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Abstract: Proteins are found in all living organisms and constitute a large group of macromolecules
with many functions. Proteins achieve their operations by adopting distinct three-dimensional
structures encoded within the sequence of the constituent amino acids in one or more polypeptides.
New, more flexible distributions are proposed for the MCMC sampling method for predicting protein
3D structures by applying a Möbius transformation to the bivariate von Mises distribution. In
addition to this, sine-skewed versions of the proposed models are introduced to meet the increasing
demand for modelling asymmetric toroidal data. Interestingly, the marginals of the new models
lead to new multimodal circular distributions. We analysed three big datasets consisting of bivariate
information about protein domains to illustrate the efficiency and behaviour of the proposed models.
These newly proposed models outperformed mixtures of well-known models for modelling toroidal
data. A simulation study was carried out to find the best method for generating samples from the
proposed models. Our results shed new light on proposal distributions in the MCMC sampling
method for predicting the protein structure environment.

Keywords: bioinformatics; cosine model; mixture distributions; Möbius transformation; sine model;
toroidal data

1. Introduction

Proteins constitute a diverse set of biological macromolecules that are often referred to
as the workhorses of cells because of their central role in most biological processes. Chem-
ically, proteins are biopolymers consisting of linear sequences of amino acid covalently
linked by peptide bonds, such that each polypeptide is a single large molecule. Nineteen
of the natural amino acids (all but proline) have an amino group (–NH2), a carboxylic acid
group (–COOH), an amino acid-specific side-chain, and a hydrogen atom attached to a
central carbon atom (Cα). Each peptide bond links the carboxylate group of one amino acid
to the amino group of the next. Protein structure is often described in terms of four levels
of organisation. The primary structure is the sequence of amino acids. The secondary struc-
ture refers to the local folding of the polypeptide backbone into helices, strands, or loops.
The tertiary structure describes the complex three-dimensional folding of a polypeptide.
Finally, the quaternary structure describes the involvement of one or more polypeptides
in creating a functional protein. The amino nitrogen, Cα, and the carbonyl carbon of all
residues constitute the protein backbone.

The 3D coordinates of proteins, as provided by electron microscopy, NMR, or X-ray
crystallography, directly reveal the conformation of the backbone atoms, with knowledge
of standard chemical bond angles and lengths incorporated during the refinement process.

Mathematics 2021, 9, 2749. https://doi.org/10.3390/math9212749 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-5881-9241
https://orcid.org/0000-0002-7831-5614
https://orcid.org/0000-0003-4793-5674
https://doi.org/10.3390/math9212749
https://doi.org/10.3390/math9212749
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9212749
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9212749?type=check_update&version=2


Mathematics 2021, 9, 2749 2 of 24

Generally, the backbone conformation is analysed using the backbone torsion or the di-
hedral angles, denoted by φ, ψ, and ω, as introduced by Ramachandran [1] (Figure 1A),
where ω is usually close to 180◦ or occasionally 0◦. Alternatively, virtual bond and torsion
angles θ and τ may be used to describe a protein backbone representation based on only
Cα positions (Figure 1B).

Figure 1. Two representations of protein backbone structures based on torsion or pseudo-torsion angles.

A major challenge in molecular biology and computational biochemistry involves
predicting protein 3D structure. The encoding gene provides the primary structure of a
protein, and the secondary structure may be predicted computationally with high reliability
using artificial neural networks [2], based on the propensity of amino acids to form different
secondary structures.

However, predicting the 3D structure of a protein, especially if it is larger than
100 amino acids or if a homologue with a known structure and significant sequence
identity is not available, remains challenging. This challenge is addressed by de novo
structure prediction, which requires parametrized physical force fields. The probability of
observing a particular conformation x of the molecule, p(x|β) is considered and expressed
as the Boltzmann distribution:

p(x|β) = exp(βU(x))
Zβ

,

where Zβ is the normalization constant, U(x) is the potential energy of the molecule,
β = (kbT)−1 is the thermodynamic beta, kb is the Boltzmann constant, and constant T is the
temperature. The 3D structure of a molecule can be derived from p(x|β) by determining
the mode of the distribution. Molecular dynamics (MD) is a simulation-based method
used to probe for the mode of distribution. However, many millions to trillions of steps are
required to simulate a single folding event. By contrast with MD, Monte Carlo (MC)-based
methods are more time-efficient. In the Markov Chain Monte Carlo (MCMC) method,
a Markov chain is constructed using the Metropolis–Hastings (MH) algorithm ([3,4]), with
p(x|β) as the stationary distribution. A symmetric proposal distribution is utilized in the
MH algorithm.

Choosing a good proposal distribution is one of the challenges in MCMC-based
simulation. Gaussian perturbations are the most straightforward proposal distributions
that can be used [5]. The results are more accurate when the proposal distribution is closer
to the stationary distribution; therefore, protein structural information is incorporated into
most proposal distributions. Using the information on angles and bond lengths observed in
real proteins is a simple way to define a suitable proposal distribution. Fragment libraries
for backbone angles and rotamer libraries for side-chain angles can be selected as default
choices for proposal distributions [6–8].

Various tractable statistical distributions for modelling protein dihedral angles are
briefly reviewed. These models can be used as proposal distributions for MCMC protein
sampling. They can also be utilized as a prior for determining a protein structure from data.
However, these models do not generate folded proteins because they work under some
simplifying assumptions, both in terms of their functional form and dependency structure
(see [9]). The ultimate goal of our contribution is to propose more flexible models for the
proposal distribution.
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1.1. Brief Overview

An overview of the models available for toroidal data that forms the departure point
for the investigation in this paper follows (see [10]).

The first probability distribution on the torus was proposed by Mardia in [11]. It is the
bivariate von Mises distribution:

f (θ1, θ2) = C exp(κ1 cos(θ1 − ι1) + κ2 cos(θ2 − ι2)

+ (cos(θ1 − ι1), sin(θ1 − ι1))A(cos(θ2 − ι2), sin(θ2 − ι2))
T),

where C is the normalizing constant, ι1, ι2 ∈ [−π, π) are location parameters, κ1, κ2 ≥ 0 are
concentration parameters, and matrix A2×2 is the circular–circular dependence parameter.
To move beyond the complexity created by the large number of parameters in this founding
distribution, a few special cases in the literature have been considered. Rivest in [12]
introduced the subclass:

f (θ1, θ2) ∝ exp(κ1 cos(θ1 − ι1) + κ2 cos(θ2 − ι2) + α cos(θ1 − ι1) cos(θ2 − ι2) (1)

+ β sin(θ1 − ι1) sin(θ2 − ι2)),

where α, β ∈ R. Singh et al. in [13] proposed the sine model as a special case of (1) with one
less parameter, letting α = 0 and β = κ3:

f (θ1, θ2) = C exp(κ1 cos(θ1 − ι1) + κ2 cos(θ2 − ι2) + κ3 sin(θ1 − ι1) sin(θ2 − ι2)), (2)

where

C−1 = 4π2
∞

∑
i=0

(
2i
i

)(
κ2

3
4κ1κ2

)i

Ii(κ1)Ii(κ2), (3)

where Iα(z) is the modified Bessel function of the first kind of order α. Another submodel
of (1), the cosine model, was introduced by Mardia et al. in [14] by setting α = β = −κ3:

f (θ1, θ2) = C exp(κ1 cos(θ1 − ι1) + κ2 cos(θ2 − ι2)− κ3 cos(θ1 − ι1 − θ2 + ι2)), (4)

where

C−1 = 4π2

{
I0(κ1)I0(κ2)I0(κ3) + 2

∞

∑
i=1

Ii(κ1)Ii(κ2)Ii(κ3)

}
. (5)

It is worth noting that Kent et al. in [15] introduced another version of the cosine
model, with a negative interaction given by:

f (θ1, θ2) = C exp(κ1 cos(θ1 − ι1) + κ2 cos(θ2 − ι2)− κ3 cos(θ1 − ι1 + θ2 − ι2)),

with the same normalizing constant as for the model with a positive interaction in (4).
Kent et al. in [15] also introduced a submodel of (1), which is a hybrid between the sine
and cosine models, given by:

f (θ1, θ2) ∝ exp(κ1 cos(θ1 − ι1) + κ2 cos(θ2 − ι2) (6)

+β{(cosh λ− 1) cos(θ1 − ι1) cos(θ2 − ι2)) + sinh λ sin(θ1 − ι1) sin(θ2 − ι2)}),

where κ1, κ2 ≥ 0, λ ∈ R, and for simplicity, β = 1. Mardia and Frellsen in [16] compared
the properties of these three submodels in (2), (4), and (6). The multivariate extensions
of the sine model can be found in [17]. In another attempt to expand the platform of
toroidal distributions, Wehrly and Johnson in [18] used a marginal specification approach to
construct bivariate models with more flexible specified circular marginals. Later, Jones et al.
in [19] obtained various toroidal models using the general form in [18]. In this way,
Fernández-Durán in [20] proposed another general toroidal model by using a copula pdf
that García-Portugués imposed periodic restrictions on in [21], and Jones et al. [19] defined
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it as a circula pdf, arguing that it is characterised by a circular uniform distribution. For more
details, see [22].

