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Abstract: The Dirichlet distribution is a well-known candidate in modeling compositional data
sets. However, in the presence of outliers, the Dirichlet distribution fails to model such data sets,
making other model extensions necessary. In this paper, the Kummer–Dirichlet distribution and the
gamma distribution are coupled, using the beta-generating technique. This development results
in the proposal of the Kummer–Dirichlet gamma distribution, which presents greater flexibility in
modeling compositional data sets. Some general properties, such as the probability density functions
and the moments are presented for this new candidate. The method of maximum likelihood is
applied in the estimation of the parameters. The usefulness of this model is demonstrated through
the application of synthetic and real data sets, where outliers are present.

Keywords: beta function; compositional data; Dirichlet distribution; gamma distribution; Kummer–
Dirichlet; outliers

1. Introduction

Compositional data sets have played a valuable role in the medical, genetics and
biological sciences due to the relative information conveyed through proportions, prob-
abilities and percentages, as stated by [1]. Reference [1] describes the sample space of a
compositional data set to be on a simplex, where the sum of all data points equals one or
some whole number.

The most popular distribution that is well-known in modeling compositional data sets
is the Dirichlet distribution (see for example [2]). Literature contains varying generaliza-
tions of the Dirichlet distribution that have been well studied in the application of various
compositional data sets (see for example [3–8]). Other generalizations that are studied in
the literature are part of the Liouville distribution as described in [9–11]. In Bayesian statis-
tics, the Dirichlet distribution is known as a conjugate prior of the multinomial distribution
and it is best used in estimating categorical distributions.

An extension of the Dirichlet distribution, known as the Dirichlet-generated class
of distributions, has recently been introduced and developed by [12]. This extension
served as a flexible alternative to the well-known Dirichlet and generalized Dirichlet
distributions, where its aim is to address the limitations that the Dirichlet distribution may
pose when modeling certain compositional data sets. Consider a compositional data set,
where diagnostic probabilities of a sample of 15 students are assigned by clinicians. The
background of this data set is further explained in Section 6. Figure 1 gives a scatterplot of
the probabilities and illustrates the fit of the Dirichlet distribution (bivariate case) to this
data set. Figure 1 illustrates an opportunity where the fit of the Dirichlet distribution could
be improved upon.
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Figure 1. Plots of the data and the Dirichlet distribution on the diagnostic probabilities data set.

In [12], the beta-generating construction technique (pioneered and developed by [13])
is implemented to improve the fit of the Dirichlet distribution. The technique was an
evolution from the univariate framework described below into a multivariate setting:

H(x) =
∫ G(x)

0
f (y)dy, (1)

with the probability density function (pdf)

h(x) = f (G(x))g(x), (2)

where G(·) is a continuous cumulative distribution function (cdf) and f (·) is the pdf of a
random variable with support [0, 1]. By introducing extra parameters in f (·) and G(·), the
resulting distribution provides greater flexibility in adapting modality and skewness.

Motivated by (1), from a multivariate viewpoint, in the methodology of [12], a new
distribution H(x1, ..., xp) for a random vector X = (X1, X2, · · · , Xp), xi > 0, i = 1, 2, . . . , p,
is constructed by nesting the cdf of a baseline distributions Gi(xi) within the pdf of the
generator distribution:

H(x1, ..., xp) =
1

B(α)

∫ G1(x1)

0
· · ·

∫ Gp(xp)

0

p

∏
i=1

yαi−1
i

(
1−

p

∑
i=1

yi

)αp+1−1

dy, (3)

with the pdf

h(x1, ..., xp) =
1

B(α)

p

∏
i=1

gi(xi)Gi(xi)
αi−1

(
1−

p

∑
i=1

Gi(xi)

)αp+1−1

, (4)

for 0 < yi < 1, ∑
p
i=1 yi < 1, 0 < Gi(xi) < 1 and where B(α) is the multivariate beta

function. Here ∑
p
i=1 Gi(xi) < 1 and gi(xi) and Gi(xi) are the pdf and cdf of the baseline

distributions, respectively. The authors [12] developed the Dirichlet-gamma distribution,
where in this case, the gamma distribution is taken as the baseline distribution Gi(xi),
i = 1, 2, · · · , p, and the Dirichlet distribution is taken as the generator distribution.

In the univariate case, the Kummer-beta distribution is seen as an extension of the beta
distribution (see the studies of [14–16]), it then follows that the multivariate Kummer-beta
(refer as to Kummer–Dirichlet hereafter) distribution is also considered as an extension of
the Dirichlet distribution (see [17]). Authors such as [14–16,18] have applied the generating
technique to the Kummer-beta distribution, by coupling the cdf of different baseline
distributions with the pdf of the Kummer-beta distribution. The development of generated
distributions using the Kummer-beta distribution, has introduced distributions that add
more flexibility in modeling data sets that are in the (0, 1) domain (see [19] for an example).

In this paper, we propose a general multivariate construction methodology using
the Kummer–Dirichlet (KD) pdf as the generator. This KD-generated class serves as a
good alternative to the Dirichlet distribution for the statistical representation of specific
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proportional data. This class can be viewed as an evolution from the univariate framework
into a multivariate setting as described in (3) but with the aim of offering more flexibility
in modeling compositional data sets.

