normalized eigenforms F (λ, P ) ranging over the arithmetic points P :
I → Qp.

4.3. Theta series

In this subsection, we describe classical theta series and fit them into a Hida
family. See [9, p. 257], [12, pp. 234-238] and [17, sections 5.1-5.2].

Let χ : K×\A×K → C× be a Hecke character so that for some n ∈ Z>0 and
some finite-order character ψ : (OK/C(χ))× → C×, for all a ∈ OK coprime
to C(χ), we have χ(aOK) = anψ(a)−1. Then the theta series of χ is θχ =∑

a χ(a)qNK/Qa with L-series L(s, θχ) = L(s, χ) =
∑

a χ(a)(NK/Qa)−s summing
over nonzero integral ideals a of OK coprime to C(χ). If

ϕK : (Z/|DK |Z)× → {±1}

is the Legendre-symbol character of K/Q with ϕK(`) =
(
DK

`

)
for odd rational

primes `, then θχ ∈ Sn+1(|DK |(NK/QC(χ)), ε) for the character

ε : (Z/|DK |(NK/QC(χ))Z)× → C×

9



with ε(m) = ϕK(m)ψ−1(m) for m ∈ Z>0.
The modular form θχ will now be fit into a Hida family.

Let the character P−n,0 : ΓK ∼= ZK(C)/ZK(C)tor → Q×p satisfy P−n,0(i(yv0 , yv0)) =
y−nv0 for yv0 ∈ 1 + pZp ∼= 1 + v0OK,v0 and yv0 ∈ 1 + pZp ∼= 1 + v0OK,v0 .

Interpreting a character ψ : ZK(C)tor → Q×p as a finite-order character

A×K,f → Q×p whose restriction to Ô×K corresponds to a Dirichlet character

(OK/C(ψ))× → Q×p , we have C(ψ) | Cv0v0, because ψ factors through

ωv0 [O×K,v0 ]× ωv0 [O×K,v0 ]× ClK × (OK/C)×/{±1}
∼= (OK/v0)× × (OK/v0)× × ClK × (OK/C)×/{±1}

and C(ψ) is determined by the restriction of ψ to Ô×K .
For each ideal a of OK coprime to C(ψ)p, let

[a] ∈ ZK(C) ∼= K×\A×K,f/UK(Cp∞)

be the class of some z ∈ A×K,f with zOK = a and zv = 1 for v | C(ψ). For an
ideal a of OK not coprime to C(ψ)p, let [a] = 0 ∈ O[[ZK(C)]].

In this paragraph, assume C(ω−nv0 ψ) = Cv0v0. The character χ̃ = P−n,0ω
−n
v0 ψ :

K×\A×K,f → Q×p is the p-adic avatar of a Hecke character χ : K×\A×K → C×

such that for a ∈ OK coprime to Cv0v0, we have χ(aOK) = anψ−1(a) (view-
ing χ(aOK) as the value of χ at af/aCv0v0). Furthermore, as in [12, pp.
234-238], consider the O-algebra map λ1 : h2n+1,1(pN |DK |, O) → O[[ZK(C)]]
with λ1(T (`)) =

∑
a:NK/Qa=`[a]. Compose λ1 with (ω−nv0 ψ)± : O[[ZK(C)]] →

O[[ΓK ]] to obtain a Hida family λ : h2n+1,1(N |DK |p,O) → O[[ΓK ]]. Then
θχ = F (λ, P−n,0), so the Hida family λ interpolates θχ.

In this paragraph, assume C(ω−nv0 ψ) = Cv0. As before, P−n,0ω
−n
v0 ψ : ZK(C)→

Q×p yields a character χ̃ = P−n,0ω
−n
v0 ψ : K×\A×K,f → Q×p , which is the p-adic

avatar of a Hecke character χ : K×\A×K → C× such that for a ∈ OK coprime
to C, we have χ(aOK) = anψ−1(a). As before, compose λ1 with the map
ψ± : O[[ZK(C)]]→ O[[ΓK ]] to obtain the Hida family λ : h2n+1,1(N |DK |, O)→
O[[ΓK ]]. On the complex upper half plane, define the function Uθχ so that
Uθχ(s) = θχ(s)− χ(v0)θχ(ps); then Uθχ has q-expansion

Uθχ =

∞∑
n=1

{
a(n, θχ) p - n

0 p | n

}
qn

and Uθχ = F (λ, P−n,0). This p-stabilized Hida family appears in p-adic L-
function interpolation formulas later in the article.

5. Algebraic geometry and cohomology

5.1. Kuga-Sato varieties and projections

We refer to [1, 21, 23] as references.
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Let Y (N), Y1(N), Y0(N) be the open modular curves over Q, and let X(N),
X1(N), X0(N) be the complete modular curves over Q (see, e.g., [5]).

Let j : Y (N) ↪→ X(N) be the standard inclusion map. Let π : EY (Γ(N))→
Y (N) be the universal elliptic curve. Let EX(Γ(N)) → X(N) be the universal
generalized elliptic curve. For positive r ∈ Z, the rth power of EX(Γ(N)) over

X(N) has as its standard desingularization the Kuga-Sato variety Ẽr(Γ(N)).
Similarly define j1 : Y1(N) ↪→ X1(N), π1 : EY (Γ1(N)) → Y (N), EX(Γ1(N)) →
X1(N) and Ẽr(Γ1(N)). Fixing the “forget a (Z/NZ)-basis vector” mapX(N)→
X1(N), we get a map EX(Γ(N))→ EX(Γ1(N)), which yields maps Pr : Ẽr(Γ(N))→
Ẽr(Γ1(N)).

Noting p - Nφ(N), we have the projection operators

πB = (1/#(Γ0(N)/Γ(N)))
∑
σ∈Γ0(N)/Γ(N) σ ∈ Zp [Γ0(N)/Γ(N)]

πB,1 = (1/#(Γ0(N)/Γ1(N)))
∑
σ∈Γ0(N)/Γ1(N) σ ∈ Zp [Γ0(N)/Γ1(N)] .

For t ∈ {0, 1, 2} and r ∈ Z>0, define the group G(t, r) = ((Z/NZ)to{±1})ro
Sr. The group G(0, r) acts on the rth power Ar of any elliptic curve A (see
[1, p. 1052]; Ar can be viewed as a total space with fiber Ar over a base space

consisting of one point), G(1, r) acts on Ẽr(Γ1(N)) (see [1, pp. 1056-1057])

and G(2, r) acts on Ẽr(Γ(N)) (see [23, section 2] and [31, section 1.1]): the
subgroup Sr permutes fiber components, then the subgroups {±1}multiply fiber
components by ±1, then the subgroups (Z/NZ)t translate fiber components by
sections of order dividing N .

For t ∈ {0, 1, 2}, let the group map ct : G(t, r)→ {±1} be 1 on each (Z/NZ)t

factor, the identity on each {±1} factor, and the sign map on Sr. Define

πt,r = (1/#G(t, r))
∑
σ∈G(t,r) ct(σ) · σ ∈ Q[G(t, r)].

Since p - (k − 2)!, we have π2,k−2 ∈ Zp[G(2, k − 2)].
Take a field F ⊇ K1. For an elliptic curve A defined over F , where A has

complex multiplication by OK , we may choose F -vector space generators ωA, ηA
of H1,0

dR (A/F ), H0,1
dR (A/F ) respectively; then π0,rH

∗
dR(Ar/F ) = SymrH1

dR(A/F )
is generated as an F -vector space by the r + 1 elements

ωjAη
r−j
A =

(
r

j

)−1 ∑
S⊆{1,2,...,r}

(∧
s∈S

pr∗sωA

)
∧

 ∧
s∈{1,2,...,r}−S

pr∗sηA


with j ∈ {0, 1, . . . , r}; see [1, section 1.4]. Also, we have an isomorphism [1,
Proposition 2.5]

Sr+2(Γ1(N), F )⊗ SymrH1
dR(A/F ) ∼= Filr+1π1,rπ0,rH

2r+1
dR (Ẽr(Γ1(N))×Ar/F )

sending f ⊗ η to ωf ∧ η for the differential form ωf corresponding to f as in [1,
section 1.1].
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5.2. Chow groups and Heegner cycles

This subsection gives definitions related to Chow groups and defines Heegner
cycles that will be used later in the paper.

For an algebraic variety U defined over a field F , CHa(U/F ) is the Chow
group of codimension a cycles in U defined over F up to rational equivalence,
and the subgroup CHa

0 (U/F ) is the group of such classes of cycles homologically
equivalent to zero up to torsion (see [8, p. 426] and [26, section 1]).

See [21, section 4.1]. Recall the ideal C of OK and the isomorphism Z/NZ ∼=
OK/C from subsection 2.2. The isogeny C/OK → C/C−1 gives x0 ∈ X0(N)(K)
by CM theory. Choose an x ∈ X(N) that is sent to x0 under the standard map
X(N) → X0(N); the fiber Ex for EX(Γ(N)) → X(N) at x (which is also the
fiber Ex1

for EX(Γ1(N))→ X1(N) at the image x1 of x in X1(N)) is an elliptic
curve with complex multiplication by OK , so the variety Graph(

√
DK) exists

in E2
x. We have an embedding ix : Ek−2

x ↪→ Ẽk−2(Γ(N)). Define the Heegner
cycle

∆Ma19 = πBπ2,k−2(ix)∗(Graph(
√
DK)k/2−1) ∈ CHk/2(Ẽk−2(Γ(N))/K1)⊗Z Zp

and let

ZMa19 = NK1/K∆Ma19 ∈ NK1/K(CHk/2(Ẽk−2(Γ(N))/K1)⊗Z Zp)

be the image of ∆Ma19 under the norm map NK1/K =
∑
g∈Gal(K1/K) g.

See [2, section 3]. Similarly, with an embedding ix1
: Ek−2

x1
↪→ Ẽk−2(Γ1(N)),

we define

∆Ca13 = πB,1π1,k−2(ix1
)∗(Graph(

√
DK)k/2−1) ∈ CHk/2(Ẽk−2(Γ1(N))/K1)⊗ZZp

as a Heegner cycle. Also, for an ideal a of OK , define the modified Heegner
cycle

∆Ca13,a = πB,1π1,k−2(Graph(
√
DK)

k/2−1
Ex1

/Ex1
[a]) ∈ CH

k/2(Ẽk−2(Γ1(N))/K1)⊗ZZp.