The main incentive for defining toroidal models in recent years has been the de-
mand from other sciences, especially bioinformatics, to model dihedral angles in order to
analyse protein structures ([13,14,23,24]). However, toroidal data can also be observed in
other fields, for example, in meteorology (wind directions at two different times of day)
and medicine (peak systolic blood pressure during two separate time periods). For the
interested reader, some applications of toroidal models can be found in [25–29].

Most of the proposed toroidal models are pointwise symmetric, whereas the data that
they model usually represent asymmetric patterns. This inspired Ameijeiras-Alonso and
Ley [24] to introduce bivariate sine-skewed distributions (BSS):

fBSS(θ1, θ2) = f (θ1 − µ1, θ2 − µ2)(1 + λ1 sin(θ1 − µ1) + λ2 sin(θ2 − µ2)), (7)

where f (., .) is a toroidal density symmetric (pointwise) about −π ≤ µ1, µ2 < π, and
the skewness parameters −1 6 λi 6 1, i = 1, 2, satisfy |λ1|+ |λ2| 6 1.

In this paper, Möbius transformation will form the foundation for the construction
of competitive models. A map T : C → C is a Möbius transformation if it has the
following form:

T(z) =
az + b
cz + d

,

where C is the set of complex numbers, a, b, c, d ∈ C are complex numbers, and ad− bc 6= 0.
Let S ⊂ C be a unit circle, then Möbius transformation maps a point on the unit circle θ onto
another θ̃. Jones in [30] subsequently applied the Möbius transformation to introduce a new
family of distributions on the disc. Kato and Jones in [31] used the Möbius transformation
to introduce a new distribution on the circle by transforming the von Mises distribution.
Wang and Shimizu in [32] applied the Möbius transformation to cardioid random variables.
Kato and Pewsey in [33] employed this transformation to define the unimodal bivariate
wrapped Cauchy distribution by transforming the bivariate circular distribution in [34]:

f (θ1, θ2) = c(c0 − c1 cos(θ1 − µ1)− c2 cos(θ2 − µ2)− c3 cos(θ1 − µ1) cos(θ2 − µ2) (8)

−c4 sin(θ1 − µ1) sin(θ2 − µ2))
−1,

where c = (1 − ρ2)(1 − r2
1)(1 − r2

2)/4π2, c0 = (1 + ρ2)(1 + r2
1)(1 + r2

2) − 8|ρ|r1r2,
c1 = 2(1 + ρ2)r1(1 + r2

2) − 4|ρ|(1 + r2
1)r2, c2 = 2(1 + ρ2)r2(1 + r2

2) − 4|ρ|(1 + r2
2)r1,

c3 = −4(1 + ρ2)r1r2 + 2|ρ|(1 + r2
1)(1 + r2

2), c4 = 2ρ(1 − r2
1)(1 − r2

2), µ1, µ2 ∈ [−π, π),
r1, r2 ∈ [0, 1), and −1 < ρ < 1. Kato and McCullagh in [35] introduced the Cauchy
distribution on the sphere by using a Möbius transformation.

1.2. Our Contribution

In this paper, two new distributions are introduced on the torus by applying a re-
stricted version of the Möbius transformation developed by Kato and Pewsey in [33],
namely the circular Möbius transformation that transforms θ into θ̃ through the
following mapping:

θ = f(θ̃, µ, ν, r) = µ + ν + 2 arctan
{

1− r
1 + r

tan
(

θ̃ − ν

2

)}
, (9)

where −π ≤ µ, ν ≤ π, r ∈ [0, 1), and µ is the rotation parameter. When µ = 0, ν and r
attract the point θ towards ν. By increasing r, the concentration of the points around ν
increases. If r = 0, the transformation is identity mapping, and when r → 1, f(θ̃, µ, ν, r)
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tends to ν. More details about the circular Möbius transformation can be found in [29,36].
The inverse of (9) can be obtained as follows:

θ̃ = ν + 2 arctan
{

1 + r
1− r

tan
(

θ − µ− ν

2

)}
.

More specifically, our novel contribution includes the following highlights:

• New Möbius transformation-induced toroidal distributions are developed, acting
as alternatives for existing models and efficiently outperforming them in the data
application in this paper;

• The proposed distributions reflect the protein structure more accurately than the
existing models and can serve as proposal distributions for MCMC sampling of
proteins since we should incorporate protein structure information into proposal
distributions to obtain more accurate results;

• Sine-skewed versions of these proposed models are introduced to meet the increasing
demand for the modelling of asymmetric toroidal data;

• The marginals of the new models lead to new multimodal circular distributions.

The remainder of this paper is organised as follows. Section 2 introduces two new dis-
tributions emanating from the sine and cosine models in (2) and (4), respectively. Section 3
introduces the sine-skewed versions of the newly proposed transformed sine and cosine
models. Section 4 outlines the maximum likelihood method for obtaining the parameter
estimates for the proposed models. Three real datasets, including information on angles in
protein structures, are analysed in Section 5 to determine the performance of the proposed
models relative to known competitors, and demonstrate their well-deserved designation as
possible models for toroidal data. In Section 6, a simulation study is conducted for two rea-
sons: (1) to explore the best method of generating samples from the newly transformed sine
and cosine models, and (2) to evaluate the numerical method, followed by the acquisition
of the maximum likelihood estimates (MLEs) of the parameters.

2. Two New Models on the Torus

This section highlights two new flexible models for toroidal data, obtained by trans-
forming the sine and cosine models in (2) and (4) via a Möbius transformation.

2.1. Transformed Cosine Model

Let (Θ̃1, Θ̃2) have pdf (4) with ι1 = ι2 = 0. Suppose that

(Θ1, Θ2) =
(
f(Θ̃1, µ1, ν1, r1),f(Θ̃2, µ2, ν2, r2)

)
,

where f(.) is defined in (9), µ1, µ2, ν1, ν2 ∈ (−π, π], r1, r2 ∈ [0, 1) and without loss of
generality ν1 = ν2 = 0. Then, (Θ1, Θ2) has a pdf of

f (θ1, θ2) =
C(1− r2

1)(1− r2
2)

(1 + r2
1 − 2r1 cos(θ1 − µ1))(1 + r2

2 − 2r2 cos(θ2 − µ2))
(10)

× exp

{
1

(1 + r2
1 − 2r1 cos(θ1 − µ1))(1 + r2

2 − 2r2 cos(θ2 − µ2))
(C0 + C1 cos(θ1 − µ1)

+C2 cos(θ2 − µ2) + C3 cos(θ1 − µ1) cos(θ2 − µ2) + C4 sin(θ1 − µ1) sin(θ2 − µ2))},
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where κ1, κ2 ≥ 0, κ3 ∈ R, C is defined in (5), and

C0 = −2κ1r1(1 + r2
2)− 2κ2r2(1 + r2

1)− 4κ3r1r2, (11)

C1 = κ1(1 + r2
1)(1 + r2

2) + 2κ3r2(1 + r2
1) + 4κ2r1r2,

C2 = κ2(1 + r2
1)(1 + r2

2) + 2κ3r1(1 + r2
2) + 4κ1r1r2,

C3 = −2κ1r2(1 + r2
1)− 2κ2r1(1 + r2

2)− κ3(1 + r2
1)(1 + r2

2),

C4 = −κ3(1− r2
1)(1− r2

2),

where µ1, µ2 ∈ [−π, π) are location parameters, κ1, κ2 ≥ 0 are concentration parameters,
κ3 is the circular–circular dependence parameter, and r1 and r2 regulate the concentrations
of the marginal distributions. In (10), when r1 = r2 = 0, the cosine model (4) is obtained.
If κ1, κ2, κ3 = 0 yields the bivariate wrapped Cauchy distribution, then θ1 ⊥ θ2 follows.
The pdf and contour plots of (10) are shown in Figure 2 for µ1 = µ2 = 0 and different
values of κ1, κ2, κ3, r1 and r2, and reveal unimodal and bimodal behaviour.