Thus, we introduce the KD distribution as the generating distribution, and a new class
is proposed, with the following cdf

H(x1, ..., xp) = C
∫ G1(x1)

0
· · ·

∫ Gp(xp)

0

p

∏
i=1

yαi−1
i

(
1−

p

∑
i=1

yi

)αp+1−1

exp

(
−λ

p

∑
i=1

yi

)
dy, (5)

with αi > 0 for i = 1, 2, · · · , p + 1, −∞ < λ < ∞, C as the normalizing constant,
0 < yi < 1, ∑

p
i=1 yi < 1, y = (y1, y2, · · · , yp) and Gi(xi), i = 1, 2, · · · , p, as the cdfs of

a baseline distribution with ∑
p
i=1 Gi(xi) < 1. Distributions with cdf (5) and normalizing

constant (9) shall be referred to as Kummer–Dirichlet generated distributions, where Gi(xi),
i = 1, 2, · · · , p, are the cdfs of a baseline distribution.

The contribution of this construction (5) highlights the importance of developing
distributions that can improve the modeling of extreme observations in compositional data
sets, where the Dirichlet might not be suitable or at a shortfall, as illustrated in Figure 1.
For such cases and others that may arise, we propose a model with cdf (5). Thus, this novel
study contributes to multivariate distribution theory from the following aspects:

1. The well-known beta-generator in the univariate case is extended to the Kummer–
Dirichlet in the multivariate case.

2. A technique is proposed to construct multivariate distributions that combines a
baseline distribution with a multivariate generator and evolves generating a plethora
of possibilities of results.

3. We proposed a multivariate distribution that can be used for modeling compositional
data with outliers.

4. Mathematical techniques are developed to derive the moment generating function of
multivariate distributions.

The following showcases the organization of our contribution; in Section 2, the build-
ing blocks for the KD generator distribution, such as the normalizing constant of the pdf
that corresponds to (5) is derived. In Section 3, the KD-gamma distribution is introduced,
where we provide some technical results to derive the moments. In Section 4, the usefulness
of the KD-Gamma distribution, as compared to the Dirichlet-gamma distribution, is seen
through the application of a synthetic data analysis. Two real data sets, where outliers are
present, are analyzed in Section 5. Finally, some conclusions are given in Section 6. Proof of
the main results are put in the Appendix A.

2. Building Blocks of the Kummer–Dirichlet Distribution

The building blocks and notations necessary in the construction of distributions
with cdf (5) are presented in this section. Since the Dirichlet distribution is an important
building block, it is known that a random vector Y = (Y1, . . . , Yp) ∈ Rp is said to be
Dirichlet (or standard Dirichlet) distributed with parameters α = (α1,··· , αp; αp+1) for
αi > 0, i = 1, ..., p + 1, p ≥ 2, if its pdf is given by

f (y) = C1(α)y
α1−1
1 · · · yαp−1

p

(
1−

p

∑
i=1

yi

)αp+1−1

. (6)

From (6), one can denote Yp+1 = 1 − ∑
p
i=1 Yi and let Y

′
= (Y1, . . . , Yp; Yp+1) =

(Y ; Yp+1). The random vectors Y and Y
′

can be defined on Ωp and S p+1, respectively,
where

Ωp =

{
(y1, . . . , yp) ∈ Rp :

p

∑
i=1

yi < 1, yi > 0, i = 1, ..., p

}
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and

S p+1 =

{
(y1, . . . , yp+1) ∈ Rp+1 :

p+1

∑
i=1

yi = 1, yi > 0, i = 1, ..., p + 1

}
,

for p ≥ 2. The constant C1(α) in (6) is given as

C−1
1 (α) =

∫
Ωp

p+1

∏
i=1

yαi−1
i dy =

∏
p+1
i=1 Γ(αi)

Γ(α+)
= B(α), (7)

where Γ(·) is the gamma function. Now using the Kummer-beta distribution (see [14])
as foundation building blocks, it follows that a random vector Y

′
= (Y1, . . . , Yp; Yp+1) =

(Y ; Yp+1) is said to be multivariate Kummer–Dirichlet distributed with parameters (α, λ) =
(α1,··· , αp; αp+1, λ) for αi > 0, i = 1, ..., p + 1, p ≥ 2 and −∞ < λ < ∞, if its pdf is given by

f (y) = C2(α, λ) yα1−1
1 · · · yαp−1

p

(
1−

p

∑
i=1

yi

)αp+1−1

exp

(
−λ

p

∑
i=1

yi

)
, (8)

where yi > 0 and ∑
p
i=1 yi < 1 for i = 1, ..., p. The following theorem gives the derivation of

the normalizing constant C2(α, λ).

Theorem 1. In the general case of p ≥ 2, the normalizing constant C2(α, λ) in pdf (8) is given by

1
C2(α, λ)

=
∏

p
i=1 Γ(αi)Γ(αp+1)

Γ(∑
p
i=1 αi + Γ(αp+1))

∞

∑
m1,··· ,mp≥0

(
−λ∑

p
i=1 mi

∏
p
i=1 mi!

)
∏

p
i=1(αi)mi

(∑
p
i=1 αi + αp+1)∑

p
i=1 mi

=
∏

p
i=1 Γ(αi)Γ(αp+1)

Γ(∑
p
i=1 αi + αp+1)

1F1

(
p

∑
i=1

αi;
p

∑
i=1

αi + αp+1;−λ

)
, (9)

where αi > 0 for i = 1, 2, · · · , p, −∞ < λ < ∞, (α)n denotes the Pochhammer function
(α)n = Γ(α+n)

Γ(α) and 1F1(.; .; .) is the confluent hypergeometric function.