For an isogeny ϕ : A → A′ between elliptic curves A and A′, where A′ has
Γ1(N) structure, consider

Graph(ϕ)r ⊆ (A′)r ×Ar ⊆ Ẽr(Γ1(N))×Ar

(embedding in the fiber in Ẽr(Γ1(N)) at the point linked to A′) and the corre-

sponding Heegner cycle ∆ϕ = π1,rπ0,r(Graph(ϕ)r) in Ẽr(Γ1(N)) × Ar (where

π1,r, π0,r act on Ẽr(Γ1(N)), Ar respectively). For each nonzero integral ideal
a of OK and elliptic curve A, we have a “modulo a-torsion” isogeny ϕ(A, a) :
A→ A/A[a] (see [1, formula 1.4.7]).

Choose representatives a of the class group of K so that the numbers N(a)

seen as elements of Q̂p are p-adic units. Then, taking a sum over the classes [a]
of the class group of K, define

ZBeDaPr13 =
1

(k/2− 1)!

∑
[a]

1

Nk/2−1(a)
·∆ϕ(Ex1

,a) ∈ CH(Ẽk−2(Γ1(N))×Ek−2
x1

)⊗ZZp.

12



5.3. Cohomology

For a topological group G and a G-module U , see [29] for the definitions of
the continuous cohomology groups Hn(G,U), the restriction and corestriction
maps resG/H : Hn(G,U) → Hn(H,U) and corG/H : Hn(H,U) → Hn(G,U),
and the conjugation maps g∗ : Hn(H,U) → Hn(H,U) for g ∈ G and certain
subgroups H of G. For additional background, see [30, Appendix B] and [36].

If G acts on finitely generated free R-modules U1, U2 for a commutative
ring R with 1, then H1(G,HomR(U2, U1)) ∼= Ext1(U2, U1) (see [38, Proposition
4] for the case U1 = U2); for subsection 5.4’s representation Vf , this yields an
isomorphism between H1

f (Kv0 , Vf ) and the group Ext1
cris(Qp, Vf ) of crystalline

extensions Vf ↪→ E � Qp of GKv0
-modules over Qp [26, section 3.4].

SupposeG acts linearly and continuously over a finitely-generatedOL-module
U , and B is an OL-submodule of Hn(G,U). For an element c ∈ B that is not
in Btor, define indp(c,B) to be the maximum of the set

{M ∈ Z : M ≥ 0 and there is c′ ∈ B such that c− pMc′ ∈ Btor}.

Intuitively, just as the p-index indp of a positive integer is the number of factors
of p in the prime factorization of that integer, so indp(c,B) can be viewed as
the number of factors of p in the class c thought of as an element of B/Btor.

5.4. Galois representations

Recall subsection 5.1’s projectors πB , πB,1, π2,k−2.
The Galois representation Tp linked to f can be defined as follows [21, 23]:

For the p-adic sheaf F = lim←−n Fn over Y (N) with the sheaves

Fn = Symk−2(R1π∗(Z/pn)EY (Γ(N)))

over Y (N), define the Galois representations

Jp = πBH
1
et(X(N)⊗Q, j∗F)(ε), Tp = {x ∈ Jp : Ifx = 0}

where If is the kernel of the O(f)-algebra map from the Hecke algebra with
coefficients in Z to OQ(f) sending T (`) to a(`, f). As mentioned in [23, p.
102], because f is a newform, a map R : Jp → Tp exists such that R respects
Hecke operators, R is GQ-equivariant and for some non-negative integer c, the
restriction of R to Tp is multiplication by pc. By [23, Proposition 2.1] (which
comes from [31, Theorem 1.2.1]) and [23, Lemma 2.2], H1

et(X(N) ⊗ Q, j∗F) is
torsion free (this is nontrivial) and there are isomorphisms

π2,k−2H
∗
et(Ẽk−2(Γ(N))⊗Q,Z/pn)(εk/2−1)

∼= H1
et(X(N)⊗Q, j∗Fn) ∼= H1

et(X(N)⊗Q, j∗F)/pn

so that identifying πB with a projection on π2,k−2H
∗
et(Ẽk−2(Γ(N)) ⊗ Q,Zp)

yields
Jp ∼= πBπ2,k−2H

∗
et(Ẽk−2(Γ(N))⊗Q,Zp)(εk/2).
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Using the standard map OQ(f) ⊗ Zp � OQ(f),$Q(f)
↪→ OL for the first tensor

product below, define

Tf = Tp ⊗OQ(f)⊗Zp
OL, Vf = Tf ⊗OL

L, Wf = Tf ⊗OL
(L/OL).

The usual short exact sequence Tf ↪→ Vf � Wf and maps p−n : Tf � Wf [pn]
for n ∈ Z>0 exist, as in [30, sections 1.1-1.2].

Let V af (respectively, V gf ) be the Deligne/Scholl representations over L, pure2

of weight 1 − k (respectively, k − 1), with det(xI − F ) = x2 − a`x + `k−1 the
characteristic polynomial of arithmetic (respectively, geometric) Frobenius F at
` - Np [4, section 12.5]. Then:

(a) V gf = HomL(V af , L).

(b) V gf (εk/2) is self-dual by a Poincare duality map V gf (εk/2)×V gf (εk/2)→ L(ε)

[27, section 1.3], so V gf (εk/2) ∼= V af (ε1−(k/2)).

(c) Vf ∼= V gf (εk/2) ∼= V af (ε1−(k/2)) is pure of weight −1 and HomL(Vf , L(ε)) ∼=
Vf .

Let T gf := Tf (ε−k/2), so that T gf ⊗Zp Qp ∼= V gf as Galois representations.

For the p-adic sheaf F1 = Symk−2(R1π∗(Zp)EY (Γ1(N))) over Y1(N), we sim-
ilarly have an isomorphism (see [32, section 2.8])

π1,k−2H
∗
et(Ẽk−2(Γ1(N))⊗Q,Zp) ∼= H1

et(X1(N)⊗Q, j1,∗F1)

and we define

J1
p = πB,1H

1
et(X1(N)⊗Q, j1,∗F1)(ε) ∼= πB,1π1,k−2H

∗
et(Ẽk−2(Γ1(N))⊗Q,Zp)(ε)

after identifying πB,1 with a projector on π1,k−2H
∗
et(Ẽk−2(Γ1(N))⊗Q,Zp). Note

that F1 = πY (N)→Y1(N),∗F (where πY (N)→Y1(N),∗ has the obvious meaning); in
fact,

J1
p = πB,1H

1
et(X1(N)⊗Q, j1,∗F1)(ε) ∼= πBH

1
et(X(N)⊗Q, j∗F)(ε) = Jp

(see [25, section II.2.5] for the analogous result with X0(N) instead of X1(N)).

5.5. Selmer group conditions

We define the Bloch-Kato Selmer groups following [21, section 2.2]. (Note the
small difference in principle between this and [23], which relaxes all conditions
for places over N .) For a number field F , letting Iv be the inertia group in GLv

for a place v -∞ of F , define

H1
f (Fv, Vf ) =

{
ker(H1(Fv, Vf )→ H1(Iv, Vf )) v - p

ker(H1(Fv, Vf )→ H1(Fv, Vf ⊗Qp Bcris)) v | p

}

2“Pure of weight w” means that the eigenvalues of geometric Frobenius at v have absolute
value (Nv)w/2.
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and let H1
f (Fv, Tf ) (respectively, H1

f (Fv,Wf [pn])) be the inverse image (respec-

tively, image) of H1
f (Fv, Vf ) under the standard map H1(Fv, Tf )→ H1(Fv, Vf )

(respectively, p−n : H1(Fv, Tf ) → H1(Fv,Wf [pn])). Define the global Bloch-
Kato Selmer groups

H1
f (F, Tf ) = {c ∈ H1(F, Tf ) : ∀ places v of F : cv ∈ H1

f (Fv, Tf )}
H1
f (F, Vf ) = {c ∈ H1(F, Vf ) : ∀ places v of F : cv ∈ H1

f (Fv, Vf )}
H1
f (F,Wf ) = {c ∈ H1(F,Wf ) : ∀ places v of F : cv ∈ H1

f (Fv,Wf )}.

The Shafarevich-Tate group is

Xf (F,Wf ) := H1
f (F,Wf )/H1

f (F,Wf )div (4)

which has finite cardinality since the OL-module H1
f (F,Wf ) has finite corank.

As in [15, section 2.3.4], we define the anticyclotomic Selmer groups

H1
ac(Kv, Vf ) =

 ker(H1(Kv, Vf )→ H1(Iv, Vf )) split v - p∞
H1(Kv, Vf ) v = v0

0 otherwise


H1
ac(K,Vf ) = {c ∈ H1(K,Vf ) : ∀ places v of K : cv ∈ H1

ac(Kv, Vf )}.
Define the local cohomology groups H1

ac(Kv, Tf ), H1
ac(Kv,Wf ) by taking preim-

ages and images of H1
ac(Kv, Vf ), and define the cohomology groups H1

ac(K,Tf ),
H1
ac(K,Wf ) as the groups of global elements localizing to elements ofH1

ac(Kv, Tf ),
H1
ac(Kv,Wf ) respectively at all v.

5.6. The p-adic Abel-Jacobi map

As in [26, section 1], for any smooth proper variety U defined over a field F
and any n ∈ Z≥0, there is a p-adic Abel-Jacobi map

AJUF : CHn
0 (U/F )→ H1(F,H2n−1(Uet,Zp))(εn)

coming from the cycle class map and Hochschild-Serre spectral sequence. The
Abel-Jacobi map is Galois equivariant (see [21, section 3.2] and [23, Proposition
4.2]) and commutes with pushforwards and pullbacks of correspondences ([23,
proof of Proposition 4.2]; see [16, section 2] for the complex algebraic geometry
version of this result).

We consider the p-adic Abel-Jacobi map in the following three different set-
tings.

As described by [21, sections 3.1-3.3] and [23, chapters 2-4], for any field F
containing Q, there is a p-adic Abel-Jacobi map (extending the map Φp,L in [21]
by Zp-linearity)

Φ : CH
k/2
0 (Ẽk−2(Γ(N))/F )⊗Z Zp → H1(F,Hk−1

et (Ẽk−2(Γ(N))⊗ F ,Zp(εk/2))).

Composing Φ with the map that is H1(F, ·) of the composite

Hk−1
et (Ẽk−2(Γ(N))⊗ F ,Zp(εk/2))

πBπ2,k−2
// Jp

R
// Tp
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and then applying ⊗OL or ⊗L yields compatible Abel-Jacobi maps

AJF : CH
k/2
0 (Ẽk−2(Γ(N))/F )⊗OL → H1

f (F, Tf )

AJF : CH
k/2
0 (Ẽk−2(Γ(N))/F )⊗ L → H1

f (F, Vf ).