κ1=1,κ2=1,κ3=1,r1=0.2,r2=0.3 κ1=1,κ2=1,κ3=1,r1=0,r2=0 κ1=0.7,κ2=0.5,κ3=0.3,r1=0.4,r2=0.5 κ1=0,κ2=0,κ3=0,r1=0.2,r2=0.3

κ1=0.7,κ2=0.5,κ3=2,r1=0.4,r2=0.5 κ1=0.2,κ2=0.3,κ3=0.2,r1=0.2,r2=0.1 κ1=2,κ2=3,κ3=2,r1=0.3,r2=0.2 κ1=1.5,κ2=0.2,κ3=0.8,r1=0.3,r2=0.2

Figure 2. Pdf and contour plots of the transformed cosine model (10) for µ1 = µ2 = 0 and different
values of κ1, κ2, κ3, r1, and r2.

Proposition 1. Assuming the transformed cosine model (10), when r1, r2 → 0, then (Θ1, Θ2) has
approximately a bivariate normal distribution if and only if κ3 ≤ κ1κ2

κ1+κ2
.

Proof. See Appendix A.

In the following, the marginal pdf and conditional pdf of the transformed cosine
model (10) and their properties are discussed. The marginal pdf of θ1 for the transformed
cosine model in (10) is as follows:

fΘ1(θ1) =
2πC(1− r2

1)

1 + r2
1 − 2r1 cos(θ1 − µ1)

I0(h(θ1)) exp

{
κ1(1 + r2

1) cos(θ1 − µ1)− 2κ1r1

1 + r2
1 − 2r1 cos(θ1 − µ1)

}
, (12)

where

h(θ1) =

{
κ2

2 + κ2
3 −

2κ2κ3
(
(1 + r2

1) cos(θ1 − µ1)− 2r1
)

1 + r2
1 − 2r1 cos(θ1 − µ1)

}1/2

, (13)

and C is as defined in (5). The marginal pdf of Θ1 in (12) is symmetric to µ1, small values of
κ3 approximate the transformed von Mises distribution [31], and r1 = 0, which simplifies
to the marginal pdf of the cosine model [14]. It is clear that for r1 = 0 and small values
of κ3, the von Mises distribution is approximated. If κ1 = κ2 = κ3 = 0 in (12), then
the Möbius-transformed uniform distribution is obtained. For κ1 = κ2 = κ3 = r1 = 0,
the distribution is uniform. When κ1 = κ2 = 0 in (12), the distribution is the transformed
von Mises distribution [31], and when κ1 = κ2 = r1 = 0, the von Mises distribution is
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obtained. The plots of this generalized marginal pdf of Θ1 are shown in Figure 3 (left) for
µ1 = 0 and different values of κ1, κ2, κ3 and r1, reflecting unimodal and bimodal graphs.
In the following theorem, the modality of the marginal density function Θ1 is addressed.
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θ
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κ1=0.5,κ2=0.5,κ3=0,r1=0

κ1=2,κ2=0.5,κ3=3,r1=0

κ1=2,κ2=0.5,κ3=0,r1=0.1

κ1=2,κ2=0.5,κ3=3,r1=0.2

κ1=0.5,κ2=3,κ3=2,r1=0.5

−3 −2 −1 0 1 2 3

0
.0

0
.2

0
.4

0
.6

0
.8

1
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θ
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κ1=0.5,κ2=0.5,κ3=0.5,r1=0

κ1=2,κ2=0.5,κ3=3,r1=0

κ1=0.1,κ2=0.5,κ3=2,r1=0.1

κ1=3,κ2=0.5,κ3=2,r1=0.2

κ1=0.1,κ2=0.5,κ3=1,r1=0.5

Figure 3. Plots of the marginal pdf of Θ1 in (12) (left) and in (18) (right) for µ1 = 0 and different
parameter values.

Corollary 1. The marginal distribution of Θ1 in (12) is symmetric around θ1 = µ1 and unimodal

(with mode at µ1) if and only if A(|κ2−κ3|)
|κ2−κ3|

≤
(

2r1(1−r1)
2

(1−r2
1)

2 + κ1

)
/κ2κ3, where A(κ) = I1(κ)/I0(κ).

Moreover, the marginal distribution of Θ1 in (12) is bimodal (with the modes at µ1− θ∗1 and µ1 + θ∗1 )

if and only if A(|κ2−κ3|)
|κ2−κ3|

>

(
2r1(1−r1)

2

(1−r2
1)

2 + κ1

)
/κ2κ3, and θ∗1 is the root of κ2κ3(1− r2

1)
2 A(h(θ∗1 ))/

h(θ∗1 )− 2r1(1 + r2
1 − 2r1 cos(θ∗1 − µ1))− κ1(1− r2

1)
2 = 0, where h(θ) is as defined in (13).

Proof. See Appendix A.

The conditional pdf f (θ2 | Θ1 = θ1) results in the transformed von Mises distribu-
tion [31] given by the following:

f (θ2 | Θ1 = θ1) =
1− r2

2
2π I0(h(θ1))

1
1 + r2

2 − 2r2 cos(θ2 − µ2)
(14)

× exp

{
h(θ1) cos τ((1 + r2

2) cos(θ2 − µ2)− 2r2) + h(θ1) sin τ(1− r2
2) sin(θ2 − µ2)

1 + r2
2 − 2r2 cos(θ2 − µ2)

}
,

where h(θ1) is as defined in (13), and

tan τ =
−κ3(1− r2

1) sin(θ1 − µ1)

κ2(1 + r2
1 − 2r1 cos(θ1 − µ1))− κ3((1 + r2

1) cos(θ1 − µ1)− 2r1)
(15)

Note that for r1 = r2 = 0, (14) simplifies to the von Mises distribution with the
parameters τ and h(θ1) in (13).

2.2. Transformed Sine Model

Let (Θ̃1, Θ̃2) have a bivariate pdf (2), with ι1 = ι2 = 0. Suppose that

(Θ1, Θ2) =
(
f(Θ̃1, µ1, ν1, r1),f(Θ̃2, µ2, ν2, r2)

)
,

where f(.) is as defined in (9), µ1, µ2, ν1, ν2 ∈ (−π, π], r1, r2 ∈ [0, 1), and without loss of
generality ν1 = ν2 = 0. Then, (Θ1, Θ2) has a pdf as follows:



Mathematics 2021, 9, 2749 8 of 24

f (θ1, θ2) =
C(1− r2

1)(1− r2
2)

(1 + r2
1 − 2r1 cos(θ1 − µ1))(1 + r2

2 − 2r2 cos(θ2 − µ2))
(16)

× exp

{
1

(1 + r2
1 − 2r1 cos(θ1 − µ1))(1 + r2

2 − 2r2 cos(θ2 − µ2))
(C0 + C1 cos(θ1 − µ1)

+C2 cos(θ2 − µ2) + C3 cos(θ1 − µ1) cos(θ2 − µ2) + C4 sin(θ1 − µ1) sin(θ2 − µ2))},

where κ1, κ2 ≥ 0, κ3 ∈ R, C is as defined in (3), and

C0 = −2κ1r1(1 + r2
2)− 2κ2r2(1 + r2

1), (17)

C1 = κ1(1 + r2
1)(1 + r2

2) + 4κ2r1r2,

C2 = κ2(1 + r2
1)(1 + r2

2) + 4κ1r1r2,

C3 = −2κ1r2(1 + r2
1)− 2κ2r1(1 + r2

2),

C4 = κ3(1− r2
1)(1− r2

2),

where µ1, µ2 ∈ [−π, π) are location parameters, κ1, κ2 ≥ 0 are concentration parameters,
κ3 is the circular–circular dependence parameter, and r1 and r2 regulate the concentrations
of the marginal distributions. If r1 = r2 = 0 in (16), then the sine model in (2) follows.
The pdf and contour plots of (16) are shown in Figure 4 for µ1 = µ2 = 0 and for different
values of κ1, κ2, κ3, r1 and r2. As can be seen, this transformed sine pdf (16) can have both
unimodal and bimodal forms.