For the proof, refer to Appendix A.

2.1. Kummer–Dirichlet Generator

In this section, we give the definition of KD generated distribution with some techni-
calities.

Definition 1. A random vector X = (X1, X2, · · · , Xp) is said to follow a Kummer–Dirichlet
generated distribution, if its cdf is given by (5) and has pdf

h(x) = h(x1, ..., xp) = C2(α, λ)

(
1−

p

∑
i=1

Gi(xi)

)αp+1−1 p

∏
i=1

gi(xi)G
αi−1
i (xi)exp(−λGi(xi)), (10)

where C2(α, λ) is the normalizing constant (9), and where shape parameters α = (α1, · · · , αp+1)
are all > 0 , −∞ < λ < ∞, gi(xi) and Gi(xi) i = 1, 2, · · · , p as the pdfs and cdfs, respectively, of
the baseline distribution for ∑

p
i=1 Gi(xi) < 1. The random vector is then denoted as X ∼ KDG(ψ),

where ψ = (α, λ, ρ) with ρ as the parameters of the baseline distribution.

2.1.1. Special Cases

From cdf (5) and pdf (10), stem two classes of distributions as special cases of the
Kummer–Dirichlet generated distribution.
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• Class of Dirichlet-generated distributions: When λ = 0, the pdf (10) simplifies to
the pdf of a Dirichlet-generated distribution, with baseline distribution G(.) and
beta-generated marginal distributions (see [12,13]).

• Class of Exponentiated Generalized-generated distributions: When λ = 0 and αp+1 =
1, then the pdf (10) tends to the multivariate exponentiated-generalized distribution
(this distribution is not yet introduced in literature), whose marginal distributions are
exponentiated-generalized distribution (see [20]).

2.1.2. Expansions and Marginals of the Kummer–Dirichlet Generated Distributions

Expanding and re-writing the exponential term exp(−λGi(xi)) in series form in (10),
results in an infinite weighted sum of Dirichlet-generated distributions, where in this case,
the pdf (10) is given by

h(x) = h(x1, ..., xp) = C2(α, λ)
∞

∑
m1,··· ,mp≥0

(
p

∏
j=1

(−λ)mj

mj!

)(
1−

p

∑
i=1

Gi(xi)

)αp+1−1

×
p

∏
i=1

gi(xi)G
αi+mi−1
i (xi)

= C2(α, λ)
∞

∑
m1,··· ,mp≥0

wmj

(
1−

p

∑
i=1

Gi(xi)

)αp+1−1

×
p

∏
i=1

gi(xi) Gαi+mi−1
i (xi), (11)

where the coefficient wmj =

(
∏

p
j=1

(−λ)
mj

mj !

)
can be considered as the weights for mj ≥ 0.

The binomial expansion in (11) where ∑
p
i=1 Gi(xi) < 1, can be expressed as

(
1−

p

∑
i=1

Gi(xi)

)αp+1−1

=
∞

∑
k=0

(−1)k
(

αp+1 − 1
k

)(
G1(x1) + G2(x2) + · · ·+ Gp(xp)

)k

=
∞

∑
k=0

k

∑
v1, · · · , vp ≥ 0

v1 + · · ·+ vp = k

(−1)k k!
v1! · · · vp!

(
αp+1 − 1

k

)
Gv1

1 (x1) · · ·G
vp
p (xp). (12)

It follows from (11) and (12) that the pdf of the Kummer–Dirichlet generated distribu-
tion can also be expressed as a linear combination of exponentiated distributions that were
introduced by [21] and then expanded by [20,22,23], where the Weibull distribution was
taken as the baseline distribution. Hence,

h(x1, ..., xp) = C2(α, λ)
∞

∑
mj ,vj ,k≥0

wmj ,vj ,k

p

∏
i=1

gi(xi) Gαi+mi+vi−1
i (xi), (13)

where j = 1, 2, · · · , p and the coefficient wmj ,vj ,k given as

wmj ,vj ,k =

(
p

∏
j=1

(−λ)mj

mj!

)
(−1)k k!

v1! · · · vp!

(
αp+1 − 1

k

)
. (14)
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The marginal pdfs of Xi for i = 1, 2, · · · , p if X ∼ KDG(ψ), ψ = (α, λ, ρ) (see (10)), is
given as

hi(xi) = Ci(α, λ) gi(xi)G
αi−1
i (xi)(1− Gi(xi))

∑
p+1
j=1, 6=i αj−1exp(−λGi(xi))

× 1F1

(
αp+1;

p

∑
j=i+1

αj + αp+1; λ(1− Gi(xi))

)
, (15)

where Ci(α, λ) is the normalizing constant of the marginal distribution, for i = 1, 2, · · · , p,
gi(.) and Gi(.) for i = 1, 2, · · · , p as the pdfs and cdfs, respectively, of the baseline distribution.