See [2]. Similarly,

ΦCa13 : CH
k/2
0 (Ẽk−2(Γ1(N))/F )⊗ZZp → H1(L,Hk−1

et (Ẽk−2(Γ1(N))⊗F ,Zp(εk/2)))

is a p-adic Abel-Jacobi map which, together with the composition of maps

Hk−1
et (Ẽk−2(Γ1(N))⊗ F ,Zp(εk/2))

πB,1π1,k−2
// J1
p
∼= Jp

R
// Tp

and the application of ⊗OL, yields an Abel-Jacobi map

AJ1
F : CH

k/2
0 (Ẽk−2(Γ1(N))/F )⊗OL → H1(F, Tf ).

See [1, sections 3.1-3.4], taking that paper’s r to be k − 2. Let F be a
field containing K1, let A and A′ be elliptic curves over Q, let A′ have Γ1(N)
structure, and let ϕ : A → A′ be an isogeny for which ∆ϕ is defined over F .

(Note that Ẽr(Γ1(N))×Ar is defined over Q [1, p. 1056].) Define

JBeDaPr = π1,k−2π0,k−2H
2k−3
et (Ẽk−2(Γ1(N))×Ak−2,Qp(εk−1))

J
Zp

BeDaPr = π1,k−2π0,k−2H
2k−3
et (Ẽk−2(Γ1(N))×Ak−2,Zp(εk−1))

JdRBeDaPr = π1,k−2π0,k−2H
2k−3
dR ((Ẽk−2(Γ1(N))×Ak−2)/F )(εk−2).

There are compatible p-adic Abel-Jacobi maps

AJ1,A
F : CHk−1

0 ((Ẽk−2(Γ1(N))×Ak−2)/F )⊗Z Zp → H1
f (F, J

Zp

BeDaPr)

AJ1,A
F : CHk−1

0 ((Ẽk−2(Γ1(N))×Ak−2)/F )⊗Z Qp → H1
f (F, JBeDaPr).

5.7. Shafarevich-Tate-like groups

Following [21, section 3.3], we define a variant of the Shafarevich-Tate group
which will be used in section 8.

For each positive n ∈ Z, the map p−n : Tf → Wf [pn] and the inclusion
Wf [pn] ↪→Wf [pn+1] yield maps on cohomology

p−n : H1(K,Tf ) → H1(K,Wf [pn])

1 : H1(K,Wf [pn]) → H1(K,Wf [pn+1]).
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These maps combine to form a commutative diagram

H1(K,Tf )
p−1

//

p
��

H1(K,Wf [p])

1��

...

p
��

...

1
��

H1(K,Tf )
p−n

//

p
��

H1(K,Wf [pn])

1
��

H1(K,Tf )
p−(n+1)

//

p
��

H1(K,Wf [pn+1])

1��

...
...

from which the direct limit of the maps p−n : H1(K,Tf )→ H1(K,Wf [pn]) is a
map

H1(K,Tf )⊗OL
(L/OL)→ H1(K,Wf ). (5)

Define Xpn(K,Wf ) to be the quotient of H1
f (K,Wf [pn]) by the image under

the map p−n : H1(K,Tf ) → H1(K,Wf [pn]) of (im AJK)/pn(im AJK). Sim-
ilarly, define the Shafarevich-Tate-like group X(K,Wf ) to be the quotient of
H1
f (K,Wf ) by the image under the map (5) of (im AJK) ⊗OL

(L/OL). Then
we have a commutative diagram of short exact sequences

(im AJK)/p(im AJK)
�
� p−1

//

p
��

H1
f (K,Wf [p])

1��

// //Xp(K,Wf )

1��

...

p

��

...

1
��

...

1
��

(im AJK)/pn(im AJK)
�
� p−n

//

p
��

H1
f (K,Wf [pn])

1
��

// //Xpn(K,Wf )

1
��

(im AJK)/pn+1(im AJK)
�
� p−(n+1)

//

p
��

H1
f (K,Wf [pn+1])

1��

// //Xpn+1(K,Wf )

1��

...
...

...

in which each term has finite size, and these sequences’ direct limit is

(im AJK)⊗OL
(L/OL) ↪→ H1

f (K,Wf ) � X(K,Wf )

which yields a surjection X(K,Wf ) � Xf (K,Wf ) by (4), since (im AJK)⊗OL

(L/OL) is divisible. Note that Xf (K,Wf ) has finite cardinality.
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5.8. Logarithms on local cohomology

In this subsection, we define logarithm maps on local cohomology groups.
Recall that H1(Kv0 , Vf ) ∼= Ext1(Qp, Vf ) via an isomorphism which takes the

subgroup H1
f (Kv0 , Vf ) to Ext1

cris(Qp, Vf ) (see [26, section 3.4]).
Define

Ṽ := πBπ2,k−2H
k−1
dR (Ẽk−2(Γ(N))/L)(εk/2)

and let Ext1
ffm(L, Ṽ ) consist of the classes of extensions Ṽ ↪→ E � L of filtered

Frobenius modules [1, sections 3.2-3.3]. As in [1, sections 3.2-3.3] and [24,
Proposition 1.21 and Corollary 1.22], since the extension L/Qp is unramified, an
etale-versus-de-Rham-cohomology comparison theorem of Faltings [7, Theorem
5.6] yields a map

comp : Ext1
cris(Qp, Jp ⊗ L)

∼=→ Ext1
ffm(L, Ṽ ) ∼= Ṽ /Fil0Ṽ .

From the inclusion Tp ↪→ Jp, we obtain a map

H1
f (Kv0 ,Hom(Qp, Vf )) ∼= H1

f (Kv0 ,Hom(Qp, Tp⊗L))→ H1
f (Kv0 ,Hom(Qp, Jp⊗L))

which, because of the isomorphism between H1
f (Kv0 , ·) and Ext1

cris(Qp, ·), is
identified with a map

J ′ : Ext1
cris(Qp, Vf ) ∼= Ext1

cris(Qp, Tp ⊗ L)→ Ext1
cris(Qp, Jp ⊗ L)

of which the image is sent by comp to a module which we’ll call Ũ ⊆ Ṽ /Fil0Ṽ .

Define
˜̃
V to be the annihilator of Fil0Ṽ with respect to the Poincare dual-

ity map Ṽ × Ṽ → L (see also [27, section 1.3.4]); then that duality gives an

isomorphism J : Ṽ /Fil0Ṽ ∼= HomL(
˜̃
V , L).

We define the logarithm as the composite

log : J ◦ comp ◦ J ′ : H1
f (Kv0 , Vf ) ∼= Ext1

cris(Qp, Vf )→ HomL(
˜̃
V , L)

and, for a differential form η ∈ ˜̃V , we define logη : H1
f (Kv0 , Vf )→ L as the map

sending C ∈ H1
f (Kv0 , Vf ) to (logC)(η); here we adapt notation of [15, section

3.5].
Those maps log, logη were adapted from the following logarithms of [1,

sections 3.1-3.4]. Let F be a field containing K1; let A be an elliptic curve over
Q. There is an isomorphism

log1,A
F : H1

f (F, JBeDaPr)
∼=→ HomF (Fil1JdRBeDaPr, F )

given in [1, p. 1070] as the composition of three vertical maps in that source’s
diagram: the isomorphism H1

f (F, ·) ∼= Ext1
cris(Qp, ·), then a comparison isomor-

phism, then a Poincare duality map. Precomposing log1,A
F with the canonical

map H1
f (F, J

Zp

BeDaPr)→ H1
f (F, JBeDaPr) yields a map

log
1,A,Zp

F : H1
f (F, J

Zp

BeDaPr)→ HomF (Fil1JdRBeDaPr, F ).
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From log1,A
F and log

1,A,Zp

F , for each η ∈ Fil1JdRBeDaPr we obtain compatible maps

log1,A
η,F : H1

f (F, JBeDaPr) → F (6)

log
1,A,Zp

η,F : H1
f (F, J

Zp

BeDaPr) → F (7)

sending a cohomology class C to (log1,A
F C)(η) and (log

1,A,Zp

F C)(η) respectively.

We may take η = ωf ∧ ωk/2−1
A η

k/2−1
A for [1]’s differential forms ωf , ωA, ηA.

6. L-functions

6.1. The Rankin-Selberg L-function

For classical cusp forms g, h that are eigenforms for the Hecke operators away
from their levels, we have the classical Rankin-Selberg L-function L(s, g × h).
We write Lp(s, g × h) for the L-function L(s, g × h) without the Euler factor
over p.

For classical modular forms g, h ∈ Sk′(Γ0(M), χ) for a common Dirichlet
character χ, the related function D(s, g, hc) =

∑∞
n=1 a(n, g)a(n, hc)/ns satisfies

〈g, h〉Γ0(M) = vol(Γ0(M)\h) · (Γ(k′)/(4π)k
′
)ress=k′D(s, g, hc) (8)

as can be shown using the Rankin-Selberg method [34, p. 35], where

〈g, h〉Γ0(M) =
∫

Γ0(M)\h g(τ)h(τ)yk
′
dxdy/y2

is the Petersson inner product (denoting τ = x+ iy ∈ C).
See, for instance, [1, pp. 1088-1089] and [3, pp. 222-224].

6.2. Local characters and representations

The following expressions will appear in p-adic L-function interpolation for-
mulas. Notation is adapted from that of [11, 12, 37].

For a (not necessarily unitary) character η : Q×p → C×, define

gp(η) =
∑

u∈(Zp/C(η))×

η−1(u) exp

(
−2πi

u

C(η)

)

where the ideal C(η) of Zp is identified with a generator of the form pt, t ∈ Z.
Similarly, for a (not necessarily unitary) character η : K×v0 → C×, define

gv0(η) =
η(C(η))

NK/Q(C(η))

∑
u∈(OK,v0

/C(η))×

η−1(u) exp

(
−2πiTrKv0/Qp

(
u

2δC(η)

))

where the ideal C(η) of OK,v0 is identified with a generator of the form pt,
t ∈ Z, and where the number δ ∈ (R>0i) ∩ K is chosen so that the fractional
ideal {TrK/Q(xy/(2δ)) : x, y ∈ OK} of Q is coprime to pN .
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Recall that for (not necessarily unitary) characters η : Q×p → C× and η′ :
Q×p → C×, we have the principal series representation π(η, η′) or (for η′ = η| ·
|−1
p ) special representation σ(η, η′), which is an infinite-dimensional irreducible

subquotient of the space of locally constant functions GL2(Qp) → C on which
the character (

a ∗
0 d

)
7→ η(a)η′(d)|a/d|1/2p

gives the action of the Borel subgroup of GL2(Qp) by left translation.
For P and λ as in subsection 4.2, let the characters ηP,p, η

′
P,p : Q×p → C×

be so that for the automorphic representation π(F (λ, P )) ∼= ⊗̂vπv(F (λ, P )) of
GL2(AQ) corresponding to F (λ, P ) (see for example [10], [11], [14, section 9]
and [20, p. 333]), we have that πp(F (λ, P )) is equivalent to π(ηP,p, η

′
P,p) or

σ(ηP,p, η
′
P,p).