κ1=3,κ2=1,κ3=− 4,r1=0.1,r2=0.2 κ1=3,κ2=1,κ3=− 6,r1=0,r2=0 κ1=0.5,κ2=0.6,κ3=0.5,r1=0.3,r2=0.2 κ1=0.5,κ2=0.6,κ3=0.5,r1=0,r2=0

κ1=0.5,κ2=0.6,κ3=2,r1=0.3,r2=0.2 κ1=1,κ2=0.3,κ3=0.5,r1=0.4,r2=0.5 κ1=2,κ2=0.6,κ3=2,r1=0.1,r2=0.1 κ1=3.5,κ2=0.3,κ3=− 4,r1=0.1,r2=0

Figure 4. Pdf and contour plots of the transformed sine model (16) for µ1 = µ2 = 0 and different
values of κ1, κ2, κ3, r1, and r2.

Proposition 2. Assuming the transformed sine model in (16), when r1, r2 → 0, then (Θ1, Θ2)
has an approximately bivariate normal distribution if and only if κ2

3 < κ1κ2.

Proof. Similarly, Theorem 1 is proved using the results in [13].

In this case, the marginal pdf of Θ1 for the transformed sine model in (16) is as follows:

fΘ1(θ1) =
2πC(1− r2

1)

1 + r2
1 − 2r1 cos(θ1 − µ1)

I0(h(θ1)) exp

{
κ1(1 + r2

1) cos(θ1 − µ1)− 2κ1r1

1 + r2
1 − 2r1 cos(θ1 − µ1)

}
, (18)

where

h(θ1) =

κ2
2 +

(
κ3(1− r2

1)

1 + r2
1 − 2r1 cos(θ1 − µ1)

)2

sin2(θ1 − µ1)


1/2

, (19)
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and C, as shown in (3). The marginal pdf of Θ1 is symmetric around µ1. If κ3 = 0,
the distribution is the transformed von Mises distribution [31]. If r1 = 0 in (18), the marginal
distribution of the sine model [13] is obtained. The plots of the marginal pdf of Θ1 in (18)
are shown in Figure 3 (right) for µ1 = 0 and different values of κ1, κ2, κ3, and r1. As can
be seen, the distribution can be both unimodal and bimodal. In the following theorem,
the modality of the marginal pdf of Θ1 in (18) is explored.

Corollary 2. The marginal distribution of Θ1 in (18) is symmetric around θ1 = µ1 and unimodal

(with mode at µ1) if and only if A(κ2)
κ2
≤
(

2r1(1−r1)
2

(1−r2
1)

2 + κ1

)
/κ2

3, where A(κ) = I1(κ)/I0(κ). More-

over, the marginal distribution of Θ1 in (18) is bimodal (with the modes at µ1 − θ∗1 and µ1 + θ∗1 ) if

and only if A(κ2)
κ2

>

(
2r1(1−r1)

2

(1−r2
1)

2 + κ1

)
/κ2

3, and θ∗1 is the root of κ2
3(1− r2

1)
2 cos θ∗1 A(h(θ∗1 ))/h(θ∗1 )

− 2r1(1 + r2
1 − 2r1 cos(θ∗1 − µ1))− κ1(1− r2

1)
2 = 0, where h(θ) is as defined in (19).

Proof. See Appendix A.

The conditional pdf f (θ2 | Θ1 = θ1) is given by:

f (θ2 | Θ1 = θ1) =
1− r2

2
2π I0(h(θ1))

1
1 + r2

2 − 2r2 cos(θ2 − µ2)
(20)

× exp

{
h(θ1) cos τ((1 + r2

2) cos(θ2 − µ2)− 2r2) + h(θ1) sin τ(1− r2
2) sin(θ2 − µ2)

1 + r2
2 − 2r2 cos(θ2 − µ2)

}
,

where h(θ1) is as defined in (19), and

tan τ =
κ3

κ2

(1− r2
1) sin(θ1 − µ1)

1 + r2
1 − 2r1 cos(θ1 − µ1)

(21)

Interestingly, the conditional distribution is the transformed von Mises distribu-
tion [31]. When r1 = r2 = 0 in (20), the von Mises distribution with parameters τ and h(θ1)
is obtained.

3. Sine-Skewed Transformed Sine and Cosine Distributions

In practice, it is possible to have skewed toroidal datasets, despite the well-known
toroidal distributions being pointwise symmetric. Therefore, it would be interesting to
extend this methodology to the recent model of Ameijeiras-Alonso and Ley in [24]. In this
section, the skewed versions of the proposed transformed sine and cosine models in (16)
and (10) are introduced. In addition, Abe and Pewsey’s skew model in [37] is applied to
extend models on the circle manifold using marginal density functions.

By substituting (10) in (7), the sine-skewed transformed cosine (BSSTC) distribution can
be defined as follows:

fBSSTC(θ1, θ2) =
C(1− r2

1)(1− r2
2)

(1 + r2
1 − 2r1 cos(θ1 − µ1))(1 + r2

2 − 2r2 cos(θ2 − µ2))
(22)

× exp

{
1

(1 + r2
1 − 2r1 cos(θ1 − µ1))(1 + r2

2 − 2r2 cos(θ2 − µ2))
(C0 + C1 cos(θ1 − µ1)

+C2 cos(θ2 − µ2) + C3 cos(θ1 − µ1) cos(θ2 − µ2) + C4 sin(θ1 − µ1) sin(θ2 − µ2))}
× (1 + λ1 sin(θ1 − µ1) + λ2 sin(θ2 − µ2)),

where κ1, κ2 ≥ 0, κ3 ∈ R, C is as defined in (5), and C0–C4 are as defined in (11). The pdf and
contour plots of the sine-skewed transformed cosine model for κ1 = 0.2, κ2 = 0.3, κ3 = 0.2,
r1 = 0.2, r2 = 0.1, µ1 = µ2 = 0, and different values of λ1 and λ2 are shown in Figure 5 (top).
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λ1=0,λ2=0 λ1=0.5,λ2=0.5 λ1=0.3,λ2=0.7 λ1=0.5,λ2=0.2

λ1=0,λ2=0 λ1=0.5,λ2=0.5 λ1=0.2,λ2=0.1 λ1=0.2,λ2=0.7

Figure 5. Pdf and contour plots of the sine-skewed transformed cosine model in (22) (top) and the
sine-skewed transformed sine model in (24) (bottom) for different values of λ1 and λ2.

The marginal pdf of θ1 for BSSTC in (22) is as follows:

fΘ1;BSS(θ1) =
C(1− r2

1)

1 + r2
1 − 2r1 cos(θ1 − µ1)

exp

{
κ1(1 + r2

1) cos(θ1 − µ1)− 2κ1r1

1 + r2
1 − 2r1 cos(θ1 − µ1)

}
(23)

×
{

2π I0(h(θ1))
(

1 + λ1(1− r2
1) sin(θ1 − µ1)/

(
1 + r2

1 − 2r1 cos(θ1 − µ1)
))

+λ2 A(h(θ1)) cos(τ + µ2)}

where h(θ1) and τ are obtained from (13) and (15), respectively. When λ2 = 0, fΘ1;BSS(θ1)
is the Möbius-transformed sine-skewed version [37] of the marginal pdf of the cosine
model. The plots of the skewed pdf in (23) are shown in Figure 6 (left) for µ1 = µ2 = 0 and
different values of κ1, κ2, κ3, r1, λ1, and λ2. As can be observed, the distribution can be both
unimodal and bimodal.
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Figure 6. Plots of the marginal pdf of Θ1 for BSSTC (left) and BSSTS (right) for µ1 = µ2 = 0 and
different parameter values.

Similarly, from (16) and (7), the sine-skewed transformed sine (BSSTS) distribution can
be obtained as follows:

fBSSTS(θ1, θ2) =
C(1− r2

1)(1− r2
2)

(1 + r2
1 − 2r1 cos(θ1 − µ1))(1 + r2

2 − 2r2 cos(θ2 − µ2))
(24)

× exp

{
1

(1 + r2
1 − 2r1 cos(θ1 − µ1))(1 + r2

2 − 2r2 cos(θ2 − µ2))
(C0 + C1 cos(θ1 − µ1)

+C2 cos(θ2 − µ2) + C3 cos(θ1 − µ1) cos(θ2 − µ2) + C4 sin(θ1 − µ1) sin(θ2 − µ2))}
× (1 + λ1 sin(θ1 − µ1) + λ2 sin(θ2 − µ2)),
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where κ1, κ2 ≥ 0, κ3 ∈ R, C is as defined in (3), and C0–C4 are defined in (17). The
pdf and contour plots of the sine-skewed transformed sine model for κ1 = 2, κ2 = 0.6,
κ3 = 2, r1 = 0.1, r2 = 0.1, µ1 = µ2 = 0, and different values of λ1 and λ2 are shown in
Figure 5 (bottom).