3. The Kummer–Dirichlet Gamma Distribution

In this section, we focus on the gamma distribution as the chosen baseline distribution.
The gamma distribution, which belongs to the exponential class, is a flexible distribution
model with a shape parameter, that may offer a good fit to a variety of different data
sets [24]. The cdf and pdf of the gamma distribution with shape parameter δ > 0 and scale
parameter θ > 0 are given as

G(x; δ, θ) =
γ(δ, x

θ )

Γ(δ)
(16)

and pdf

g(x; δ, θ) =
1

θδΓ(δ)
xδe−

x
θ , (17)

where γ(δ, x
θ ) is the incomplete gamma function

x∫
0

tδ−1e−tdt.

Thus, here, we explore the impact of the gamma distribution as the considered baseline
distribution, where the cdf and pdf of the baseline distribution is given by (16) and pdf (17),
respectively. In this case, Gi(.) for i = 1, 2, · · · , p are the cdfs of the gamma distribution
with shape and scale parameters ρ = (δ, θ) for δi > 0, θi > min(xi), i = 1, 2, · · · , p, we
denote random vector X ∼ KDGa(ψ) as Kummer–Dirichlet gamma (KDGa) distributed
where ψ = (α, λ, δ, θ).

Figures 2–4 illustrate the effect of the parameters (α1, α2, α3, δ1, θ1, δ2, θ2, λ) of the
pdf (10). It is observed in Figure 2 that parameters (α1, α2, α3) illustrate the influence or
“weight” of each random variable Xi, in this case i = 1, 2. From Figure 2, it is observed that
larger values of α1 leads to skewness and heavier tails for random variable X1. Symmetry
is observed in the first row of Figure 2 when (α1, α2, α3) = (2, 2, 2). The parameters
(δ1, θ1, δ2, θ2) influence the shape, peakness and the scale of the pdf (10). It is observed in
Figure 3 that smaller values of δi, i = 1, 2 results in the pdf (10) concentrated on a smaller
scale, while larger values of δi, i = 1, 2 results in the pdf (10) spread across a bigger scale
of values. It is observed in Figure 4 that λ influences the tails, peakness and narrowness of
the pdf (10). It is observed in the first row of Figure 4 that smaller values of λ results in
heavier tails.
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Figure 2. Example pdfs and contour plots for (10) for (α1, α2, α3, δ1, θ1, δ2, θ2, λ) when (a) (0.1,2,2,2,2,2,2,2), (b) (2,2,2,2,2,2,2,2),
(c) (4,2,2,2,2,2,2,2), (d) (0.1,2,4,2,1.5,2,1.5,−2), (e) (1,2,4,2,1.5,2,1.5,−2) and (f) (4,2,4,2,1.5,2,1.5,−2).

Figure 3. Example pdfs and contour plots of (10) for various values of (α1, α2, α3, δ1, θ1, δ2, θ2, λ) when (a) (2,2,2,0.5,2,2,2,2),
(b) (2,2,2,1,2,2,2,2), (c) (2,2,2,1,2,1,2,2), (d) (2,2,2,1.8,0.8,2,2,2), (e) (2,2,2,1.8,1.5,2,2,2), (f) (2,2,2,1.8,3,2,2,2).
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Figure 4. Example pdfs and contour plots of (10) for various values of (α1, α2, α3, δ1, θ1, δ2, θ2, λ) when (a) (2,2,2,2,2,2,2,−4),
(b) (2,2,2,2,2,2,2,0), (c) (2,2,2,2,2,2,2,4), (d) (4,2,8,12,8,2,0.5,−8), (e) (4,2,8,12,8,2,0.5,−4), (f) (4,2,8,12,8,2,0.5,4).

Moment Generating Function of the KDG

In this section, the moment generating function (mgf) and product moments of random
vector X = (X1, X2, · · · , Xp) ∼ KDGa(ψ), where ψ = (α, λ, δ, θ) are derived.

Theorem 2. The mgf of random vector X ∼ KDGa(α, λ, δ, θ) is given by

MX(t) = C2(α, λ)
∞

∑
mj ,vj ,k≥0

wmj ,vj ,k ×
p

∏
i=1

1

θ
δi
i (

1
θi
− ti)δi

· 1
αi + mi + vi

, (18)

where t = (t1, . . . , tp), C2(α, λ) is the normalizing constant (9), shape parameters α = α1, · · · , αp,

αp+1 > 0 , wmj ,vj ,k as the coefficient given by (14) for j = 1, 2, · · · , p, −∞ < λ < ∞, shape
parameter δi > 0 and scale parameter θi = min(xi) > 0 for i = 1, 2, · · · , p.

For the proof, refer to Appendix A.

Theorem 3. Let ni, i = 1, . . . , p be positive integer values. Then, the product moments of
X ∼ KDGa(α, θ, δ, λ) is expressed in the following form

E = E

[
p

∏
i=1

Xni
i

]

= C2(α, λ)
∞

∑
mj ,vj ,k≥0

wmj ,vj ,k

p

∏
i=1

θ
ni
i Γ(ni + δi)

Γ(δi)(αi + mi + vi)
, (19)

where C2(α, λ) is the normalizing constant (9), shape parameters α = α1, · · · , αp, αp+1 > 0 ,

wmj ,vj ,k as the coefficient given by (14) for j = 1, 2, · · · , p, −∞ < λ < ∞, shape parameter δi > 0
and scale parameter θi = min(xi) > 0 for i = 1, 2, · · · , p.