6.3. p-adic L-functions

This subsection gives interpolation formulas for different p-adic L-functions.

Fix an even positive integer k. In this subsection, the character Pac : Γ−K → Q×p
and the anticyclotomic character ψ : ZK(C)tor → Q×p are allowed to vary so that,

for the characters P = Pac ◦ prac : ΓK → Q×p and Pψ : ZK(C)→ Q×p , there is a

positive integer n ≥ k/2, depending on Pac, such that (Pψ)alg(z∞) = zn∞z
−n
∞ .

Define the variable j = (2n− k)/2 ∈ Z≥0. Each interpolation formula evaluates

Pac : ÔurL [[Γ−K ]]→ Qp at a p-adic L-function.

6.3.1. The Katz p-adic L-function of Hida and Tilouine

Let the Hecke character ξ : K×\A×K → C× with infinity type z∞ 7→ zk+j
∞ z−j∞

be such that ξξ−c has p-adic avatar induced from (Pψ) ◦ sq.
From a 1993 paper of Hida and Tilouine [12] (see also [37, Definition 7.8]),

there is a Katz p-adic L-function L−Katz(K) ∈ ÔurL [[Γ−K ]] satisfying the interpo-
lation formula

Pac(L
−
Katz(K)) = F93C1,93C

n
2,93 (9)

where the function F93 and the constants C1,93, C2,93 are given by

F93 = L(1, ξξ−c)gv0((ξ−1ξc)v0)Γ(2n+ 1)

· (1− p−1ξξ−c(v0))(1− ξξ−c(v0))
∏
v|C

(1− (Nv)−1ξξ−c(v)),

C1,93 = 2im(δ)/π, C2,93 = (Ωp/Ω∞)
4

(π/im(δ))
2

for certain periods Ωp ∈ ÔurL , Ω∞ ∈ C defined in [12], using subsection 6.2’s δ.
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6.3.2. The L-function of Hida

Consider Hida families

λ : h2n+1(N |DK |, ÔurL )→ ÔurL [[ΓK ]] and λ′ : hk(N, ÔurL )→ ÔurL [[ΓK ]].

Fix Q so that F (λ′, Q) = f c, ψ′Q = 1 and k(Q) = k. Let P1 = P ◦ sq ◦ prv0 .

Assume ψ′P1
= 1 (this is an assumption about λ). Assume that each of pγ(p) =

C(ηQ,p), p
γ′(p) = C(η′Q,p), p

δ(p) = C(η′P1,p
) has at least one factor of p. Assume

F (λ, P1) is p-ordinary.

From a 1991 paper of Hida [11], there is a p-adic L-function D−Q ∈ ÔurL [[Γ−K ]]
satisfying the interpolation formula

Pac(D
−
Q) = F91C1,91C

n
2,91 (10)

with

F91 =
1

W ′(F (λ, P1))
·
gp(ηQ,p)gp(η

′
Q,p)

gp(η′P1,p
)

·
Γ(n+ 1

2k)Γ(n− 1
2k + 1)pδ(p)

ηP1,p(p
γ(p)+γ′(p))η′P1,p

η−1
P1,p

(pδ(p))
· Lp(0, F (λ, P1)× f)

〈F (λ, P1), F (λ, P1)〉Γ0(N |DK |)
,

C1,91 = ηQ,p(p
γ(p)+γ′(p)) · ψQψ′Q(−1)W ′(f c)

√
N |DK |/(2π),

C2,91 = 1/(16π2|DK |)
where for primitive cusp forms f1 ∈ Sk′(Γ1(M)) of level M , the number W ′(f1)
is described in Hida [11, pp. 344-345] as part of a decomposition W (f1) =
W ′(f1)Wp(f1) of the W factor W (f1) ∈ C with |W (f1)| = 1 such that

Mk′/2−1f1|k′
(

0 −1
M 0

)
= W (f1)f c1 ;

see also [5, exercises 1.5.4, 5.5.1 and section 5.10] and [11, pp. 344-345] (where
formula (4.10b) should have no minus sign).

6.3.3. The L-function of Wan

For this subsubsection, let I = ÔurL [[ΓK ]]. Fix an irreducible component of

I⊗̂OL
ÔurL , and let that component’s associated ring have normalization Îur (see

[37, before Theorem 1.1]).
For a set S of finitely many places of K including v0 and v0, Wan [37,

section 7.5] defines two related p-adic L-functions in Îur[[ΓK ]] which we call

L̃SWan and LSWan (Wan calls them LS,Hidaf ,ξ,K and LSf ,ξ,K respectively). For the

Hida family Q : I → Qp corresponding to f , write L̃SWan(f) = Q(L̃SWan) and

LSWan(f) = Q(LSWan); let their images under prac be L̃−,SWan(f) and L−,SWan(f)
respectively.

We have L̃
−,Np

Wan (f) = D−QL
−
Katz(K), and L

−,Np

Wan (f) = CWanL̃
−,Np

Wan (f) for a

constant CWan ∈ OQp
which Wan calls Cf ,K,ξ. Starting with L̃

Np

Wan or L
Np

Wan and

omitting Euler factors at primes over S\Np yields L̃SWan or LSWan respectively.
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6.3.4. The BDP L-function

Let the Hecke character χ : K×\A×K → C× be so that Pψ is the p-adic
avatar of χ−1Nk/2. Let b be an ideal of OK coprime to Np, and let bN be a
number in OK , such that bC = bNOK .

From a 2013 paper of Bertolini, Darmon and Prasanna [1], there is a p-adic

L-function L
−,Np

BDP (f) ∈ ÔurL [[Γ−K ]] satisfying the interpolation formula

Pac(L
−,Np

BDP (f)) = F13C1,13C
n
2,13 (11)

with

F13 = Γ

(
n+

1

2
k

)
Γ

(
n− 1

2
k + 1

)
(Pψ)alg(b)ψ(OK/C)×(NK/Qb)

· (1− χ−1(v0)a(p, f) + χ−2(v0)pk−1)2 · L(0, θχ−1 × f),

C1,13 =
2
√
|DK |

4π(−1)k/2
W (F (λ′, Q)), C2,13 =

Ω4
pπ

2

Ω4
∞
· b

2
N |b|A,K
−N

where ψ(OK/C)× is obtained by precomposing ψ with the projection from ZK(C)tor

to its (OK/C)×/{±1} part, using the decomposition (2), and the periods Ωp,
Ω∞ are as before, following the argument of [15, section 5.2].

As in [15, section 5.1], for a set S of finitely many places of K such that
S ⊇ Np, define

L−,SBDP (f) = L
−,Np

BDP (f) ·
∏
v∈S\Np

Lv(f)

where Lv(f) is the Euler factor at v.

6.4. Comparison and missing factor

The line of argument of [15] is followed and adapted. The arithmetic ÔurL -

algebra map Pac : ÔurL [[Γ−K ]]→ ÔurL and the character χ are as before.
From subsection 6.3’s interpolation formulas (9), (10) and (11), we obtain

Pac(L̃
−,Np

Wan (f)) = Pac(D
−
QL
−
Katz(K)) = C(f, Pac)Pac(L

−,Np

BDP (f))

writing C(f, Pac) = F̃ C̃1C̃
n
2 where we define

F̃ :=
F91F93

F13
, C̃1 :=

C1,91C1,93

C1,13
, C̃2 :=

C2,91C2,93

C2,13
.

As in the argument of [15, section 5.2], F̃ is a constant times the nth power of
a constant. (We have Uθχ−1 = F (λ, P1) and

L(1, ξξ−c)Γ(2n+ 1)

〈Uθχ−1 , Uθχ−1〉Γ0(N |DK |)
= (constant)(16π2)n

by equation (8) and the fact that

ress=2n+1D(s, Uθχ−1 , Uθcχ−1) = (constant)L(1, ξξ−c)

holds.) So we can write C(f, Pac) = C1C
n
2 for constants C1, C2.
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6.5. Interpolation

Lemma 6.1. There is a constant C1 ∈ ÔurL [1/p]× and a p-adic unit u ∈
ÔurL [[Γ−K ]]× such that for all Pac with φ(pN) = (p − 1)φ(N) | n, we have
Pac(C1u) = C(f, Pac).

Proof. Let C1 be as in subsection 6.4, and let u be such that Pac(u) = Cn2
identically; this is possible since ψφ(pN) = 1 and the infinity type exponents of
Pψ are ±n.

The maps Pac as in Lemma 6.1 are dense in Spec ÔurL [[Γ−K ]], so L̃
−,Np

Wan (f) =

D−QL
−
Katz(K) = C1uL

−,Np

BDP (f). So we have shown the following theorem.

Theorem 6.2. In ÔurL [[Γ−K ]]⊗OL
L = ÔurL [[Γ−K ]][1/p], we have

(L
−,Np

BDP (f)) = (L̃
−,Np

Wan (f)) ⊇ (L
−,Np

Wan (f)).

7. From Wan’s L-function to cohomology: Iwasawa theory

This section collects progress in one direction of an Iwasawa main conjecture
and, as a consequence, links Wan’s L-function to the cohomology of the (Qp/Zp)-
representation Wf of the modular form f .

7.1. Notation

We use and adapt notation of [11, 35, 37].
As in subsection 4.2, take a cuspidal Hida family λ : hk,w(N,OL) → I,

with I a finite-rank Zp[[t]]-module and an integrally closed domain, and let the
continuous Zp-algebra map Q : I → Qp correspond to f via λ, with Q[I] = OL.

Choose an irreducible component of I⊗̂OL
ÔurL , and let the normalization of

that component’s associated ring be Îur (see [37, before Theorem 1.1]).
Let Tλ be the Galois representation coming from λ. (In [35, section 3.3.10],

Tλ is denoted by ρf ; Hecke duality identifies that source’s f with our λ.) We have
Tλ ∼= I2 and T gf

∼= O2
L; for a sufficiently large L/Qp, we have Tλ ⊗I OL ∼= T gf .