The marginal pdf of θ1 for BSSTS is of the same density as in (23), where h(θ1) and
τ are obtained from (19) and (21). When λ2 = 0, fΘ1;BSS(θ1) is the Möbius-transformed
sine-skewed version [37] of the marginal pdf of the sine model. The plots of the skewed pdf
in (23) are shown in Figure 6 (right) for µ1 = µ2 = 0 and different values of κ1, κ2, κ3, r1, λ1,
and λ2. Figure 6 illustrates that the distribution can have both unimodal and bimodal forms.

To expand the skewed circular models, the following models are introduced based on
the k sine-skewed model of [37]. The skewed version of the marginal distribution of Θ1 in
(12) is the following:

fSS(θ1) =
2πC(1− r2

1)

1 + r2
1 − 2r1 cos(θ1 − µ1)

I0(h(θ1)) exp

{
κ1(1 + r2

1) cos(θ1 − µ1)− 2κ1r1

1 + r2
1 − 2r1 cos(θ1 − µ1)

}
(25)

× (1 + λ sin(k(θ1 − µ1))),

where C is as defined in (5), h(θ1) is as defined in (13), and −1 ≤ λ ≤ 1. λ > 0 leads to
left-skewed distributions, and λ < 0 provides right-skewed distributions. The plots of the
skewed pdf in (25) are shown in Figure 7 (left) for k = 1, µ1 = 0, and different values of
κ1, κ2, κ3, r1, and λ.
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Figure 7. Plots of the sine-skewed versions of marginal pdfs of Θ1 in (12) (left) and (18) (right) for
k = 1, µ1 = 0 and different parameter values.

Similarly, the sine-skewed version [37] of the marginal pdf of Θ1 in (18) is of the same
density as in (25), where C is as defined in (3), h(θ1) is as defined in (19), and −1 ≤ λ ≤ 1.
The plots of the sine-skewed version of the marginal pdf in (18) are shown in Figure 7
(right) for k = 1, µ1 = 0, and different values of κ1, κ2, κ3, r1, and λ. As can be seen, the
distribution is both unimodal and bimodal. Multimodal results for k > 1.

4. Maximum Likelihood Estimation

In this section, the maximum likelihood method is outlined to obtain the estimates of
parameters for both the transformed cosine and sine models. Suppose that
ζ = (µ1, µ2, κ1, κ2, κ3, r1, r2)

T are the parameters associated with the transformed cosine
model (10). The log-likelihood function of the transformed cosine model is represented
as follows:
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l(ζ) = n log C + n log(1− r2
1) + n log(1− r2

2)−
n

∑
i=1

log(1 + r2
1 − 2r1 cos(θ1i − µ1))

−
n

∑
i=1

log(1 + r2
2 − 2r2 cos(θ2i − µ2)) +

n

∑
i=1

1
(1 + r2

1 − 2r1 cos(θ1i − µ1))(1 + r2
2 − 2r2 cos(θ2i − µ2))

(26)

× (C0 + C1 cos(θ1i − µ1) + C2 cos(θ2i − µ2) + C3 cos(θ1i − µ1) cos(θ2i − µ2)

+C4 sin(θ1i − µ1) sin(θ2i − µ2)),

where C is as defined in (5), and C0–C4 are as defined in (11). The MLE of the parameters,
ζ̂ = (µ̂1, µ̂2, κ̂1, κ̂2, κ̂3, r̂1, r̂2)

T , can be determined by maximizing (26) with respect to
ζ = (µ1, µ2, κ1, κ2, κ3, r1, r2)

T .
Supposing that ζ = (µ1, µ2, κ1, κ2, κ3, r1, r2)

T are the parameters associated with the
transformed sine model (16), the log-likelihood function of the transformed sine model can
be represented as follows:

l(ζ) = n log C + n log(1− r2
1) + n log(1− r2

2)−
n

∑
i=1

log(1 + r2
1 − 2r1 cos(θ1i − µ1))

−
n

∑
i=1

log(1 + r2
2 − 2r2 cos(θ2i − µ2)) +

n

∑
i=1

1
(1 + r2

1 − 2r1 cos(θ1i − µ1))(1 + r2
2 − 2r2 cos(θ2i − µ2))

(27)

× (C0 + C1 cos(θ1i − µ1) + C2 cos(θ2i − µ2) + C3 cos(θ1i − µ1) cos(θ2i − µ2)

+C4 sin(θ1i − µ1) sin(θ2i − µ2)),

where C is as defined in (3), and C0–C4 are as defined in (17). The maximization of
(27) with respect to ζ = (µ1, µ2, κ1, κ2, κ3, r1, r2)

T results in the MLE of the parameters,
ζ̂ = (µ̂1, µ̂2, κ̂1, κ̂2, κ̂3, r̂1, r̂2)

T .
By setting the partial derivatives of the log-likelihood functions in (26) and (27) with

respect to ζ to zero, the MLEs of ζ = (µ1, µ2, κ1, κ2, κ3, r1, r2)
T can be derived for the

transformed cosine and sine models. Given the fact that no closed-form expressions exist, it
is necessary to use numerical methods to obtain the MLEs. Operationally, the maximization
of (26) and (27) with respect to ζ is obtained by the DEoptim package in the R software [38]
based on the differential evolution (DE) algorithm [39]. Extensive studies have validated
its significant performance as a global optimization algorithm for continuous numerical
minimization problems [40]. It is worth noting that this package was also used to obtain
the MLEs of the parameters for sine-skewed versions and mixtures of transformed cosine
and sine models.

5. Protein Structure Application

To demonstrate the performance of the proposed models in modelling the dihedral
angles and the planar and torsion angles in a protein structure, three datasets are con-
sidered, which are available at http://scop.mrc-lmb.cam.ac.uk/scop/. SCOP.1 contains
10,188 planar and torsion angles (θ, τ) (see Figure 1A) for about 63 protein domains that
were randomly selected from three remote protein classes in the structural classification of
proteins (SCOP). SCOP.3 includes 4607 planar and torsion angles (θ, τ) from approximately
40 protein chains, and the TCBIG.VAL.right set consists of 2673 dihedral angles (φ, ψ) (see
Figure 7B) [41]. The Ramachandran plots [1] for each dataset are presented in Figure 8.
As can be seen, the datasets are at least bimodal, so bimodal or mixture distributions will
be good choices for fitting.

http://scop.mrc-lmb.cam.ac.uk/scop/
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Figure 8. Ramachandran plots for each dataset.

The transformed sine and cosine models in (16) and (10), along with their competitors—
the sine model, and a mixture of sine models (see (2); [13]), the cosine model, and a
mixture of cosine models (see (4); [14]), and a mixture of bivariate wrapped Cauchy models
(see (8); [33])—were fitted to the SCOP.1 and SCOP.3 datasets. A mixture distribution with
two components was investigated as follows:

gM(θ1, θ2) = p f1(θ1, θ2) + (1− p) f2(θ1, θ2)

where p ∈ [0, 1] and f1(., .) and f2(., .) are two toroidal distributions. The estimation of
parameters, identifiability, and choosing the number of mixing components and param-
eters are among the well-known challenges in the application of mixture distributions.
Furthermore, when the empirical density of the data is highly asymmetric, it can result in a
misleading statistical inference of the parameters [42]. Multimodal distributions, which
represent the random behaviour of data with multi-mode presence, can provide better
model fitting. This is observed here using the bimodal transformed sine model.

The sine-skewed versions of the aforementioned distributions [24] form part of these
evaluations. The results, including the MLEs of parameters, log-likelihood, Akaike in-
formation criterion (AIC), and the Bayesian information criterion (BIC), are shown in
Tables 1 and 2. Based on these results, the bimodal transformed sine model in (16) provides
the best fit for the data, and its performance is better than that of the mixture models for
these datasets. Based on the symmetry test of Ameijeiras-Alonso and Ley in [24] and the
values of log-likelihood in Tables 1 and 2, there is no evidence that rejects the fact that
underlying distributions for SCOP.1 and SCOP.3 are pointwise symmetric. The results of
the mixture of transformed sine and the mixture of transformed cosine models are not
reported in Tables 1 and 2 because p̂ ≈ 1. Scatter plots of the data, together with contour
plots of the fitted distributions are provided in Figures 9 and 10.