For the proof, refer to Appendix A.
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For the illustration section and ease of reader, the moments for the bivariate case
(p = 2) of the Kummer=-Dirichlet gamma distribution is given as

E[Xr
1Xs

2] = C2(α, λ)
∞

∑
m1,m2≥0

∞

∑
k=0

k

∑
v1,v2≥0

(−λ)m1+m2

m1!m2!
(−1)kk!
v1!v2!

(
α3 − 1

k

)

×
θ2

1θ2
2Γ(δ1 + r)Γ(δ2 + s)

Γ(δ1)Γ(δ2)(α1 + m1 + v1)(α2 + m2 + v2)
, (20)

using the result of (15) and (19).

4. Synthetic Data Analysis

In this section, the performance of the Kummer–Dirichlet gamma and Dirichlet-
gamma distributions are analyzed to illustrate the model capabilities for a synthetic
data set.

4.1. Study 1

In the first simulation study, an artificial data set is generated via a specified seed
value and through Weibull random variates using Algorithm 1. For this synthetic data, the
Weibull random variates wi, i = 1, 2, 3 are generated using R; assuming that the random
variable W is Weibull distributed [24], if W has cdf:

G(w) = 1− exp
(
−
(

w
ξ

)ν)
(21)

and pdf

g(w) =
ν

ξν
wν−1 exp

(
−
(

w
ξ

)ν)
, (22)

where w ≥ 0 with shape parameter ν > 0 and scale parameter ξ > 0. The construction
of this synthetic data set, results in a compositional data set with a negative correlation.
The seed for generating Weibull random variates is set at 7, with initial parameter values
W1 ∼Wei(1.5, 1.5), W2 ∼Wei(4, 2) and W3 ∼Wei(4, 1).

Algorithm 1 Synthetic data generation using the Weibull distribution.

Step 1. Generate 100 random variates Wi ∼Wei(ξi, νi) for i = 1, 2, 3.
Step 2. Define random variables Y = (Y1, Y2, Y3), where Yi =

Wi
3
∑

i=1
Wi

, i = 1, 2, 3 and simulate

a synthetic data set y = (y1, y2, y3).

To measure the fit of the Kummer–Dirichlet gamma vs. the Dirichlet-gamma distribu-
tion, a ratio of Kolmogorov–Smirnov (KS) distance measures are calculated over a number
of simulations as given in Algorithms 2 and 3. The following Algorithm 2 gives the steps
used to assess the competence of the models. This ratio of KS measures describes a model
testing technique developed by [12], called the empirical estimator of the cdf of a multivari-
ate distribution. The technique compares the empirical cdfs of the observed and simulated
datasets. The advantage of this technique is that one can also use the empirical cdfs to rank
the simulated data. Ranking data makes it possible to calculate more accurate distances
between the observed data points and the simulated points. More details regarding this
technique of ranking simulated data in order to calculate the optimal distance between
data points are available in [12].

This technique is used here to analyze the performances of the Dirichlet-gamma (DGa)
and the Kummer–Dirichlet gamma (KDGa) distributions. In this technique, the empirical
cdf of the generated data set and the cdf of the analyzed distributions are used in calculating
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a ratio of Kolmogorov–Smirnov (KS) distance measures, where the model with the smallest
KS measure is considered as the most suitable amongst the two.

Algorithm 2 Computing the KS ratio measure.

Step 1. Calculate the empirical cdf F̂(x) = P
(

X(i)
1 ≤ x1, X(i)

2 ≤ x2, · · · , X(i)
p ≤ xp

)
for data

points x(i) = (x(i)1 , . . . , x(i)p ), where i = (1, . . . , n) and n as the sample size.
Step 2. Obtain the estimates of the parameters of the two models, KDGa and DGa distri-

butions.
Step 3. Simulate two data sets of sizes d > n using the parameter estimates obtained in

Step 2; x∗KDGa =
(

x∗1 , x∗2 , · · · , x∗p
)

and x∗DGa =
(

x∗1 , x∗2 , · · · , x∗p
)

.
Step 4. For each generated data set x∗KDGa and x∗DGa, calculate the empirical cdfs

F̂(x∗) = P
(

X∗1 ≤ x1, X∗2 ≤ x2, · · · , X∗p ≤ xp

)
.

Step 5. Compute the KS distance measures between F̂(x) and F̂(x∗) as computed in Steps
2–4, where in this case, KS = max

∣∣∣F̂(x∗)− F̂(x)
∣∣∣.

Step 6. Repeat Steps 2–5 m times, and compute the average of the KS measures.
Step 7. Compare the average KS measures of the KDGa to the average KS measure of the

DGa using the ratio KS o f KDGa
KS o f DGa .

Algorithm 3 Computing the KS ratio measure using Weibull.

Step 1. Generate a synthetic non-Dirichlet data set using the Weibull random variates as
computed before Algorithm 1 and take the data set as the observed data.

Step 2. Using this observed data set, obtain parameter estimates for the Kummer–Dirichlet
gamma and Dirichlet-gamma distributions as the proposed models.

Step 3. From the obtained parameter estimates simulate data sets of sizes d = 50 and 100.
Calculate the empirical cdfs F̂(x∗) for each simulation, as seen in Step 4 of Algorithm 2.

Step 4. Calculate the KS measures between the empirical cdf F̂(x) and the cdfs of the two
competing models F̂(x∗), for each group.