Let ΨK : GK � ΓK ⊆ OL[[ΓK ]]×, Ψ− : GK � Γ−K ⊆ OL[[Γ−K ]]× be the
standard projections. Write (·)∗ = HomOL

(·, L/OL) for the Pontryagin dual.
The module OL[[ΓK ]] acts on OL[[ΓK ]]∗ so that (xF )(y) = F (yx) for x, y ∈ ΛK
and F ∈ OL[[ΓK ]]∗. Define the modules

Tλ,K,ξ = Tλσξ−c(ε2−(κ/2))⊗I[[ΓK ]] I[[ΓK ]](Ψ−cK )
Tf,K,ξ = T gf σξ−c(ε2−(κ/2))⊗OL[[ΓK ]] OL[[ΓK ]](Ψ−cK ).
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For any finite set S of finite places of K, such that S includes v0, v0 and all
places at which Vf ramifies, define the modules

SelSλ,K,ξ = {c ∈ H1(K,Tλ,K,ξ ⊗ I[[ΓK ]]∗) : c unramified at v0 and outside S}
SelSf,K,ξ = {c ∈ H1(K,Tf,K,ξ ⊗OL[[ΓK ]]∗) : c unramified at v0 and outside S}
XS
λ,K,ξ = (SelSλ,K,ξ)

∗

XS
f,K,ξ = (SelSf,K,ξ)

∗

X̂S
λ,K,ξ = XS

λ,K,ξ ⊗I[[ΓK ]] Î
ur[[ΓK ]]

X̂S
f,K,ξ = XS

f,K,ξ ⊗OL[[ΓK ]] Ô
ur
L [[ΓK ]].

7.2. Main conjecture for Hida families

Wan proved the following main conjecture (see [37]; the result is in the final
proof of that source’s Theorem 1.2):

Theorem 7.1 (Main conjecture). Assume some nebentypus-1 weight-2 special-
ization f0 of a Hida family λ satisfies:

(i) f0 is the ordinary stabilization of a newform of level divisible by some odd
prime q not split in K.

(ii) The Galois representation T gf0 has irreducible residual representation T gf0 |GK ,

and T gf0 is ramified at q.

Suppose the Hecke character ξ : K×\A×K → C is of infinity type z∞ 7→ zu∞z
−u
∞

for some positive integer u divisible by p− 1, and is such that the p-adic avatar
of ξ| · |uK(ωv0 · ωv0) factors through ΓK .

Let S be a set of finitely many places of K, including all places dividing
pNDK .

Then, letting P1, . . . , Pt be the height 1 primes in Îur[[ΓK ]] dividing LSWan

that are pullbacks of height 1 primes in Îur, we have

LSWanÎ
ur[[ΓK ]]p,P1,...,Pt ⊇ FittÎur[[ΓK ]]p,P1,...,Pt

X̂S
λ,K,ξ

in which the notation Îur[[ΓK ]]p,P1,...,Pt indicates localization with respect to the
primes Pi and p as in [37].

7.3. From Hida families to modular forms

We follow the argument in the proof of [37, Theorem 1.2]. In this subsection,
S is a set of finitely many places of K including all places over pNDK .

Recall LSWan(f) = Q(LSWan) ∈ ÔurL [[ΓK ]] ⊗OL
L for Q corresponding to

f via λ. Applying Q to Theorem 7.1’s result, and noting FittR/I(M/IM) =
(FittRM)(R/I) for an R-module M and ideal I in a noetherian ring R (see [6,
Corollary 20.5], [35, section 3.1.5] and [37, section 2.2]), we obtain

LSWan(f)(ÔurL [[ΓK ]]⊗OL
L) ⊇ FittÔur

L [[ΓK ]]⊗OL
L

(
X̂S
λ,K,ξ ⊗OL

L

(kerQ)(X̂S
λ,K,ξ ⊗OL

L)

)
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and therefore

LSWan(f)(ÔurL [[ΓK ]]⊗OL
L) ⊇ charÔur

L [[ΓK ]]⊗OL
L

(
X̂S
λ,K,ξ ⊗OL

L

(kerQ)(X̂S
λ,K,ξ ⊗OL

L)

)

because the characteristic ideal is the minimum principal ideal containing the
Fitting ideal (see the last sentence in the proof of [15, Corollary 3.4.2]).

Now Wan [37, Proposition 2.4] proved an OL[[ΓK ]]-module version of the
following result for f of weight 2; that argument carries through for higher
weight to give:

Theorem 7.2. There is an ÔurL [[ΓK ]]-module exact sequence

M → X̂S
λ,K,ξ/(kerQ)X̂S

λ,K,ξ → X̂S
f,K,ξ → 0

where M ⊗OL
L has annihilator of codimension ≥ 2 in Spec ÔurL [[ΓK ]]⊗L, i.e.,

is pseudo-null. In ÔurL [[ΓK ]]⊗OL
L, this implies

charÔur
L [[ΓK ]]⊗OL

L

(
X̂S
λ,K,ξ ⊗OL

L

(kerQ)(X̂S
λ,K,ξ ⊗OL

L)

)
= charÔur

L [[ΓK ]]⊗OL
L(X̂S

f,K,ξ⊗OL
L)

so
LSWan(f)(ÔurL [[ΓK ]]⊗OL

L) ⊇ charÔur
L [[ΓK ]]⊗OL

L(X̂S
f,K,ξ ⊗OL

L).

7.4. From Greenberg to anticyclotomic: characteristic ideals

In this subsection, the set S is as before. The following arguments are
adapted from [15, section 3.4] (that source’s Σ is our S\Np).

Define M = Tf,K,ξ ⊗OL
OL[[Γ−K ]]∗ and M = Tf,K,ξ ⊗OL

OL[[ΓK ]]∗ analo-

gously to [15]. For M̃ ∈ {M,M} and • ∈ {ac,Gr}:

(a) Identify H1(KS/K, M̃) with the space of classes in H1(K, M̃) unramified
at all primes outside S (see [30, Lemma 1.5.3]).

(b) Let H1
• (K, M̃) ⊆ H1(KS/K, M̃) be the space of classes in H1(K, M̃)

satisfying the following conditions:

– If • = ac (“ac” is for “anticyclotomic”): no condition at v0, unrami-
fied at finite primes outside Np splitting in K, 0 at all other primes.

– If • = Gr (“Gr” is for “Greenberg”): no condition at v0, unramified
at all other primes.

Let H1
•,S\Np

(K, M̃) ⊆ H1(KS/K, M̃) be the space of classes in H1(K, M̃)

satisfying the above conditions at primes outside S\Np (but not necessar-
ily at primes in S\Np: the conditions are relaxed at these primes).
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(c) Define

X•,S\Np
(M̃) = (H1

•,S\Np
(K, M̃))∗

X̂•,S\Np
(M) = X•,S\Np

(M)⊗OL[[Γ−K ]] Ô
ur
L [[Γ−K ]]

X̂•,S\Np
(M) = X•,S\Np

(M)⊗OL[[ΓK ]] Ô
ur
L [[ΓK ]]

Note that SelSf,K,ξ = H1
Gr,S\Np

(K,M) and XS
f,K,ξ = XGr,S\Np

(M).

The argument of [15, section 3.4] goes through, yielding

Theorem 7.3.

(γ+ − 1)ÔurL [[ΓK ]] + charÔur
L [[ΓK ]]X̂

S
f,K,ξ

(γ+ − 1)ÔurL [[ΓK ]]
⊇ charÔur

L [[Γ−K ]]X̂ac,S\Np
(M).

7.5. Half of an Iwasawa main conjecture
From Theorems 7.2 and 7.3, we have the following over ÔurL [[Γ−K ]][1/p].

Theorem 7.4. For S including all places of K dividing pNDK , we have

L−,SWan(f) · ÔurL [[Γ−K ]][1/p] ⊇ charÔur
L [[Γ−K ]][1/p](X̂ac,S\Np

(M)).

There is a µ = 0 result for L
−,Np

BDP (f) due to Hsieh ([13, Theorem B]; see
also the Remark on the previous page in that source). Recall the isomorphism

ÔurL [[Γ−K ]] ∼= ÔurL [[t]] sending γ− to 1 + t.

Theorem 7.5 (Hsieh’s µ = 0). As in the Weierstrass preparation theorem,

factor the p-adic L-function L
−,Np

BDP (f) as L
−,Np

BDP (f) = pµR(t)U(t), where µ ∈ Q,

U(t) ∈ ÔurL [[t]]× and the monic distinguished polynomial R(t) ∈ ÔurL [t] is chosen
so that degR is minimized. Then µ = 0.

Using that theorem, the reasoning of [15, Theorem 6.1.6] goes through to
prove half of an Iwasawa main conjecture:

Theorem 7.6. For any set S of finitely many places of K containing Np (pos-
sibly S = Np), we have

L−,SWan(f) · ÔurL [[Γ−K ]] ⊇ charÔur
L [[Γ−K ]](X̂ac,S\Np

(M)).

7.6. Consequences
Let the continuous ÔurL -algebra map P1 : ÔurL [[Γ−K ]]→ Qp send each element

of Γ−K to 1; under the identification ÔurL [[Γ−K ]] ∼= ÔurL [[t]] with γ− 7→ 1 + t, the
map P1 has the effect of substituting t = 0.

Define

C(W ) := #H0(Kv0 ,W ) ·#H0(Kv0 ,W ) ·
∏
v∈S′ #H

1
ur(Kv,W )

where S′ is the set of finite places v of K such that v - p, Vf is ramified at v,
and v is above a rational prime that splits in K.

The argument of [15, section 6.2] finally yields

Theorem 7.7. We have

indpP1(L
−,Np

Wan (f)) ≤ indp(C(Wf )#H1
ac(K,Wf )).
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8. From cohomology to X

In this section, we adapt an argument of Jetchev, Skinner and Wan [15,
section 3.5] to relate #H1

ac(K,Wf ) and #X(K,Wf ).

8.1. Main formula

Theorem 8.1. Suppose the following hold.

(i) Congruence: k/2 is not congruent to 0 or 1 modulo p− 1.

(ii) Rank 1: The OL-module im AJK has rank 1.

(iii) Finiteness of Sha: X(K,Wf )[p∞] has finite cardinality as a set.

(iv) Localization: For each place v | p of K, the localization map H1
f (K,Wf )→

H1
f (Kv,Wf ) restricts to a map

(im AJK)⊗OL
(L/OL)→ (im AJKv

)⊗OL
(L/OL)

of which the kernel is torsion.

(v) Local corank 1: For each place v | p of K, the OL-module H1
f (Kv,Wf ) has

corank 1.

Define δv0 to be the cokernel of the localization map

locv0/tor : H1
f (K,Tf )→ H1

f (Kv0 , Tf )/H1
f (Kv0 , Tf )tor.