With the last dataset TCBIG.VAL.right, good results are not observed upon application
of the single component distributions. Therefore, a mixture model might offer a solution.
Subsequently, only mixtures of the aforementioned distributions were considered. For com-
parison, goodness-of-fit was evaluated for mixtures of distributions from transformed sine
and cosine models, and for mixtures of distributions from existing models. The results are
listed in Table 3. As can be seen, the mixture of transformed sine models provides the best
fitting of the data. Scatter plots of the data and contour plots of the fitted distributions are
shown in Figure 11.
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Table 1. Maximum likelihood estimates and corresponding log-likelihood, AIC, and BIC for SCOP.1 (n = 10,188).

Model ρ̂ κ̂1 κ̂2 κ̂3 r̂1 r̂2 µ̂1 µ̂2 λ̂1 λ̂2 p̂ Log-Likelihood AIC BIC

Sine – 25.2085 0.3679 7.3700 – – 1.8976 2.4624 – – – −15, 890.80 31,790.16 31,827.74
[13]

Sine-skewed sine – 18.8058 0.0852 4.8449 – – 1.8701 −3.1415 0.4051 −0.3718 – −18, 089.71 36,193.42 36,244.02
[24]

Mixture of sine – 4.9938 0.4603 2.3512 – – 2.0560 2.5011 – – 0.3476
−15, 719.26 31,460.22 31,540.04

– 0.0217 0.0413 −4.4594 – – 1.0912 −1.8997 – – 0.6524

Cosine – 11.6274 6.7× 10−17 0.6507 – – 1.8807 −0.8652 – – – −19, 919.04 39,848.07 39,884.22
[14]

Sine-skewed cosine – 11.6274 1.7× 10−8 0.6507 – – 1.8807 −0.8651 −0.7557 0.0789 – −19, 919.04 39,852.07 39,902.68
[24]

Mixture of cosine – 9.6015 2.6459 0.0087 – – 1.7967 0.8676 – – 0.5266
[14] −18, 120.09 36,262.18 36,341.70

– 8.4761 0.0820 2.3228 – – 2.1309 0.9647 – – 0.4734

Mixture of bivariate −0.2892 – – – 0.9551 0.5649 1.6129 1.5337 – – 0.4463
wrapped Cauchy −17, 099.36 34,220.72 34,300.24
[33] −0.1289 – – – 0.8513 0.5433 2.1128 −2.6980 – – 0.5537

Transformed sine – 2.1585 0.3489 3.1712 0.6036 0.0131 1.8573 2.4321 – – – −15,558.98 31,131.97 31,182.56
Sine-skewed transformed sine – 2.1582 0.3487 3.1712 0.6037 0.0131 1.8573 2.4321 −0.1894 0.0556 – −15, 558.98 31,135.97 31,201.02

Transformed cosine – 4.5122 1.9× 10−16 2.7905 0.2632 0.4164 1.8806 −0.6888 – – – −16, 920.43 33,854.86 33,905.46
Sine-skewed transformed cosine – 4.4704 4.2× 10−5 2.8185 0.2656 0.4228 1.8805 −0.6871 0.6225 −0.1849 – −16, 920.43 33,858.86 33,923.92
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Table 2. Maximum likelihood estimates and corresponding log-likelihood, AIC, and BIC for SCOP.3 (n = 4607).

Model ρ̂ κ̂1 κ̂2 κ̂3 r̂1 r̂2 µ̂1 µ̂2 λ̂1 λ̂2 p̂ Log-Likelihood AIC BIC

Sine – 27.0312 0.3243 8.0789 – – 1.8810 2.4618 – – – −6970.09 13,950.18 13,982.36
[13]

Sine-skewed sine – 26.8304 0.3224 8.0732 – – 1.8960 2.4724 −0.4124 −0.0159 – −6941.31 13,896.62 13,941.67
[24]

Mixture of sine – 7.3842 2.0013 −6.3567 – – 2.0918 −1.4321 – – 0.6632
−6893.41 13,901.15 13,879.61

– 2.8774 0.0347 −1.7125 – – 1.9306 −1.1124 – – 0.3368

Cosine – 11.5883 3.8× 10−16 0.6404 – – 1.8537 −0.9851 – – – −9028.72 18,067.45 18,099.62
[14]

Sine-skewed cosine – 11.5883 5.0× 10−9 0.6404 – – 1.8537 −0.9850 −0.0168 −0.6387 – −9028.72 18,071.45 18,116.49
[24]

Mixture of cosine – 29.9375 1.9210 0.0213 – – 1.6840 0.8043 – – 0.5648
[14] −6959.76 13,941.52 14,012.31

– 17.3302 0.0211 1.9456 – – 2.0575 0.8866 – – 0.4352

Mixture of bivariate −0.2347 – – – 0.9169 0.5546 1.5969 1.1037 – – 0.4712
wrapped Cauchy −7137.52 14,297.04 14,367.83
[33] −0.1279 – – – 0.8388 0.5100 1.9792 −2.0869 – – 0.5288

Transformed sine – 3.8755 0.3414 3.6786 0.4950 1.3× 10−9 1.8589 2.4490 – – – −6905.08 13,824.17 13,869.22

Sine-skewed transformed sine – 3.8764 0.3415 3.7066 0.4883 2.6× 10−8 1.8591 2.4491 −0.1544 0.0796 – −6905.08 13,828.17 13,886.08

Transformed cosine – 4.1351 2.4× 10−16 2.8283 0.2884 0.4183 1.8604 −0.6560 – – – −7567.28 15,148.56 15,193.61

Sine-skewed transformed cosine – 4.1350 6.4× 10−10 2.8283 0.2884 0.4183 1.8604 −0.6560 0.6868 −0.1567 – −7567.27 15,152.56 15,210.46
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Figure 9. Contour plots of fitted pdfs together with scatter plot for SCOP.1 (n = 10,188). The last row
includes the proposed models.
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Figure 10. Contour plots of fitted pdfs together with scatter plot for SCOP.3 (n = 4607). The last row
includes the proposed models.
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Table 3. Maximum likelihood estimates and corresponding log-likelihood, AIC, and BIC for TCBIG.VAL.right (n = 2673).

Model ρ̂ κ̂1 κ̂2 κ̂3 r̂1 r̂2 µ̂1 µ̂2 p̂ Log-Likelihood AIC BIC

Mixture of sine – 4.4364 7.6222 −1.2187 – – −1.7736 2.3336 0.6239
−4901.12 9824.25 9889.04

– 5.4606 7.7290 −3.1154 – – −1.4197 −0.4111 0.3761

Mixture of cosine – 4.2849 6.1824 4.6× 10−6 – – −1.4003 −0.4191 0.3787
[14] −5005.01 10,032.03 10,096.82

– 4.6268 7.8256 9.1× 10−6 – – −1.7785 2.3358 0.6213

Mixture of bivariate −0.3805 – – – 0.8545 0.8118 −1.1194 −0.4710 0.3108
wrapped Cauchy −5283.42 10,588.85 10,653.64
[33] −0.0294 – – – 0.7038 0.7778 −1.8772 2.3037 0.6892

Mixture of transformed sine – 2.8274 7.3718 −3.0328 0.2930 0.0872 −1.3860 −0.4040 0.3515
−4826.80 9683.61 9771.96

– 4.0949 1.6545 −0.7133 0.02450 0.4387 −1.7802 2.3495 0.6485

Mixture of transformed cosine – 2.3349 9.3385 0.0063 0.4909 0.1287 −1.1835 −0.5358 0.2645
−4882.14 9794.28 9882.64

– 3.9496 0.0117 0.8886 0.0553 0.8668 −1.8501 2.3841 0.7355
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Figure 11. Contour plots of fitted pdfs together with scatter plots for TCBIG.VAL.right (n = 2673).
The last row includes the proposed models.