Step 5. Repeat Steps 3 and 4, 50 times and compute the average KS measure for the two
models.

Step 6. Represent the KS measure of the KDGa and DGa as a ratio KS o f KDGa
KS o f DGa for each

simulated group of d = 50 and 100.

It is observed in Figure 5 that the Kummer–Dirichlet gamma distribution adds ad-
ditional coverage to the generated artificial non-Dirichlet data set. A KS ratio of 0.89:1
illustrates that the KS distance of Kummer–Dirichlet gamma is 11% less of the KS distance
measure of the Dirichlet-gamma distribution. This ratio indicates that through the nu-
merous simulations, the KS measure of the Kummer–Dirichlet gamma distribution was
observed to be smaller than the KS measure of the Dirichlet-gamma distribution.

4.2. Study 2

In this simulation, the Expected-Modification (EM) algorithm is used to estimate the
parameters for generated samples of sizes 50 and 100 of the Kummer–Dirichlet gamma
distribution. The EM algorithm is considered here, since the pdf of a Kummer–Dirichlet
generated distribution can be expressed as a mixture of its special cases. The EM algorithm
consists essentially of two main steps; the Expectation and Modification steps, with the
main aim of maximizing the log-likelihood function ll(ψ) of the observed data with respect
to the unknown vector of parameters ψ. It is summarized as follows:

Step 1: The E-step: In this step, the missing data Z are computed.



Mathematics 2021, 9, 2477 11 of 18

Step 2: The M-step: In this step, obtain the parameter estimates that maximizes
K = E[ln h(X|ψ)|Z], where ln( h(X|ψ)) is the log-likelihood function and h(X|ψ) is
the pdf (10).

Figure 5. Performance of the Kummer–Dirichlet gamma and Dirichlet-gamma distributions on the
synthetic compositional data set generated using Algorithm 3.

In the bivariate case, let Q be the observed data (generated through Algorithm 4), let Z
be the missing data and let X∗ = (Q, Z) be the complete data set. In the case where samples
of sizes n = 50 and n = 100 are drawn, let

ll(ψ) =
n

∑
i=1

log h(x∗1i, x∗2i; ψ)

be the log-likelihood function based on the complete data X∗ with parameters ψ =
(α, δ, θ, λ).

Algorithm 4 Generation of observed data for the EM algorithm.

Step 1. Generate a random sample U ∼ Uni f (0, 1) of size 30.
Step 2. Generate a random sample of size 30 from the marginal distributions (15), where

C(α, λ)
∫ G1(q1)

0
yα1−1

1 (1− y1)
α2+α3−1e−λy1 1F1(α3; α2 + α3; λ(1− y1))dy1 = U

C(α, λ)
∫ G2(q2)

0
yα2−1

2 (1− y2)
α1+α3−1e−λy2 1F1(α3; α1 + α3; λ(1− y2))dy2 = U

Step 3. Use the Unitroot function in R software to solve for q1 and q2, where Gi(qi) is the
cdf of the gamma distribution (16).

Step 4. Observe data Q = (q1, q2).

To compute the missing data, let

Zi,j =

{
1 if qi is from class j
0 otherwise

, (23)
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for qi, i = 1, 2.
Samples of sizes 50 and 100 are generated using 100 trials for each group of fixed

parameters. Hence 100 MLE’s of the model parameters (using the procedure in R package
optim) is obtained. The mean, bias and mean square error (MSE)

Bias =
1

100

100

∑
k=1

ψ̂k − ψtrue and MSE =
1

100

100

∑
k=1

(
ψ̂k − ψtrue

)2,

are calculated. In this case, ψ̂k denotes the ML estimate of ψtrue (chosen parameter values)
at the kth replication.

Table 1 gives the results of simulation study 2, for chosen parameter values ψ =
(α1, α2, α3, δ1, δ2, θ1, θ2, λ) = (3.03, 7.92, 4.10, 1.96, 1.32, 0.36, 0.59, 1). The results in Table 1
illustrate that the mean, MSE and bias of the parameter estimates decreases for larger
sample sizes (n). The length of the asymptotic confidence intervals also decrease for
increasing sample size.

Table 1. Simulation results for sample size n = 50 and ψ = (α1, α2, α3, δ1, δ2, θ1, θ2, λ) =

(3.03, 7.92, 4.10, 1.96, 1.32, 0.36, 0.59, 1).

n = 50 α̂1 α̂2 α̂3 δ̂1 δ̂2 θ̂1 θ̂2 λ̂

Mean 3.111 9.204 5.973 2.186 2.122 1.060 1.527 1.893
Bias 0.081 1.284 1.873 0.226 0.802 0.7 0.937 0.893
MSE 4.807 6.194 5.299 4.332 5.916 5.818 4.410 3.909
Length of asymptotic CI 4.986 5.722 6.413 2.714 3.101 3.672 1.951 5.025

n = 100 α̂1 α̂2 α̂3 δ̂1 δ̂2 θ̂1 θ̂2 λ̂

Mean 3.058 8.005 4.207 1.986 1.585 0.631 0.984 1.048
Bias 0.028 0.055 0.107 0.026 0.265 0.271 0.394 0.048
MSE 3.937 5.027 4.731 3.908 5.182 3.922 4.008 3.029
Length of asymptotic CI 4.306 5.291 4.285 2.831 2.399 2.068 0.886 3.638

5. Application
5.1. Diagnostic Probabilities Data Set Analysis

In this data, three behavioral states of attitudes or “diseases” of students known under
the generic title of “newmath syndrome” are investigated and recorded using diagnostic
probabilities. A sample of 15 students take part in this study, where diagnostic probabilities
are assigned by clinicians for variables algebritis, bilateral paralexia and calculus deficiency.