Then
#H1

ac(K,Wf ) = #X(K,Wf ) · (#δv0)2 (12)

and H1
f (K,Tf ) ∼= OL.

Proof. We show that for (T, V,W ) = (Tf , Vf ,Wf ), the hypotheses of [15, Propo-
sition 3.2.1] are true, which yields (12); we also show X(K,Wf ) = Xf (K,Wf )
and then prove H1

f (K,Tf ) ∼= OL.
As in [15, section 3.5] (noting assumption (i), V cf

∼= Vf ∼= HomL(Vf , L(ε)),
p - N and that the GK-representation Tf/mLTf is irreducible), to apply [15,
Proposition 3.2.1], it is enough to show the following two hypotheses of [15] for
W = Wf : (corank 1) the OL-modules H1

f (K,W )div, H1
f (Kv0 ,W ), H1

f (Kv0 ,W )

have corank 1, and (sur) the localization maps H1
f (K,W )div → H1

f (Kv0 ,W )

and H1
f (K,W )div → H1

f (Kv0 ,W ) are surjections.
In the short exact sequence

(im AJK)⊗OL
(L/OL) ↪→ H1

f (K,Wf ) � X(K,Wf )[p∞]

of OL-modules, the first term has corank 1 because im AJK has rank 1 (assump-
tion (ii)), and the third term has corank 0 (assumption (iii)), so H1

f (K,Wf )

and H1
f (K,Wf )div have corank 1. So by assumption (v), (corank 1) holds for

W = Wf .
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Let v | p be a place of K. The OL-module (im AJK) ⊗OL
(L/OL) has

corank 1, and it is isomorphic as an OL-module to L/OL. By assumption (iv),
(im AJK)⊗OL

(L/OL) is sent by the localization map to (im AJKv
)⊗OL

(L/OL)
with torsion kernel, so (im AJKv

) ⊗OL
(L/OL) has corank at least 1. But

(im AJKv
)⊗OL

(L/OL) is an OL-submodule of H1
f (Kv,Wf ), which has corank 1

(assumption (v)). So as OL-modules, (im AJKv )⊗OL
(L/OL) = H1

f (Kv,Wf ) ∼=
L/OL, and each class in H1

f (Kv,Wf ) is the image of some class in (im AJK)⊗OL

(L/OL) ⊆ H1
f (K,Wf )div. This implies (sur) for W = Wf .

So [15, Proposition 3.2.1] applies, yielding (12).
There are quotient maps

H1
f (K,Wf )

��
��

X(K,Wf )

��
��

= H1
f (K,Wf )/((im AJK)⊗OL

(L/OL))

Xf (K,Wf ) = H1
f (K,Wf )/H1

f (K,Wf )div.

Since (im AJK)⊗OL
(L/OL) is divisible, it is the maximal p-divisible subgroup

of H1
f (K,Wf ) (because H1

f (K,Wf ) has corank 1), so X(K,Wf ) = Xf (K,Wf ).
For a uniformizer $L ∈ mL of L, taking the long exact GK-cohomology of

the short exact sequence

Tf
$L
↪→ Tf � Tf/$LTf

implies that the sequence

(Tf/$LTf )GK → H1(K,Tf )
$L→ H1(K,Tf )

is exact. The left term is 0: it is an OL-submodule of the GK-module Tf/mLTf ,
and Tf/mLTf is irreducible and not 1-dimensional. So $L : H1(K,Tf ) →
H1(K,Tf ) is injective and H1(K,Tf ) is torsion free. Now H1

f (K,Tf ) is finitely
generated as an OL-module, and

rankOL
H1
f (K,Tf ) = dimLH

1
f (K,Vf ) = corankOL

H1
f (K,Wf ) = 1 (13)

so H1
f (K,Tf ) ∼= OL. (Proof of (13): We have H1(GK , Tf )⊗OL

L ∼= H1(GK , Vf ).

There is no divisible part in the cokernel of H1(K,Vf )→ H1(K,Wf ), since that
cokernel is the image of the connecting map H1(K,Wf ) → H2(K,Tf ), which
is the torsion subgroup of H2(K,Tf ), and H2(K,Tf ) is a finitely generated
OL-module.)

8.2. Finding #δv0
We now adapt [15, section 3.5] to find a formula for #δv0 .
In this subsection, assume that H1

f (K,Tf ) ∼= OL as OL-modules and that

H1
f (Kv0 , Tf )/tor ∼= OL is a torsion-free rank-1 OL-module (both of which are

implied by the hypotheses of Proposition 8.1).
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Define C0 = corK1/KAJK1(∆Ma19) ∈ H1
f (K,Tf ). In this subsection, assume

that the image of C0 in H1
f (Kv0 , Tf ) is not torsion; then locv0/tor : OL ∼=

H1
f (K,Tf )→ H1

f (Kv0 , Tf )/tor ∼= OL is injective.

Recall the map logω for differential forms ω ∈ ˜̃V from subsection 5.8.

Theorem 8.2. Choose the differential form ω ∈ ˜̃
V so that logω restricts to

an isomorphism logω : H1
f (Kv0 , Tf )/tor

∼=→ OL with inverse expω. (Interpret

H1
f (Kv0 , Tf )/tor as a subgroup of H1

f (Kv0 , Vf ) ∼= (H1
f (Kv0 , Tf )/tor) ⊗OL

L.)
Then

#δv0 =
(OL : OL logω(locv0C0)) · (H1

f (Kv0 , Tf ) : expω(pOL))

p[L:Qp] ·#H0(Kv0 ,Wf ) · (H1
f (K,Tf ) : OLC0)

. (14)

Proof. We argue as in [15], replacing that source’s Af , #Af [p∞](Fp), ωf , P
with H1

f (·, Tf ), (H1
f (Kv0 , Tf ) : expω(pOL)), ω, C0 respectively.

The rank-1 OL-modules

H1
f (Kv0 , Tf )/tor ⊇ (locv0/tor)H1

f (K,Tf ) ⊇ OLlocv0C0

are of finite index in one another, so we have

#δv0 = (H1
f (Kv0 , Tf )/tor : (locv0/tor)H1

f (K,Tf ))

= (H1
f (Kv0 , Tf )/tor : OLlocv0C0) / ((locv0/tor)H1

f (K,Tf ) : OLlocv0C0)

= (H1
f (Kv0 , Tf )/tor : OLlocv0C0) / (H1

f (K,Tf ) : OLC0) (15)

because locv0/tor is injective.
Since logω : H1

f (Kv0 , Tf )/tor→ OL is an isomorphism, the numerator in the
last fraction in (15) is

(H1
f (Kv0 , Tf )/tor : OLlocv0C0)

= (logω(H1
f (Kv0 , Tf )/tor) : logω(OLlocv0C0))

= (OL : OL logω(locv0C0)) / (OL : logω(H1
f (Kv0 , Tf )/tor)). (16)

Finally, the denominator in the last fraction in (16) is

(OL : logω(H1
f (Kv0 , Tf )/tor))

= (OL : pOL) / (logω(H1
f (Kv0 , Tf )/tor) : pOL)

= (OL : pOL) / (H1
f (Kv0 , Tf )/tor : expω(pOL))

= (OL : pOL) ·#H1
f (Kv0 , Tf )tor / (H1

f (Kv0 , Tf ) : expω(pOL))

= (OL : pOL) ·#H0(Kv0 ,Wf ) / (H1
f (Kv0 , Tf ) : expω(pOL)). (17)

For the last equation, note that H1
f (Kv0 , Tf )tor = H1(Kv0 , Tf )tor which is iso-

morphic to the image of the connecting map H0(Kv0 ,Wf )→ H1(Kv0 , Tf ); but

this image is isomorphic to H0(Kv0 ,Wf ) since V
GKv0

f = 0.

Noting that (OL : pOL) = p[L:Qp] (because p does not ramify in L/Qp) and
combining (15), (16) and (17) yields (14).
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9. From X to Heegner cycles: an Euler system result

9.1. Masoero’s theorem

In this subsection, we link the order of X to subsection 5.2’s Heegner cycles
∆Ma19, ZMa19 by describing and slightly adapting a result of Masoero [21],
which that paper proved by adapting arguments of Kolyvagin [18, 19] (as re-
organized by McCallum [22]) about Euler systems and Shafarevich-Tate groups.

Theorem 9.1. ([21, Theorem 7.3 and next sentence, Corollary 7.11]; see also
[23, Theorem 13.1]). In addition to subsection 2.2’s hypotheses, assume that:

(i) The cohomology class C0 = corK1/KAJK1
(∆Ma19) ∈ H1(K,Tf ) is not

torsion.

(ii) If g ∈ GL2(OQ(f) ⊗Z Zp) and det g is a (k − 1)th power in Z×p , then
g is in the image of the representation ρf,p : GQ → GL2(OQ(f) ⊗Z Zp)
corresponding to Tp.

Then
(im AJK)⊗Q = L · C0 ⊆ H1

f (K,Vf ),

the group X(K,Wf ) has finite cardinality, and

indp#X(K,Wf ) ≤ 2indp(AJK1
(ZMa19), im AJK1

).

Remarks 9.2. (a) Although Masoero’s paper assumes that every prime divid-
ing N splits in K, the paper’s argument goes through under our more
general Heegner hypothesis. The only place where Masoero uses the split-
ting assumption is to deduce the existence of an ideal C of OK for which
Z/NZ ∼= OK/C [21, section 4.1]; such a C still exists if each prime over N
may split or ramify in K with the square of the prime not dividing N in
the latter case.

(b) Condition (ii) excludes only finitely many p for given f and K; see [21,
section 4.2]. Masoero assumes p - hK to define Kolyvagin classes (see
the argument between Remark 4.2 and Proposition 4.3 in [21]). To adapt
Masoero’s reasoning to the case p | hK , one might need to use universal
Euler system arguments along the lines of Rubin ([30, sections 4.2-4.4];
see in particular [30, Remark 4.4.3]).

10. Comparing Heegner cycles: Abel-Jacobi maps

Recall subsection 5.1’s groups G(t, r) and projections πB , πB,1, as well as
subsection 5.2’s cycles and varieties.

30



10.1. The section’s main result

In this section, we prove the following result.

Theorem 10.1. In addition to subsection 2.2’s hypotheses, assume that:

(i) We have

indp(AJK1
(ZMa19), im AJK1

) = indp(AJK1
(∆Ma19), im AJK1

). (18)

(ii) When the hK ·φ(N) elements of Gal(K1/K)× (Γ0(N)/Γ1(N)) act on the
point of X1(N) associated to Ex1

, the corresponding hK · φ(N) images of
that point are distinct.