The kernel density plots of the three datasets and the best-fit models obtained for each
dataset are shown in Figure 12. According to the levels of contours in the kernel densities
of the data and fitted curves, our proposed models provide an accurate fit.
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Figure 12. Kernel density plots of the data, and the best-fit models.
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6. Simulation Study

The authors of Ref. [16] explored suitable methods for generating samples from cosine
(with positive interaction) and sine models. They found that both Gibbs and rejection
sampling approaches performed well, but the latter was more efficient. To simulate a
sample from the newly proposed transformed sine and transformed cosine distributions
in (16) and (10), four packages in R, which are generally based on rejection sampling,
including MCMCpack [43], gibbs.met [44], LearnBayes [45], and MHadaptive [46], were
used and the results were compared. These packages are based on Metropolis sampling,
random walk Metropolis sampling, Metropolis-Hastings MCMC sampling, and Gibbs
sampling with Metropolis steps. First, a sample of size n = 1000 was generated with
each package from the transformed sine model in (16), with the parameters κ1 = 2.1585,
κ2 = 0.3489, κ3 = 3.1712, r1 = 0.6036, r2 = 0.0131, µ1 = 1.8573, and µ2 = 2.4321 (the best-fit
model for the SCOP.1 dataset in the previous section). The results, including scatter plots of
simulated samples with contour plots of the distribution, trace plots, and compare-partial
plots [47], which use the last 10 percent of the chain, are shown in Figure 13. The runtime of
each method is shown in Figure 14 (left) for a sample size of n = 100 [48] (system: Intel(R)
Core(TM) i7-8550U CPU @ 1.80 GHz RAM 8.00 GB). Second, the MLE of the parameters
and bias and the mean squared error (MSE) of the estimates were calculated for each
method using the Monte Carlo method, with 500 replications and n = 1,001,000. The results
are listed in Table 4.

Similarly, for the transformed cosine model in (10) with parameters κ1 = 3.9891,
κ2 = 0.6532, κ3 = 1.7911, r1 = 0.2305, r2 = 0.5046, µ1 = −1.5651, and µ2 = 0.9878,
the aforementioned R packages were applied, first to generate a sample size of n = 1000.
The results, including scatter plots of simulated samples with contour plots of the distribu-
tion, trace plots, and compare-partial plots [47], are shown in Figure 15. The runtime of each
method is presented in Figure 14 (right) for a sample size of n = 100 [48]. Then, the MLE
of the parameters and bias and the MSE of the estimates were calculated for each method
using the Monte Carlo method, with 500 replications and n = 100,1000. The results are listed
in Table 4, which support the performance of the selected approach for obtaining the MLEs
of parameters. As shown in Figure 14, the MCMCmetrop1R is the highest-speed method,
and gibbs_met is the lowest-speed method. According to the results in Table 4, rejection
sampling provides accurate results. Gibbs sampling with Metropolis steps (gibbs_met) is
also precise despite the low speed. With increasing n, bias and MSE decrease.
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Figure 13. Scatter, trace, and compare-partial plots of the simulated data from the transformed
sine model using “gibbs_met” in the “gibbs.met” package (first row), “MCMCmetrop1R” in the
“MCMCpack” package (second row), “met_gaussian” in the “gibbs.met” package (third row),
“Metro_Hastings” in the “MHadaptive” package (fourth row), and “rwmetrop” in the “LearnBayes”
package (fifth row).
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Figure 14. Execution times for generating a sample size of n = 100 from a transformed sine model
(left) and a transformed cosine model (right) for each method.
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Table 4. Maximum likelihood estimates of parameters and bias, and the MSE of the estimates for the simulated data
obtained from each method.

Method Distribution n κ1 κ2 κ3 r1 r2 µ1 µ2

MLE 1.8450 0.2876 2.8360 0.6001 0.0063 1.7744 2.6177
n = 100 Bias −0.0542 −0.1932 −0.1531 −0.0089 −0.0521 −0.0815 0.1185

MSE 0.0879 0.0921 0.1864 0.0083 0.0044 0.0087 0.0344
Transformed sine

MLE 2.1311 0.2649 3.1546 0.6243 0.0395 1.8491 2.4263
n = 1000 Bias −0.0298 −0.0900 −0.0135 0.0142 0.0130 −0.0018 −0.0046

MSE 0.0527 0.0588 0.0002 0.0018 0.0008 0.0005 2.5× 10−5

MCMCmetrop1R
MLE 3.7753 0.5985 1.5693 0.2564 0.4660 −1.4684 1.0937

n = 100 Bias −0.1137 −0.0572 −0.1022 0.0143 −0.0376 0.0957 0.0421
MSE 0.0998 0.0932 0.1007 0.0028 0.0116 0.0135 0.0275

Transformed cosine
MLE 4.0693 0.6305 1.8210 0.2546 0.5557 −1.5613 1.0116

n = 1000 Bias 0.0758 −0.0319 0.0305 0.0241 0.0329 0.0037 0.0238
MSE 0.0065 0.0426 0.0085 0.0007 0.0014 0.0007 0.0011

MLE 1.8186 0.2260 3.2619 0.6444 0.0359 1.8815 2.6027
n = 100 Bias −0.2337 −0.0867 0.3837 0.0398 0.0205 0.0370 0.1006

MSE 0.1094 0.0350 0.0726 0.0016 0.0406 0.0022 0.0291
Transformed sine

MLE 1.9735 0.3887 3.1546 0.6204 0.0159 1.8701 2.4270
n = 1000 Bias 0.0979 0.0360 −0.0165 0.0131 0.0046 0.0129 −0.0046

MSE 0.0340 0.0482 0.0003 0.0004 0.0001 0.0005 2.1× 10−5

rwmetrop
MLE 3.8086 0.5397 1.4956 0.1726 0.5929 −1.5746 1.0417

n = 100 Bias −0.0984 −0.0940 −0.2954 −0.0512 0.0883 −0.0115 0.0524
MSE 0.0902 0.0893 0.1003 0.0033 0.0088 0.0009 0.0037

Transformed cosine
MLE 3.9139 0.7320 1.8188 0.2546 0.4667 −1.5766 0.9962

n = 1000 Bias −0.0758 0.0703 0.0166 0.0241 −0.0386 −0.0095 0.0084
MSE 0.0056 0.0674 0.0007 0.0013 0.0014 0.0007 0.0018

MLE 2.5400 0.4480 3.1322 0.6963 0.1087 1.8321 2.3133
n = 100 Bias 0.3469 0.0904 −0.0328 0.0837 0.0916 −0.0294 −0.0908

MSE 0.1773 0.0583 0.0117 0.0092 0.0091 0.0009 0.0141
Transformed sine

MLE 1.9022 0.2894 3.3403 0.6649 0.0016 1.8619 2.3822
n = 1000 Bias −0.2223 −0.0658 0.1137 0.0607 −0.0123 0.0042 −0.0481

MSE 0.1268 0.0042 0.0286 0.0043 0.0025 2.1× 10−5 0.0024
met_gaussian

MLE 3.4389 0.5409 1.4373 0.2530 0.5214 −1.5411 1.0526
n = 100 Bias −0.3642 −0.1187 −0.2970 0.0143 0.0113 0.0210 0.0623

MSE 0.1927 0.0993 0.1251 0.0853 0.0082 0.0005 0.0041
Transformed cosine

MLE 3.6491 0.5341 1.6260 0.2420 0.5134 −1.5720 1.0158
n = 1000 Bias −0.2978 −0.1049 −0.0999 0.0195 0.0027 −0.0105 0.0126

MSE 0.1214 0.0915 0.0875 0.0019 0.0032 0.0005 0.0024

MLE 2.1465 0.2728 2.6713 0.6912 0.0010 1.8107 2.2024
n = 100 Bias −0.0197 −0.0784 −0.4598 0.0856 0.0770 −0.0603 −0.1029

MSE 0.0434 0.0883 0.2498 0.0073 0.0059 0.0046 0.0527
Transformed sine

MLE 2.1657 0.2743 3.2124 0.5813 0.0762 1.8487 2.4826
n = 1000 Bias 0.0362 −0.0456 0.0433 −0.0262 0.0531 −0.0081 0.0404

MSE 0.0246 0.0556 0.0027 0.0011 0.0039 7.3× 10−5 0.0025
Metro_Hastings

MLE 3.8290 0.5903 2.0419 0.2857 0.5753 −1.5434 0.8373
n = 100 Bias −0.1600 −0.0582 0.2407 0.0577 0.0709 0.0172 −0.1202

MSE 0.1998 0.0944 0.1208 0.0061 0.0059 0.0006 0.0266
Transformed cosine

MLE 3.8936 0.6747 1.5822 0.2775 0.4859 −1.5676 0.9935
n = 1000 Bias −0.0961 0.0298 −0.2317 0.0470 −0.0196 −0.0025 0.0057