The performance of the Dirichlet-gamma and the newly developed Kummer–Dirichlet
gamma distributions are investigated here to see if these are suitable models for this data
set, where the data has a correlation matrix given by 1 −0.332 −0.581

−0.332 1 −0.574
−0.581 −0.574 1

.

The initial parameter values needed for this performance test are obtained through a
grid search using R software. The initial parameter values for the Dirichlet-gamma distribu-
tion are given as (α1, α2, α3, δ1, θ1, δ2, θ2) = (9, 5, 5, 9, 2.2, 4, 9.4) and (α1, α2, α3, δ1, θ1, δ2, θ2,
λ) = (7, 6, 5, 6, 3, 3, 3, 0.5) as initial values for the Kummer–Dirichlet gamma distribution.
Goodness-of-fit measures such as the Akaike information criterion (AIC) and the Bayesian
information criterion (BIC) are used to illustrate the overall performance of the Kummer–
Dirichlet gamma and Dirichlet-gamma distribution, where the model with the lowest
values of AIC and BIC measures is considered to preferred.

The results of Table 2 and Figure 6 illustrate that the Kummer–Dirichlet gamma distri-
bution serves an alternative model for compositional data sets. Reference [12] illustrated
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that the Dirichlet-gamma is flexible in modeling compositional data sets; however, in this
example, it is shown that the additional parameter λ adds flexibility, covering outliers
where the Dirichlet-gamma distribution might not reach. The maximum likelihood value
(ll), and the AIC and BIC measures also proves that the Kummer–Dirichlet gamma is a
better alternative for this data set.

Figure 6. Contour plots of the Dirichlet-gamma and Kummer–Dirichlet gamma distributions on
diagnostic probabilities data.

Table 2. Parameter estimates and the performance analysis for the diagnostic probabilities data set.

Model MLE

α̂1 α̂2 α̂3 λ̂ δ̂1 θ̂1 δ̂2 θ̂2

DGa 14.804 1.931 2.734 n/a 0.153 0.949 0.836 0.268

KDGa 17.8259 11.806 5.028 0.524 0.178 0.109 0.216 0.025

ll AIC BIC

DGa −22.174 58.348 63.305

KDGa −17.961 51.921 57.586

5.2. The Mice Morris Water Maze Behavior Data Set Analysis

In this experiment, the time spent by rodents in the four different quadrants of a water
maze is analyzed. The Morris water maze is a behavioral test mostly used on rodents
(see [25]). The experiment begins by placing a rodent in a circular pool of water, where it is
required to swim until it finds an escape platform in the pool. The aim of the experiment
is to investigate the memory abilities and or memory loss of different rodents. Figure 7
illustrates the experiment. In this data, seven wild-type rodents are placed in a pool of
water, where the time spent in the different quadrants is recorded.

Figure 7. An illustration of the Morris water maze experiment.

In the study [25], the Dirichlet distribution was used as a suitable model for distin-
guishing the proportion of time spent across the different quadrants. In this example, the
performance of Dirichlet distribution and the newly developed KDGa distribution is thus
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compared to see if the KDGa distribution is superior, for this data set. The correlation
matrix of this data is given by

1 −0.543 −0.162 −0.538
−0.543 1 −0.213 −0.055
−0.162 −0.213 1 −0.441
−0.538 −0.055 −0.441 1

. (24)

The initial parameter values needed for this performance test, are obtained through
a grid search using the R software. The initial parameter values for the Dirichlet distri-
bution are given as (α1, α2, α3, α4) = (2, 2, 1, 4) and (α1, α2, α3, α4, δ1, θ1, δ2, θ2, δ3, θ3, λ) =
(1.27, 1.37, 1.20, 0.56, 1.15, 2.13, 0.84, 1.04, 1.06, 1.07, 1) as the initial values for the Kummer–
Dirichlet gamma distribution.

Results of Table 3 illustrate that the Kummer–Dirichlet gamma distribution is a good
competitor for this compositional data set. The estimation values of the parameters
(α̂1, α̂2, α̂3, α̂4) indicates the “weight" of each quadrant. For both the Dirichlet and the
KDGa distribution, the value of α̂1 is higher than the values of α̂2, α̂3, α̂4, indicating that
more time was spent in the first quadrant. The maximum likelihood value (ll), and the AIC
and BIC measures also illustrate that the Kummer–Dirichlet gamma can be viewed as a
good addition in analyzing this type of data set.

Table 3. Parameter estimates and performance analysis for the mice Morris water maze behavior
data set.