(iii) The map (7) with η = ωf ∧ωk/2−1
A η

k/2−1
A , A = Ex1

and F = L has image
in OL.

Then

indp(AJK1
(ZMa19), im AJK1

) ≤ indpAJ
1,Ex1

L (ZBeDaPr13)
(
ωf ∧ ωk/2−1

Ex1
η
k/2−1
Ex1

)
.

(19)

Remarks 10.2. We always have

indp(AJK1(ZMa19), im AJK1) = indp(corK1/KAJK1(∆Ma19), im AJK) (20)

because
AJK1

(ZMa19) = resK1/K(corK1/KAJK1
(∆Ma19))

and, noting that p - hK ,

corK1/KAJK1
(ZMa19) = corK1/KresK1/K(corK1/KAJK1

(∆Ma19))
= hKcorK1/KAJK1

(∆Ma19).

(To see why these imply (20), use versions of the next subsection’s lemmas with
pushforwards and pullbacks replaced by the maps resK1/K , corK1/K .) Equation
(18) says the corK1/K on (20)’s right hand side can be removed without changing
the p-indices, so (18) is stronger than (20).

10.2. Correspondences, Galois actions and p-indices

The following two lemmas are key tools in our argument.

Lemma 10.3. Let varieties U1, U2 be defined over K1, with associated Abel-
Jacobi maps AJU1

K1
, AJU2

K1
. Let ∆1, ∆2 be cycles defined over K1 in U1, U2

respectively. Let P be a correspondence from U1 to U2, with induced pushforward
and pullback maps P∗, P

∗ between the Chow groups of U1 and U2. Write

M1 := indp(AJ
U1

K1
(∆1), im AJU1

K1
)

if this number is well defined, and write

M2 := indp(AJ
U2

K1
(∆2), im AJU2

K1
)

if this number is well defined.
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(a) Assume AJU2

K1
(∆2) is not torsion and P∗∆1 = α∆2 for some α ∈ Z×p .

Then AJU1

K1
(∆1) is not torsion, both of M1, M2 are well defined, and

M1 ≤M2.

(b) Assume AJU1

K1
(∆1) is not torsion and α∆1 = P ∗∆2 for some α ∈ Z×p .

Then AJU2

K1
(∆2) is not torsion, both of M1, M2 are well defined, and

M1 ≥M2.

Proof. (a) Assume for a contradiction that AJU1

K1
(∆1) is torsion. Then so is

P∗AJ
U1

K1
(∆1) = AJU2

K1
(P∗∆1) = αAJU2

K1
(∆2),

so AJU2

K1
(∆2) is also torsion, contrary to assumption. So AJU1

K1
(∆1) is not tor-

sion.
Therefore, there are non-torsion classes C1 ∈ im AJU1

K1
and C2 ∈ im AJU2

K1

for which AJU1

K1
(∆1) = pM1C1 and AJU2

K1
(∆2) = pM2C2, so

M2 = indp(αAJ
U2

K1
(∆2), im AJU2

K1
) (since α ∈ Z×p )

= indp(AJ
U2

K1
(P∗∆1), im AJU2

K1
) (by assumption)

= indp(P∗AJ
U1

K1
(∆1), im AJU2

K1
) (Abel-Jacobi maps commute

with correspondences)

= indp(p
M1P∗(C1), im AJU2

K1
)

= M1 + indp(P∗(C1), im AJU2

K1
) ≥M1.

(b) In the argument for part (a), replace P∗ with P ∗ and swap M1 with M2,
U1 with U2, ∆1 with ∆2 and C1 with C2. We obtain M1 ≥M2.

Lemma 10.4. Let U be a variety defined over K, with associated Abel-Jacobi
map AJUK1

. Let ∆ be a cycle defined over K1 in U . Suppose that

indp(AJ
U
K1

(∆), im AJUK1
)

is well defined. Then for any σ ∈ Gal(K1/K), we have

indp(AJ
U
K1

(∆), im AJUK1
) = indp(AJ

U
K1

(σ∆), im AJUK1
).

Proof. If a non-torsion class C1 ∈ im AJUK1
satisfies AJUK1

(∆) = pM1C1 for some
M1 ∈ Z≥0, then applying σ ∈ Gal(K1/K) and noting that Abel-Jacobi maps
are Galois equivariant yields AJUK1

(σ∆) = pM1(σC1), and σC1 is non-torsion
since C1 is non-torsion.

Conversely, if a non-torsion class C2 ∈ im AJUK1
satisfiesAJUK1

(σ∆) = pM2C2

for some M2 ∈ Z≥0, then applying σ−1 similarly yields AJUK1
(∆) = pM2(σ−1C2),

and σ−1C2 is non-torsion.
The desired result follows.

For the rest of this section, Theorem 10.1’s hypotheses are assumed.
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10.3. From Masoero to Castella

First, in this subsection, we link the p-index of Masoero’s Heegner cycle
∆Ma19 to the p-index of Castella’s Heegner cycle ∆Ca13.

The “forget the second (Z/NZ)-basis vector” map E(Γ(N)) → E(Γ1(N))

gives maps Pr : Ẽr(Γ(N)) → Ẽr(Γ1(N)). Passing to Chow groups, we obtain
pushforward maps Pr,∗ and pullback maps P ∗r .

To help perform the calculations below, we define a Q-linear map3

Pr,∗ : Q[G(2, r)× (Γ0(N)/Γ(N))]→ Q[G(1, r)× (Γ0(N)/Γ1(N))]

so that the element

(((z11, z12, ε1), . . . , (zr1, zr2, εr)), s) ∈ ((Z/NZ)2 o {±1})r o Sr = G(2, r)

(where each zij is in Z/NZ, each εi is in {±1} and s ∈ Sr) is sent by Pr,∗ to

(((z11, ε1), . . . , (zr1, εr)), s) ∈ ((Z/NZ) o {±1})r o Sr = G(1, r),

and an element b ∈ Γ0(N)/Γ(N) is sent by Pr,∗ to the image of b under the
quotient map Γ0(N)/Γ(N) → Γ0(N)/Γ1(N). Then, for any σ ∈ Q[G(2, r) ×
(Γ0(N)/Γ(N))], any cycle Z of Ẽr(Γ(N)) and any cycle Z1 of Ẽr(Γ1(N)), we
have

Pr,∗(σ · Z) = Pr,∗(σ) · Pr,∗(Z) (21)

P ∗r (Pr,∗(σ) · Z1) = σ · P ∗r (Z1). (22)

Equations (21), (22) are easily shown by first considering the cases σ ∈ G(2, r)
and σ ∈ Γ0(N)/Γ(N), then extending by Q-linearity.

The maps Pk−2,∗, P
∗
k−2 act on the cycles ∆Ma19, ∆Ca13 as follows.

Proposition 10.5. We have

Pk−2,∗(∆Ma19) = ∆Ca13 (23)

P ∗k−2(∆Ca13) = N ·∆Ma19. (24)

Proof. For the pushforward, we have

Pk−2,∗(ix)∗((Graph(
√
DK))k/2−1) = (ix1

)∗((Graph(
√
DK))k/2−1),

so by (21), for each σ ∈ G(2, k − 2) and each b ∈ Γ0(N)/Γ(N), we have

Pk−2,∗
(
bσ(ix)∗((Graph(

√
DK))k/2−1)

)
= Pk−2,∗(b)Pk−2,∗(σ)(ix1

)∗((Graph(
√
DK))k/2−1). (25)

3Our reason for using the same notation Pr,∗ for different maps is explained by (21) and
(22).
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Multiplying (25) by
1

|Γ0(N)/Γ(N)|
· c2(σ)

|G(2, k − 2)|
(recall that the expression c2(σ) was defined in subsection 5.1) and then sum-
ming over all σ ∈ G(2, k − 2) and all b ∈ Γ0(N)/Γ(N) yields (23).

For the pullback, we have

P ∗k−2(ix1
)∗((Graph(

√
DK))k/2−1) =

∑
x̃

(ix̃)∗((Graph(
√
DK))k/2−1)

where x̃ runs over the N points in the inverse image of x1 under the map
X(N)→ X1(N). Arguing as before, using (22) instead of (21), yields (24).

The Abel-Jacobi map commutes with correspondences, so applying the Abel-
Jacobi map to (23) and (24) yields

Pk−2,∗AJK1
(∆Ma19) = AJ1

K1
(∆Ca13) (26)

P ∗k−2AJ
1
K1

(∆Ca13) = N ·AJK1(∆Ma19). (27)

Since p - N and AJK1
(∆Ma19) is not torsion, Lemma 10.3 yields the following.

Proposition 10.6. We have

indp(AJK1(∆Ma19), im AJK1) = indp(AJ
1
K1

(∆Ca13), im AJ1
K1

). (28)

10.4. Galois action on Castella’s Heegner cycle

By the theory of complex multiplication, there is a bijection between el-
ements σ ∈ Gal(K1/K) and ideal classes [a] of OK so that the elliptic curve
σEx1 corresponds to the same point of X1(N) as Ex1/Ex1 [a]. It is easily checked
that σ∆Ca13 = ∆Ca13,a for σ thus corresponding to [a]. Applying Lemma 10.4,
we obtain:

Proposition 10.7. For a nonzero ideal a of OK , we have

indp(AJ
1
K1

(∆Ca13), im AJ1
K1

) = indp(AJ
1
K1

(∆Ca13,a), im AJ1
K1

).

10.5. From Castella to BDP

As in [2, proof of Lemma 3.4], define Πk−2 to be the image of

Ẽk−2(Γ1(N))× Ek/2−1
x1 ↪→ Ẽk−2(Γ1(N))× (Ẽk−2(Γ1(N))× Ek−2

x1
)

(w, a) 7→ (w, (w, (a,
√
DK · a)))

and view Πk−2 as a correspondence from Ẽk−2(Γ1(N))×Ek−2
x1

to Ẽk−2(Γ1(N)).

Proposition 10.8. We have

∆Ca13,a = πB,1Πk−2∆ϕ(Ex1
,a). (29)
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Proof. For σ1 = ((zi, ε1i)
k−2
i=1 , s1) ∈ G(1, k−2) and σ0 = ((ε0i)

k−2
i=1 , s0) ∈ G(0, k−

2), we have

Πk−2σ1σ0Graph(ϕ(Ex1 , a))k−2 = σGraph(
√
DK)

k/2−1
Ex1/Ex1 [a] (30)

where
σ = ((zi, ε1iε0,s0◦s−1

1 (i))
k−2
i=1 , s1 ◦ s−1

0 ) ∈ G(1, k − 2).