MSE 0.0091 0.0847 0.0829 0.0030 0.0003 0.0002 0.0051

MLE 2.2340 0.2728 2.8277 0.6198 0.1398 1.8437 2.1688
n = 100 Bias 0.0712 −0.0784 −0.3884 0.0143 0.1220 −0.0129 −0.2598

MSE 0.1171 0.0583 0.1179 0.0092 0.0160 0.0003 0.0692
Transformed sine

MLE 2.1901 0.3555 3.1760 0.6016 0.0156 1.8573 2.4342
n = 1000 Bias 0.0315 0.0066 0.0048 −0.0020 0.0024 6.1× 10−5 0.0021

MSE 0.0963 0.0221 0.0464 0.0008 0.0003 1.7× 10−5 0.0018
gibbs_met

MLE 3.6123 0.5732 1.5193 0.2006 0.5852 −1.5886 0.8808
n = 100 Bias −0.2842 −0.0853 −0.2717 −0.0276 0.0869 −0.0238 −0.0758

MSE 0.1419 0.0893 0.1067 0.0082 0.0087 0.0005 0.0187
Transformed cosine

MLE 3.6322 0.5978 1.7613 0.2626 0.5793 −1.5685 0.9668
n = 1000 Bias −0.2568 −0.0653 −0.0232 0.0221 0.0648 −0.0034 −0.0209

MSE 0.0915 0.0726 0.0008 0.0031 0.0074 0.0002 0.0046
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Figure 15. Scatter, trace, and compare-partial plots of the simulated data from the transformed
cosine model using “gibbs_met” in the “gibbs.met” package (first row), “MCMCmetrop1R” in
the “MCMCpack” package (second row), “met_gaussian” in the “gibbs.met” package (third row),
“Metro_Hastings” in the “MHadaptive” package (fourth row), and “rwmetrop” in the “LearnBayes”
package (fifth row).

7. Conclusions

In MCMC protein sampling for predicting the 3D structure, when the proposal dis-
tribution is closer to the stationary distribution, the results are more accurate. Therefore,
a suitable proposal distribution can be defined using the angles and bond lengths observed
in natural proteins. Statistical distributions for modelling protein dihedral angles can be
used as proposal distributions for MCMC protein sampling. We gave a brief overview of
existing symmetric models that formed the basis of the proposed models in this paper ((2)
and (4)). In addition, new Möbius transformation-induced toroidal distributions, together
with skewed versions, were developed in this study as alternatives to proposal distri-
butions for the MCMC sampling of proteins. We demonstrated their performance with
three protein datasets of toroidal nature and graphically illustrated their flexible behaviour.
The AIC and BIC confirmed the better performance of our proposed models in comparison
with the existing models. These newly proposed models even outperformed mixtures of
well-known models for modelling toroidal data. In comparison with the existing toroidal
models, these proposed models reflect the protein structural information better and should
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be incorporated into proposal distributions. Lastly, to meet the need for sampling of pro-
posal distribution in the MCMC algorithm, suitable methods for generating samples from
these new models were explored using different types of the Metropolis sampling. In the
future, one can investigate the performance of the Möbius transformation to obtain new
cylindrical distributions.
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Appendix A

Appendix A.1. Proof of Proposition 1

When r1, r2 → 0, pdf (10) tends to the cosine distribution, which for large values
of κ1 and κ2 is concentrated near 0. Suppose µ1 = µ2 = 0 (without loss of generality),
according to Theorem 1 in [14] and using Taylor expansions, (Θ1, Θ2) ∼ N2(0, Σ), where

Σ−1 =

(
κ1 − κ3 κ3

κ3 κ2 − κ3

)
, with κ3 ≤ κ1κ2

κ1+κ2
.

Appendix A.2. Proof of Corollary 1

Without loss of generality, we consider µ1 = 0. According to (12), we conclude that:

f ′Θ1
(θ1)

fΘ1(θ1)
=

{
−2r1

(1 + r2
1 − 2r1 cos θ1)

+
κ2κ3(1− r2

1)
2 A(h(θ1))

h(θ1)(1 + r2
1 − 2r1 cos θ1)2

−
κ1(1− r2

1)
2

(1 + r2
1 − 2r1 cos θ1)2

}
sin θ1

= g(θ1) sin θ1. (A1)

In (A1), if κ3 < 0, then g(θ1) < 0. Therefore, for θ1 ∈ [0, π), f ′Θ1
(θ1) < 0, and for

θ1 ∈ [−π, 0), f ′Θ1
(θ1) ≥ 0. Thus, fΘ1(θ1) is increasing in [−π, 0) and decreases from 0 to π.

In addition, fΘ1(θ1) = fΘ1(−θ1), which means that fΘ1(θ1) is symmetric around 0; thus,
for κ3 < 0, fΘ1(θ1) is unimodal. If κ3 > 0, h(θ1) decreases from −π to 0 and increases from
0 to π, and h(0) =| κ2 − κ3 | and h(−π) = κ2 + κ3. From Lemma 1 in Singh et al. (2002),
A(t)/t is a decreasing function of t; therefore, A(h(θ1))/h(θ1) is increasing in [−π, 0) and

http://scop.mrc-lmb.cam.ac.uk/scop/
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decreases from 0 to π. It can be concluded that g(θ1) is decreasing in [0, π) and increasing

in [−π, 0); hence, if −2r1 + κ2κ3
A(|κ2−κ3|)
|κ2−κ3|

(1−r2
1)

2

(1−r1)2 − κ1
(1−r2

1)
2

(1−r1)2 < 0, then f ′Θ1
(θ1) ≥ 0 for θ1 ∈

[−π, 0) and f ′Θ1
(θ1) < 0 for θ1 ∈ [0, π); which means that fΘ1(θ1) is unimodal. If −2r1 +

κ2κ3
A(|κ2−κ3|)
|κ2−κ3|

(1−r2
1)

2

(1−r1)2 − κ1
(1−r2

1)
2

(1−r1)2 > 0 and −2r1 + κ2κ3
A(κ2+κ3)

κ2+κ3

(1−r2
1)

2

(1+r1)2 − κ1
(1−r2

1)
2

(1+r1)2 ≤ 0, then
fΘ1(θ1) is first increasing and then decreasing in [−π, 0), which means that fΘ1(θ1) is
bimodal. A more detailed proof is provided by the authors upon request.

Appendix A.3. Proof of Corollary 2

Suppose µ1 = 0 (without loss of generality). According to (18), the following result
can be obtained:

f ′Θ1
(θ1)

fΘ1(θ1)
=

{
−2r1

(1 + r2
1 − 2r1 cos θ1)

−
κ1(1− r2

1)
2

(1 + r2
1 − 2r1 cos θ1)2

+
κ2

3(1− r2
1)

2 A(h(θ1))

h(θ1)(1 + r2
1 − 2r1 cos θ1)4

×
(
((1 + r2

1)
2 + 4r2

1) cos θ1 − 4r1(1 + r2
1) cos2 θ1 − 2r1(1 + r2

1) sin2 θ1

)}
sin θ1

= g(θ1) sin θ1. (A2)

In (A2), if cos θ1 ≤ 0, then g(θ1) < 0 and the sign of (A2) depends on the sign of
sin θ1. Hence, for θ1 ∈ (−π,−π/2], f ′Θ1

(θ1) < 0 and for θ1 ∈ [π/2, π], f ′Θ1
(θ1) ≥ 0.

Thus, fΘ1(θ1) is increasing in (−π,−π/2] and decreasing from π/2 to π. In addition,
fΘ1(θ1) = fΘ1(−θ1), which means that fΘ1(θ1) is symmetric around 0; therefore, fΘ1(θ1) is
unimodal. For θ ∈ [0, π/2], h(θ1) is an increasing function of θ1, and according to Lemma 1
in [13], A(h(θ1))/h(θ1) is a decreasing function of θ1. We can conclude that if−2r(1− r1)

2 −
κ1(1− r2

1)
2 + κ2

3(1− r2
1)

2 A(κ2)
κ2

< 0, then fΘ1(θ1) is a decreasing function from 0 to π/2,
and because fΘ1(θ1) is symmetric around 0, it increases from −π/2 to 0. If −2r(1− r1)

2 −
κ1(1− r2

1)
2 + κ2

3(1− r2
1)

2 A(κ2)
κ2

> 0, then fΘ1(θ1) first increases and then decreases in [0, π/2]
and [−π/2, 0] (because it is symmetric around 0), which states that fΘ1(θ1) is bimodal.
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