Model MLE

α̂1 α̂2 α̂3 α̂4 δ̂1 θ̂1 δ̂2 θ̂2 δ̂3

Dirichlet 12.556 10.610 9.022 9.492 n/a n/a n/a n/a n/a

KDGa 1.493 1.378 1.202 0.563 1.147 2.130 0.844 1.045 1.061

θ̂3 λ̂ ll AIC BIC

Dirichlet n/a n/a −29.513 65.026 64.864

KDGa 1.075 1.000 −16.056 54.112 53.517

6. Conclusions and Discussion

In this paper, the Kummer–Dirichlet gamma (KDGa) distribution is presented, which
is a member of the proposed Kummer–Dirichlet (KD) class of distributions. It is illus-
trated that other distributions and their marginal distributions emanate from this class
of distributions, of which include the Dirichlet-generated, with marginal beta-generated
distributions and the exponentiated-generalized distribution as well. The pdf and moments
of the KDGa distribution can be expressed as an infinite sum of that of the Dirichlet-gamma
(DGa) distributions. The impact and usefulness of the KDGa distribution are illustrated
via synthetic and real data sets, where its performance is compared to that of the Dirichlet
and DGa distributions. We illustrated how this innovation of the Dirichlet distribution
proposes a better fit for compositional psychology diagnostic data sets where outliers are
present. The extra parameter λ of the KDGa distribution proves to add more flexibility in
modeling compositional data sets.

To conclude this section, we will briefly discuss two other applications of the proposed
KD generator model. A generative discriminative classifier can be well-defined by solving
the following compound of KD with a multinomial distribution integral

KDCM(X|α) =
∫

y
M(X|y) f (y)dy
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where f (·) is given by (8) and M(X|y) is the pdf of a multinomial distribution with
object X and parameters y. See [26] for a recent similar approach. Another well-known
application is in Bayesian analysis, where one can use the KD generator distribution as the
prior in the multinomial distribution or allocation probabilities for clustering in a finite
mixture model or either probabilistic graphical network modeling.
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Appendix A. Proof of the Main Results

Proof of Theorem 1. Expanding the exponential term in (8), using the Taylor series, it
follows that

1
C2(α, λ)

=
∫
· · ·
Ωp

∫ p

∏
i=1

yαi−1
i

(
1−

p

∑
i=1

yi

)αp+1−1

e−λ(∑
p
i=1 yi) dy

=
∞

∑
m1 ,··· ,mp≥0

(
−λ∑

p
i=1 mi

∏
p
i=1 mi !

)∫
· · ·
Ωp

∫ p

∏
i=1

yαi+mi−1
i

(
1−

p

∑
i=1

yi

)αp+1−1

dy

=
∞

∑
m1 ,··· ,mp≥0

(
−λ∑

p
i=1 mi

∏
p
i=1 mi !

)∫
· · ·
Ωp

∫
yα1+m1−1

1

p

∏
i=2

yαi+mi−1
i

×
(

1− y1 −
p

∑
i=2

yi

)αp+1−1

dy

=
∞

∑
m1 ,··· ,mp≥0

(
−λ∑

p
i=1 mi

∏
p
i=1 mi !

)∫
· · ·
Ωp

∫ ( y1

1−∑
p
i=2 yi

)α1+m1−1

×
(

1− y1

1−∑
p
i=2 yi

)αp+1−1 p

∏
i=2

yαi+mi−1
i

(
1−

p
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i=2

yi

)α1+m1+αp+1−2

dy (A1)

Let q1 = y1
1−∑

p
i=2 yi

in (A1), where dy1 = (1−∑
p
i=2 yi) dq1. Then

1
C2(α, λ)

=
∞

∑
m1,··· ,mp≥0

(
−λ∑

p
i=1 mi

∏
p
i=1 mi!

)
B(α1 + m1, αp+1)

∫
· · ·

Ωp−1

∫ p

∏
i=2

yαi+mi−1
i

×
(

1−
p

∑
i=2

yi

)α1+m1+αp+1−2

dy2 dy3 · · · dyp, (A2)
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where B(·, ·) is the beta function. The expression in (A2) can further be simplified by a
continuous process of a change of variable qj =

yj

1−∑
p
j=i+1 yj

for j = 1, 2, · · · , p. The result of

(A2) is solved in detail by [12]. Hence,

1
C2(α, λ)

=
∞

∑
m1,··· ,mp≥0

(
−λ∑

p
i=1 mi

∏
p
i=1 mi!

)
p−1

∏
i=1

B

(
αi + mi,

p

∑
j=i+1

αj + mj + αp+1

)
×B
(
αp + mp, αp+1

)
. (A3)

It then follows that

1
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,

which completes the proof, where αi for i = 1, 2, · · · , p and where the summation of
the Pochhammer functions can be represented as the confluent hypergeometric function
1F1(.; .; .).

Proof of Theorem 2. By definition and using (10) and (13), it follows that
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where dx = (dx1dx2...dxp) and Yi ∼ Gamma( θi
1−θiti

, δi). Since Gi(Yi) ∈ (0, 1), then let
Gi(Yi) ≡ Ui ∼ Uni f (0, 1). The proof is completed by simplifying the expected value
in (A4) as follows
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where dU = (dU1dU2...dUp). The result of (18) follows from (A5).

Proof of Theorem 3. For random vector X = (X1, . . . , Xp) ∈ Rp with pdf (10) (repre-
sented as (13)), for ∑

p
i=1 Gi(xi) < 1, it follows that
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}
, (A6)

where dx = (dx1dx2...dxp), Yi ∼ Gamma(θi, ni + δi) and Gi(Yi) ≡ Ui ∼ Uni f (0, 1). The
proof is completed by simplyifing the expected value in (A6), following the same procedure
as in (A5).
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