Multiplying (30) by
c1(σ1)

|G(1, k − 2)|
· c0(σ0)

|G(0, k − 2)|
and then summing over all (σ1, σ0) ∈ G(1, k − 2)×G(0, k − 2), we obtain

Πk−2∆ϕ(Ex1
,a) = π1,k−2(Graph(

√
DK)

k/2−1
Ex1

/Ex1
[a]) (31)

and applying πB,1 yields (29).

Define Qa to be the correspondence from Ẽk−2(Γ1(N)) to itself that sends a

cycle to its intersection with the fiber at Ex1
/Ex1

[a] in Ẽk−2(Γ1(N)).

Proposition 10.9. We have

Πk−2∆ϕ(Ex1
,a) = φ(N) ·Qa∆Ca13,a. (32)

Proof. By definition, ∆Ca13 is∑
b∈Γ0(N)/Γ1(N)

1

φ(N)

∑
σ∈G(1,k−2)

c1(σ)

|G(1, k − 2)|
bσ(Graph(

√
DK)

k/2−1
Ex1

/Ex1
[a]). (33)

Because of Theorem 10.1’s assumption (ii), applying Qa to ∆Ca13 eliminates the
terms in (33) involving a nontrivial b ∈ Γ0(N)/Γ1(N) and preserves the terms
in (33) with b = 1. Therefore φ(N) ·Qa∆Ca13,a is equal to∑
σ∈G(1,k−2)

c1(σ)

|G(1, k − 2)|
σ(Graph(

√
DK)

k/2−1
Ex1

/Ex1
[a]) = π1,k−2(Graph(

√
DK)

k/2−1
Ex1

/Ex1
[a])

which is Πk−2∆ϕ(Ex1
,a) by (31), so (32) is proved.

Let σ ∈ Gal(K1/K) correspond to the ideal class [a] as before. Define Ra to

be the correspondence from Ẽk−2(Γ1(N)) to Ẽk−2(Γ1(N))×Ek−2
x1

given by the
variety in

(Ẽk−2(Γ1(N))× Ek−2
x1

)× Ẽk−2(Γ1(N))

whose points are precisely the points of the form

(((w1 mod Ex1
[a], . . . , wk−2 mod Ex1

[a])Ex1/Ex1 [a], (w1, . . . , wk−2)),

(w1 mod Ex1
[a], . . . , wk/2−1 mod Ex1

[a], x1, . . . , xk/2−1)Ex1
/Ex1

[a])
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where the wi are points in Ex1 and the xi are points in Ex1/Ex1 [a]. The sub-

variety Graph(
√
DK)

k/2−1
Ex1/Ex1 [a] of Ẽk−2(Γ1(N)) is interpreted as the variety of

points of the form

(w1, . . . , wk/2−1,
√
DKw1, . . . ,

√
DKwk/2−1).

Proposition 10.10. We have

∆ϕ(Ex1
,a) = π1,k−2π0,k−2Ra,∗Πk−2∆ϕ(Ex1

,a). (34)

Proof. By (31), we have

Πk−2∆ϕ(Ex1
,a) = π1,k−2(Graph(

√
DK)

k/2−1
Ex1/Ex1 [a])

and applying π1,k−2π0,k−2Ra,∗ yields (34).

Combining Lemma 10.3 with Propositions 10.8, 10.9, 10.10 in that order
yields

indp(AJ
1,Ex1

K1
(∆ϕ(Ex1 ,a)), im AJ

1,Ex1

K1
) ≤ indp(AJ

1
K1

(∆Ca13,a), im AJ1
K1

)

≤ indp(AJ
1
K1

(Πk−2∆ϕ(Ex1 ,a)), im AJ1
K1

)

≤ indp(AJ
1,Ex1

K1
(∆ϕ(Ex1

,a)), im AJ
1,Ex1

K1
),

which means that all of the p-indices are equal. The additional fact that

indp(AJ
1,Ex1

K1
(∆ϕ(Ex1

,a)), im AJ
1,Ex1

K1
) ≤ indp(AJ

1,Ex1

L (∆ϕ(Ex1
,a)), im AJ

1,Ex1

L )

now implies:

Proposition 10.11. We have

indp(AJ
1
K1

(∆Ca13,a), im AJ1
K1

) ≤ indp(AJ
1,Ex1

L (∆ϕ(Ex1 ,a)), im AJ
1,Ex1

L ).

10.6. Conclusion

By Theorem 10.1’s assumption (i) (that is, (18)) and Propositions 10.6, 10.7
and 10.11, we have

indp(AJK1
(ZMa19), im AJK1

) ≤ indp(AJ
1,Ex1

L (∆ϕ(Ex1
,a)), im AJ

1,Ex1

L )

for each nonzero ideal a of OK . Since ZBeDaPr13 is defined as a Zp-linear
combination of cycles (note that (k/2 − 1)! and N(a) are coprime to p) whose
Abel-Jacobi images’ p-indices are at least the p-index of AJK1(ZMa19), it follows
that

indp(AJK1
(ZMa19), im AJK1

) ≤ indp(AJ
1,Ex1

L (ZBeDaPr13), im AJ
1,Ex1

L ). (35)

Using Theorem 10.1’s assumption (iii), we have

(RHS of (35)) ≤ indpAJ
1,Ex1

L (ZBeDaPr13)
(
ωf ∧ ωk/2−1

Ex1
η
k/2−1
Ex1

)
. (36)

Equations (35) and (36) imply (19), so Theorem 10.1 is proved.
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11. Final argument

We now prove this paper’s main theorem:

Theorem 11.1. Suppose all the assumptions of subsection 2.2 hold, together
with the following technical hypotheses.

(i) For each place v | p of K, the OL-module H1
f (Kv,Wf ) has corank 1, and

the localization map H1
f (K,Wf )→ H1

f (Kv,Wf ) restricts to a map

(im AJK)⊗OL
(L/OL)→ (im AJKv

)⊗OL
(L/OL)

of which the kernel is torsion.

(ii) The cohomology class C0 = corK1/KAJK1
(∆Ma19) ∈ H1

f (K,Tf ) has a

non-torsion image in H1
f (Kv0 , Tf ) under localization.

(iii) Theorem 9.1’s assumption (ii) holds.

(iv) Theorem 10.1’s assumptions (i), (ii) and (iii) hold.

(v) The prime p is coprime to the product of the two fractions

#H0(Kv0 ,Wf )Πv∈S′(#H
1
ur(Kv,Wf ))

#H0(Kv0 ,Wf )

and
(OL : OL logω(locv0C0))2(H1

f (Kv0 , Tf ) : expω(pOL))2

p2[L:Qp]−k(H1
f (K,Tf ) : OLC0)2

where S′ is as described just before Theorem 7.7, and the differential form
ω and its associated maps logω, expω are described in Theorem 8.2 and
subsection 5.8.

Then we have

2indpAJ
1,Ex1

L (ZBeDaPr13)
(
ωf ∧ ωk/2−1

Ex1
η
k/2−1
Ex1

)
= indp#X(K,Wf ).

Proof. By Bertolini, Darmon and Prasanna’s [1, Theorem 5.13] (with that
source’s χ = Nk/2, j = k/2 − 1, r = k − 2, c = 1, εf = 1), noting the corre-
spondence between section 7’s P1 and subsubsection 6.3.4’s Pac corresponding
to χ = Nk/2,

P1(L
−,Np

BDP (f)) = (1− p−k/2a(p, f) + p−1)2· 1

(k/2− 1)!

∑
[a]

1

Nk/2−1(a)
AJ

1,Ex1

L (∆ϕa
)
(
ωf ∧ ωk/2−1

Ex1
η
k/2−1
Ex1

)2

.
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Since a(p, f) is a p-adic unit and k/2 ≥ 2, this implies

2indpAJ
1,Ex1

L (ZBeDaPr13)
(
ωf ∧ ωk/2−1

Ex1
η
k/2−1
Ex1

)
= k+indpP1(L

−,Np

BDP (f)). (37)

By Theorem 6.2,

indpP1(L
−,Np

BDP (f)) ≤ indpP1(L
−,Np

Wan (f)). (38)

By Theorem 7.7,

indpP1(L
−,Np

Wan (f)) ≤ indp(#H
0(Kv0 ,Wf )) + indp(#H

0(Kv0 ,Wf ))

+ indp(#H
1
ac(K,Wf )) +

∑
v∈S′

indp(#H
1
ur(Kv,Wf )). (39)

By Theorem 9.1, theOL-module im AJK has rank 1 and the group X(K,Wf )
has finite cardinality, so all the hypotheses of Theorems 8.1 and 8.2 hold. By
those theorems,

indp(#H
1
ac(K,Wf ))

= indp(#X(K,Wf ))− 2[L : Qp] + 2indp(OL : OL logω(locv0C0))

+ 2indp(H
1
f (Kv0 , Tf ) : expω(pOL))− 2indp(#H

0(Kv0 ,Wf ))

− 2indp(H
1
f (K,Tf ) : OLC0). (40)

Again by Theorem 9.1,

indp(#X(K,Wf )) ≤ 2indp(AJK1(ZMa19), im AJK1). (41)

By Theorem 10.1,

2indp(AJK1
(ZMa19), im AJK1

) ≤ 2indpAJ
1,Ex1

L (ZBeDaPr13)
(
ωf ∧ ωk/2−1

Ex1
η
k/2−1
Ex1

)
.

(42)
Each of (37) to (42) is either an equation or an inequality in the ≤ direction.

Combining those six statements in that order yields

2indpAJ
1,Ex1

L (ZBeDaPr13)
(
ωf ∧ ωk/2−1

Ex1
η
k/2−1
Ex1

)
≤ 2indpAJ

1,Ex1

L (ZBeDaPr13)
(
ωf ∧ ωk/2−1

Ex1
η
k/2−1
Ex1

)
− indp(#H

0(Kv0 ,Wf ))

+ indp(#H
0(Kv0 ,Wf )) +

∑
v∈S′

indp(#H
1
ur(Kv,Wf ))

+ 2indp(OL : OL logω(locv0C0)) + 2indp(H
1
f (Kv0 , Tf ) : expω(pOL))

+ k − 2[L : Qp]− 2indp(H
1
f (K,Tf ) : OLC0). (43)

Theorem 11.1’s assumption (v) forces equality in (43), hence equality in each of
(37) to (42). In particular, equality occurs in (41) and (42), so

2indpAJ
1,Ex1

L (ZBeDaPr13)
(
ωf ∧ ωk/2−1

Ex1
η
k/2−1
Ex1

)
= indp#X(K,Wf ).
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[24] J. Nekovář. On p-adic height pairings. In S. David, editor, Séminaire de
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